I. -INTRODUCTION

Static and dynamic analysis of complex structures with modern discretization methods becomes very costly when a good level of accuracy is needed, because of the rapid increase in the number of degrees of freedom. For example, to improve the accuracy of the stress calculation, as expected from the use of mixed or dual functionals, this can generally be• obtained only at the price of a non-negligible increase in the number of degrees of freedom.

Partitioning, or static or dynamic substructuring methods, substantially lower the calculation costs [START_REF] Valid R | Mechanics of continuous media and analysis of structures[END_REF][START_REF] Valid R | Une methode de ca/cul des structures au flambage par sous-structuration et synthese modale[END_REF][START_REF] Ohayon | Principes variationnels symetri ques couples de type primal-dual en elastodynamique lineaire[END_REF][START_REF] Ohayon | Principes variationnels cou ples prima-dual en elastodynamique lineaire : cas des coques minces[END_REF], but the structures do not always offer an arbitrary set of shapes or properties. Indeed a great many structural configurations can be observed in industry where symmetries exist that really must be taken into account to lower the volume and cost of the calculations without losing the necessary precision.

The axisymmetrical structures commonly encounte red in the space field offer a classical example of this; but there are also many structures having a single plane of symmetry, like aircraft, where the external loads can be subdivided into symmetrical and antisym metrical components, or the symmetrical and the anti symmetrical eigenmodes can be calculated separately, thereby not only relieving the load of calculations but even increasing their accuracy.

A great many industrial structures also offer cyclic symmetries about an axis. Let us mention, as exam ples, marine and aeronautical propellers, gas turbines and compressors, helicopter rotors, electric motors and alternators, torque or speed reducers with holes to reduce their weight, or their satellite gears, or all rotating machinery in general. Let us also mention space satellites with cyclically distributed tanks, or •star-pattern missile combustion chambers with their difficult fluid-structure interaction problems.

Exact and costly analyses are needed to study all of these structures, because of the variety of interaction phenomena they exhibit of the hydroelastic, elas toacoustical, elastocapillary, aeroelastic, elastoelectro magnetic types, etc.

The programs and even the numerical calculations are of course simplified by introducing the geometri cal and physical properties of symmetry, e.g. by substructuring, but do not really increase the accuracy for a given mesh.

For several years now, the introduction of proper ties of cyclic symmetry, not only in the data but also in the solutions, has improved the efficiency in these two types of requirement.

Looking through the literature for an exact method, it seems that no available study has produced an exact theory in the framework of continuum mechanics [START_REF] Vold | Efficient implantation of the discrete Fourier transform analysis of cyclically symmetric structures[END_REF][START_REF] Thomas | Dynamics of rotationally periodic structu res[END_REF][START_REF] Henry R | Contribution a /'etude des machines tournan tes[END_REF]12]. An incomplete attempt to adapt mathematical group theory to continuum structures is offered in [8 ].

In [START_REF] Ohayon | Methodes de calcul statique et dynamique des structures a symetries cycliques. 3[END_REF], we have already presented a complete theory of cyclic symmetrical structures in the frameworkof continuum mechanics, along with a calculation method, based on the general theory of the linear representation of finite groups, in the case of free vibrations of linear structures.

Here, we wish to review this theory briefly, then to present it in a completely different, elementary way, based on expansions of discrete Fourier series, with a view to extending it to cover the static and dynamic responses of structures subjected to arbitrary external loads. A dual formulation of such problems is also presented. A few numerical examples are given to illustrate how the method is used for analyzing free vibrations.

II. -HOW THE LINEAR REPRESENTATION OF FlNITE GROUPS IS USED

We consider a mechanical structure whose geome tric and mechanical properties remain the same as it 21t is rotated through an angle a= -about an axis m 1'.1. The group representing this is C m . It is a commu tative group represented by operators of rotation r of angle a in plane Ee, orthogonal to l'.1, defined now on the set of complex numbers C.

The linear representation elements are the opera tors:

2 m-1
1 E• r, r , ... , r " , . . . , r . As the group is commutative, it includes m classes of conjugates, therefore m irreducible elementary first order representations of degree 1. The character of an element r " of the representation is:

(where n is an integer)' , with:

In particular, for the h-order irreducible representa tion (IR):

and: Thus:

r=T,(r) . IE =x h (r) . IE . c c r" = [ Xh (r)]" • I E e'
Xh (r") = T , (r") = [ Xh (r)]" with h, n being integers. As: we get: Whence: and:

Thus:

Xh (r) = e 2 Ki (htm> , h=O, I, 2, ... ,m-1. U = j=I ), Xh (r") = e 2 K j (hn/m) . r" = Xh (r") . IE = e 2 K j (hn/m) • IE c c =[coshnex+jsinhnex]. IE c • (1) 
Let us consider a sector s of the structure, covering an angle ex (Fig. 1). Let r R and r L be the right and left boundaries of s, respectively, and let r be its "free This yields the following property, calling v the unit normal outside of the boundary of sector s, with a given orientation:

We then find the following properties: (b) If m is odd:

Xo (r) = I ,
Xh (r) = e 2 Ki (hJm> , Xm-h (r) = e -2 Kj (h/m) => 1 RI real, of dimension 1, and m -1 IR complex conjugate of dimension 1 (or real of dimension 2).

Let us note that: [START_REF] Thomas | Dynamics of rotationally periodic structu res[END_REF] such that the conjugate representations do not need to be distinguished.

III. -THE PROBLEM OF FREE VIBRATIONS

To simplify the discussion, let us consider the case of a homogeneous membrane n as a model problem, where the boundary conditions are of cyclic symme try, for instance clamped on the boundary.

Let ro be the angular eigenfrequency and cp be the deflection orthogonal to the membrane plane. Let us consider the problem:

Find A=ro 2 EIR+ ,and cp(M)EIR, V MEO such thatlcpE VR Acp+A.cp=O/O, cp=O/o!l,
where V R is an admissible real functional space.

(

) 7 
So that the above results can be applied, the V R space is made complex, becoming V 0 such that:

U(M)=cp (M)+j\jt(M) EC, U = cp + j\jt E Ve.
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The problem is then posed on a sector s with boundary conditions [START_REF] Valid R | Une methode de ca/cul des structures au flambage par sous-structuration et synthese modale[END_REF] and the problem then beco mes: with: In effect, U = cp + j \j1 must verify (2), i. e. if there were no coupling between cp and \jl, we would have:

Find A. E � +, cp, \j1 E V R such that t R ( cp, \j1) is stationary over V R � I [ I grad cp 12+1 grad '11 121 R ( cp, \j1) = • (8) � I [ cp 2 + \jf
= { �cp+Acp = O/s } 'v'cp, \j!EH 1 (s), cp=\jl=O/r, �\jl + A.\jl = O/s
With the coupling, though, we get: whence (8).

{ �cp+A.cp=O/s } �\jl+A.\jl=O/s 'v'cp, \j!E VR.
The results in paragraph 2 also give: •

d (m -l) d . . 1 d f rmens1on 1 an ---1stmct comp ex mo es o 2 dimension 1 (or ( m � l) real eigensubspaces of dimen- sion 2) .

Remarks

(1) The model problem can be generalized imme diately to the general case of structures with cyclic symmetries.

(2) Once the solution to problem (8) is found over sector s, the eigenmodes are completed for the full structure using formula [START_REF] Valid R | Une methode de ca/cul des structures au flambage par sous-structuration et synthese modale[END_REF]. Let there be a perturbation U at a point M 0, in sector s0 supposed to propagate by cyclic symmetry of angle Cl. Let us assume that this perturbation closes at M 0 after propagating through all of the sectors. The displacement U (M 0) will then have andargone the rotation r through each sector, and the condition for uniqueness at M 0 will of course be:

7t Calling i E ft' (E, E) the rotation operator of + - 2 about the axis �. U = j=I ),
where e2ni/m is the m th root of unity.

But the solution found for r is not the only one possible, because:

r m = lf;= I E , U(0+mCl )= If:. U(0), 'v'n integer.
We then find: In other words, when the point of observation has made a complete rotation, the perturbation has made n rotations, for example, or:

U(M(0+Cl))=ei n a.u (M(0)). ( 9 
)
This confirms condition (4). We also note that the conjugate relation of ( 9) is also verified.

IV. 2 -THE DISCRETE FOURIER SERIES

Let us consider the axis � and an arbitrary scalar field u. Under broad conditions, u can be developed into the Fourier series of azimuth 0 such that:

+co u(0)= L C k e k i9. (10) k= -co
In the case of m-order cyclic symmetry, we have the closure condition [START_REF] Ohayon | Methodes de calcul statique et dynamique des structures a symetries cycliques. 3[END_REF]. Now, the components of ranks:

k=n, m+n, 2m+ n, . . . , pm+n, . . . ,
or of conjugate ranks, of the series [START_REF] Serre | Representation lineaire des groupes fi nis[END_REF], with p being an integer, are equivalent to the sense of ( 9). In effect, the value u (0 +ex) becomes, for these components:

or again: We then let:

C2 m + n ei
+ 00 U = " C C j[pm±n)9 n f...J pm±n p= -00 { -n for p<O, n=O, 1, 2, .. .,m-1, m-1 U= L U n . n=O (11)
The breakdown (11)2 is the discrete Fourier series and is such that each component u n fulfills the n order conditions (9).

IV. 3 -CONSEQUENCES

(1) In the same way as the component u k of the classical infinite Fourier series, the components u n ( n = 0, 1, 2, ... , m -1) are orthogonal in the sense: where u* is the conjugate of u.

(2) Let us consider the cartesian coordinates in the real two-dimension space E and two real scalars, u and v that are functions of 0. We have the following infinite Fourier series: Let us take a vector U of components u and v, and an m-order cyclic symmetry. We still have:

m-1 U = L [u n +jv nJ ,
In effect: Let:

+ 00 k = -00 m-1 + oo n=O ( 13) = 2: " [u eil pm±nJ & + J • V ei l pm±nJO ]
+ 00

U (0) " e '"[pm±n]O [ + • J - • n = L, U pm±n }V pm± -Un+JVn, p= -00 such that: m-1 U (0) = L U n (0) + jv n (0), U�, V n E IR;
n=O whence (13) .

We easily verify that: 

U� (0 +ex) = ei n a U n (0), } n-0, 1,
(3) The previous method is the simplest way of applying the properties of cyclic symmetry and the closure conditions to a real scalar u. We associate with the real scalar field u an imaginary scalar field jv (v E IR), and we operate with the complex scalar field U=u+jv.

The same "complexifying" method can be applied to any real vector of dimension N, u E rJtN, After complexifying: The principle of virtual works, for kinematically admissible displacements, is written:

La (D (U)) (D (oU))
_I Jou-I FoU=O,

Jn

Jl:F VU, 8UE { H 1 (!l), U, 8U=O/"Lu} ="//' .

(

) 17 
Calling 0 again the transpose of U in H1 (!l), ( 17) can be written:

0 A8U=ffe8U, \;/OU E "//'
with:

( 18)

or again:

AU=ff,
where A fulfills the classical conditions (coercive, conti nuous, symmetrical) for ellipticity. Using ( 16), after complexification, and with the same notation, the virtual work of the external forces (volume forces, for example) being given, is expressed in ( 17):

We shall see further on in section VIII that the given forces complexify into:

f +i f Thus: i m-1 ffe 8U= h � 8U", u ,k n -0 (19)
where fk is the given volume density of force applied to the s k sector.

Then breaking down the integral and omitting the integration with respect to the other coordinates, ( 19) is written:

ffeoU= J loLn8Un+ f f 1 Ln8Un+ •. • SQ St + I J,.:E"oU"+ .. • J.k + f fm-1 Ln8Un, Sm-1
or, in succession:

iJ'ou= J J0ou0+ f J10U0+ ... s o s 1 + f ]',, 8Uo+ • • • + f fm-sO U o+ Sk Sm-1 + f J00U1+ f J10U1+ s o s 1 + f f,, 8U1+ ... + f fm-18U1+• • • Sk Sm-1
+ J J0 ou.+ J !1 ou.+ ... where (16) has been applied in the form:

U. (0o + kct) = ei k """ U n (00) .

We can also write formula (20) in the form:

1J' oU = J: <p (80) <l>oU (80) d80, where: The same formula naturally applies for the given force surface density over I:F. Formula (20) or (21) make it possible to calculate the right side of equation ( 18), which is interpreted as: oU AU=oUff, U, oUE"Y.

(22)

But we also have: 

An= An E ..<£ (H 1 (s0), H 1 (s0)), with (16), . or better yet: oUnAU=oUnff VoUnEH1(s0), n=O, 1, 2, .. ., m-1, U E { UE H 1 (s0),

In other terms, the calculation comes down to sol ving m problems over a single sector having boundary conditions that connect the displacements on the right and left boundaries of the sector to the adjacent sectors.

In fact, as we have seen, we find m + 1 decoupled 2 problems if mis even, and (m-l) decoupledproblems 2 if m is odd (section III).

Remark s

(1) Equation (25) will be used later.

(2) Formula (20) provides the projections ff n of a load field ff on m orthogonal subspaces <ff n associated with the discrete Fourier series. These subspaces are orthogonal in the sense of the scalar product: un1 un2 = I2 n un1 (0) . un2 (0) d0.

(26) n1, n2=0, 1, 2, .. . , m-1.

(3) It is easily shown [START_REF] Serre | Representation lineaire des groupes fi nis[END_REF] for matrix <I> of formula (21) that: which would yield <1> -1 if necessary.

( 4) The transmission conditions of the type ( 5) on the boundary fluxes are automatically verified by the variational formulation, which is classical. In effect, the integrals given by the principle ( 17) on boundaries r L and r R are expressed for each value n and give as a function of the stress C:

or f [-[Cv]6ei n 11+[Cv]D]0U nn=O,

JrG

Whence:

[Cv]6=ei n 11 [Cv]D. [START_REF] Vold | Efficient implantation of the discrete Fourier transform analysis of cyclically symmetric structures[END_REF] .

In the case of a concentrated force Jo Mn at the pomt M n ESn.

OM being the Dirac delta function, (20) and (21) give:

ffn (oU)= J[oU0 +e n i 110U 1 +e 2 n i110U 2 + ... +e n . n i11oun+ . . . +e n [ m-1] j 110U m -1 J,
which is a formula giving the following interpretation of the characters in section 2 :

The characters of group C m are the components of a vector on orthogonal subspaces <ff n of the vector space defined over the set of complex numbers C.

V. 2 -CONJUGATE PROBLEMS

Two problems are called conjugate if they corres pond to the values n and m -n, respectively. Now:

Un (0 +ex)= ei n II Un (0), um-n (0 +ex) =e -j n II um-n (0).
The complex conjugate vector: . Consequently, U!n is an n-class vector solution, or again: As U!_.e@". from (27), equation (28) can be writ ten:

(29)
This solution u. due to the loading ff! -., has to be added to the solution resulting from the loading ff.. The total solution u. thus verifies: ff! -. is calculated as follows. Since: (32) Condition ( 32) can be introduced in ( 17) as a constraint using a Lagrangian multiplier A. such that:

La ( D (U)) ( D (&U))-LJ&U -r F &U-& r A( U-U4)=0, J I F J I U (33)
The last integral on the left can be expressed using the decomposition ( 16):

which shows that the m equations of (33) are coupled in the general case, i. e. when Lu is arbitrary, because: si p #n, except if the integral over Lu corresponds to an inte gral over the interval 0-27t [see (15)] for the azimuth 0, i. e. if Lu has the m-order cyclic symmetry property, which reduces the problem to the previous case.

VI. -DYNAMIC PROBLEMS

For an arbitrary external time-dependent loading, and naturally when Lu has the property of cyclic symmetry (section V. 3), the above method remains valid, the initial conditions IC being given. The solu tion is calculated by a numerical integration scheme, e.g. of the Newmark type, by breaking the time interval down into integration steps. Integration is carried out step by step over a single sector, using formulae (20) and (31).

From a theoretical point of view, at each step the initial conditions are taken to be the final conditions at the end of the previous step, and since these condi tions are equivalent to external forces, it is clear that they are subject to analogous properties of complexifi cation and projection.

Furthermore, using p for the volume density of the structure, the forces of inertia give a virtual work that is:

( U = a 2 u ) iJt 2
Equation (25) becomes, for example: In the practical use of a numerical integration scheme, as the displacement at step k + 1 is a linear function of the solution at step k, this property remains true for its components in the discrete Fourier series. These components are thus calculated in each n-order problem and these problems are thus decou pled at each time step.

Substructuring method s. The static and dynamic problems posed on a sector by a discrete Fourier series of forces and displacements can be calculated by static and dynamic substructuring methods applied to the sector in question, if the reduction of the problem in size requires it. This method has already been used in [START_REF] Henry R | Contribution a /'etude des machines tournan tes[END_REF] for eigenvibration problems.

VII. -THE DUAL PROBLEM

Let us consider problem ( 17) again. The dual formulation is found by maximizing the complemen tary energy in such a way that:

�{ -L 1/2b(C)(C)+ Lu Cv ud ]=o, CE{ CEL2(!l), divC+J=O/n, Cv=F/r.F }, (35) 
where 1/2b (C) (C) is the volume density of energy, assumed to be a positive definite quadratic function of the stress C. Since the stress in ( 35) is assumed to be statically admissible, a simple way of proceeding is to introduce this condition in the principle, with Lagrange multipliers; but this is then theoretically equivalent to the mixed Hellinger-Reissner principle [START_REF] Valid R | Mechanics of continuous media and analysis of structures[END_REF], which yields:

The first two terms r,( C :�) By decomposing into a discrete Fourier series, and after complexification, these terms yield:

The other terms can be decomposed m similar fashion, except the term: which gives a coupling between all the n-order prob lems for the same reasons as discussed in section V. 3, if :Eu does not offer the geometric properties of m order cyclic symmetry.

If Lu does in fact offer these properties of m-order symmetry, the dual problem can then be solved in the same way as the primal problem, with a finite number of problems posed on just one sector.

VIII. -DISCRETIZATION Preferably, one of the problems discussed above will be discretized by the finite element method follow ing the logic of formula (34).

(1) The unknown is first put in complex form. For example, the displacement U is expressed:

U= U' +iU",
which doubles the number of unknowns.

In practice, complexifying the degrees of freedom of sector s is equivalent to introducing a double num bering at each node and thus for each degree of freedom where the first number gives the real compo nent and the second gives the imaginary component of the displacement. Over the sector s of the rigidity matrix K, the n order discretized equation is then expressed with a discretized external force Fn having-the n-order cyclic symmetry: with:

or:

[�osnr:t. smnr:t.

-sinnr:t. The external forces given are complexified into F + j F. In effect, with no coupling between the left and right edges of sector s, the two equations in U' and U" must give the same solution. This will also be the case when the connection is real, i.e . when enjri= ± 1.

(2) The linear constraint in (36) is imposed on the unknowns. Different procedures are possible; direct elimination, technique of Lagrange multipliers asso ciated with regularization and penalization for comple tely eliminating the multipliers, etc .

(3) The complete solution over the entire structure is constructed by using constraint for ( 36) each value of n and obtained by adding each n-order solution. It goes without saying, that in the spectral problem, each n-order problem gives the correspo• nd ing eigenvalues and eigenmodes.

IX. -SAMPLE APPLICATION

The problem of paragraph III has been applied in a numerical simulation of eigenvibrations of an elastic membrane clamped at its edge. The elastic proper ties are assumed to be different in each half-sector of the generator domain, so that we have only cyclic symmetry properties of order 6.

(1) The entire structure was first calculated using triangular six-node finite elements (Fig. 2) with one degree of freedom per node, or 61 degrees of freedom for the entire membrane. The modal deformations are represented classically, with a " + " sign indicating positive displacements and " -" for negative displacements. We observe that eigenmodes 2, 3, 4, 5, 10 and 11 are degenerate. (2) The structure was then calculated over the sec tor OAB using the closure conditions and mesh indica ted in figure 2 ( 15 degrees of freedom before doub ling).

Here, m is even and is equal to 6. n = 0 gives a single mode; the same is true for m .

n = -= 3. In these two cases, there 1s no reason to 2 double the degrees of freedom.

Casen=O

First mode

The calculation over a single sector gives /=5,515. 007 x 10 Hz.

The calculation over the complete structure gives /=5,514. 307 x 10-2 Hz. Degenerate case where n= I (for example)

The calculation made over the entire structure determines two eigenfrequencies (!=8,786. 398x10-2 Hz and f=8,786. 356 x 10-2 Hz) which can be compared with the frequency as calculated over a single sector, f = 8, 795 . 997 x 10-2 Hz.

Remarks

( 1) In the case n = 1, three times less calculation time was needed for one sector than for the full structure. Moreover, the modal forms do not have exactly the properties of cyclic symmetry when they come from a calculation made over the entire struc ture, as was pointed out in section I.

Figure 3 shows the modal forms associated with the eigenfrequency f = 0.19 Hz.

(2) In the case where an additional property of . symmetry exists with respect to a plane P, the method is considerably simplified because the closure condi tion

[<p] [cosnr:{ \jf L = sin n ex -sin n ex J [ cp J , cos n ex \jf L
gives, for example:

cpL =cos n ex <pR -sin n cx\jf R•
and for cp L = cp R• i. e. when <p is symmetrical, When this value for cp is inserted m the second equation, it gives: which means that \jf is antisymmetrical. We also obtain the opposite conditions.

Under these conditions, the calculation is made over the half-sector with the following condition at the boundaries, for example: Rech. Aerosp. 1985-4

X. -CONCLUSION With an elementary line of reasoning, we have shown here an exact method for calculating the static and dynamic responses of a linear elastic structure offering the properties of cyclic symmetries.

The theory is based on the projections of a vector field on orthogonal subspaces using a discrete Fourier series. The method extends immediately to mixed functionals.

Of course, the mathematical proof could be used that is based on the linear representation of finite groups. The theory, applied to the dihedral group, i. e. to the group of rotations and symmetries with respect to planes in each sector, has been found to be much more complicated [START_REF]symetrie et problemes variation nels (to be published}[END_REF], and probably unneces sary, as we have seen.

The general method proposed .can be applied fully to all types of linear physical problems having the properties of cyclic symmetry, and in particular to coupled problems of systems exhibiting interaction phenomena.

We have also reviewed the practical means of implanting the finite element method numerically in standard computer codes, as long as the programs offer a way of doubling the degrees of freedom, and as long as the closure conditions are included, i. e. linear constraints. This aspect of the method has been illustrated by a few sample applications.

It goes without saying that additional modules are needed in these programs, in applying the theory to the calculation of static and dynamic responses under arbitrary loading, to calculate the terms of the decom position in discrete Fourier series of these loadings using the formulae given here.

It should be mentioned again that this method takes up less computer time than the direct method, and is significantly more accurate since, as we have said, the properties of cyclic symmetry are introduced a priori in the solutions themselves and not just in the input data. 
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 a If mis even, n=O and n= m imply that the 2 boundary conditions are decoupled between cp and \j1 resulting in two nondegenerate real eigenmodes.Because of (6), there remain
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  IV. -AN ELEMENTARY PRESENTATION IV. 1 -CLOSURE CONDITIONS Condition (3 ) can be confirmed in an elementary fashion. Let us consider the structure offering an m order cyclic geometric and mechanical symmetry, of 2 7t angle Cl= -and let us consider the sectors s0, s 1 , m ... ' s m -1 •

  r= I']/ m = e 2 n; <nf m l = ei na. , which is precisely the rotation operator of angle n Cl.It is sufficient to let n = 0, 1, 2, ... , m -I.

  [ 2 m+n) [ O+ aJ , C pm + n ei [ pm + n] [O+aJ , ... , C m+n ei c m +nJ o+ i n a , c 2 m + n ei l2 m+n)O+jn a , C pm + n ei [ pm +n] O + jn a , . .. , All of these components are equivalent insofar as they undergo the same transformation (9).

  2, ... , m-1. Moreover: j2n on,. un 2 = J o [u n, + jv n,l X [u n 2 + jv n 2J d0 = 0 where the bar indicates the transpose in C.

  .. u (0 +ex) =ei"11 v i (0), U(0+cx)= [JJ Formulae (13)-(15) apply fully and we then have again: V. -THE STATIC PROBLEM WITH ARBITRARY LOADING (16) V. 1 -SECTOR BREAKDOWN OF THE PRO BLEM Let us consider an elastic linear structure having properties of m-order cyclic symmetry about an axis �. The structure occupies a domain n c £3, that is the union of m sectors s0, s 1 , ... , s m-l • Let U be the displacement at a point M 0 and D the strain at that point. After the deformation: M0-+M and the linearized strain is expressed by:D = ! [ au + au J = v, 2 aM0 aM0where the bar designates the transpose in E3• Let ! a(D)(D) be the volume density of strain 2 energy, assumed to be definite and positive, of the elastic structure. The structure is assumed to be subjected to a volume density of force f and to a surface density of force F over a part L F of the boundary L. The displacement is assumed to be 0 over the complementary part Lu of :E F , where Lu is assumed to verify the properties of cyclic symmetry (Lu= U as"u).

s o s 1 + 1 =

 11 J J,, ou.+ ... + J fm-1 ou.+ ...SkSm-[f fo (8) 8U0(8)+ 1 e lm-1] ja e [m-1] 2 ja = J: d80 { Lfo(e;;) + f1 (00 +ct)+ f 2 (80 + 2 ct)+ ... + fm-l (00 + [ m-1] ct)] 8Uo (0o) +f0(80)8U1 (80)+f1 (00+ct)8U1 (80+ct)+ .. . +f m-l (80+ [ m-l]ct)8U1 (00+ [ m-l]ct)+ .. . + fo (80) oU. (0o) f f1 (00 +ct) oU. (00 +ct) + fi(00+2ct)8U.(80+2ct)+ .. . + fm_ i(80 + [ m -1] ct) oU. (00 + [ m -1] ct)+ .. . + fo (80) ou m-1 car+ !1 (80 +ct) ou m-1 (0o +ct) + fi(00+2ct)8U m _1(00+2ct)+ ... + fm-l (80 + [ m-1] ct) 8U m-1 (80 + [ m -1] ct) } . and finally: iJ' 8U = r d8o Ulo + 1 1 +! 2 + ... +!.+ ... + fm-1l8Uo(80) + Uo + J1 ei"' + J 2 e 2 ja + • • • + J,, e•i a + • • • + fm-1 e lm-l]j "] 8U1 (0o) + Uo + 11 e2 ja + 1 2 e1 . 2 ja + . . . + !.. e 2 nja + ... + fm-1 e1 im-1 ua ] 8U 2 (80) + . .. +[Jo+ 11 el m-l]ja +J 2 e lm-1] 2ja + ... J,, el m-1]nja + ... + fm-1 e l m-11 lm-1 1 ia ] 8U m-1 (80) } .

m- 1 n=O, 1 , 2 ,

 112 .. ., m-1, n =O where ff n satisfies the n-order closure condition. Then (22) yields: [I:n oUn] A [ � P U p] = [I:n oUn] �k ff k ], l n, p, k -0, 1, 2, ... , m 1. x ) Un (0 +ex)= A (0) . ei n 11 Un (0)=ei " 11 A (0) Un (0). Thus: A (0) Un (0) =[ A (0) . u (0)ln• (24) We can thus use (24) an_ d (16), to break (23) down into m decoupled problems:

U

  ! -n (0 +e x )= [e-j n II um-n (0)]* = e i n tt U! -n (0).

  ff. &U.= f[Jo+ / 1 e•ja+ h e1 n jx + ... ----(30) + fm-2 e -2 n ja + fm-1 en ja ] &u. (0) and: ff mn & U m-n = L a [Jo+ / 1 e l m-n ]ja + f 2 e ( mn )2ja + ... + fm-2 e -[ mn ] 2 ja we get: ff!_.&U! -n= f [f�+f!e• ja + f ! e 2 n ja + . . . + f =-2 e -2 n ja + f!-1 en ja ] &U. (0) =ff!_.&u.. (31) V. 3 -GIVEN DISPLACEMENTS Let us consider problem ( 17), but now supposing that not-necessarily-zero displacements are given on Lu.

  &u. [AU+ p U -ff] =O, Ue{UeH1 (s0), U=O/os0u, UG=�• a u� } •. (34 ) &U.eH1 (s0) + CI, n=O, 1, 2, ... , m-1.

  and 1/2b (C) (C) are both of the form: T,(m;)= cr�E{ (with summation), where er and E are the matrices representing the stress and strain, respectively, in any given base of n.

Fig. 2 .

 2 Fig. 2. -Hexagonal membrane and mesh.

  Second modeSingle sector: /=2,676. 256 x 10-1 Hz. Complete structure : f =2,675 . 754 x 10 -1 Hz.Case n=3First mode Single sector: f = 1,447. 197 x 10-1 Hz. Over a complete structure: f=l,447.450x 10-1 Hz.Second modeSingle sector: f = 1, 829 . 645 x 10 -1 Hz. Complete structure: f= 1,830. 304 x 10-1 Hz.

Fig. 3 .

 3 Fig. 3. -Eigenvibrations of a heterogeneous hexagonal membrane. First degenerate mode calculated over one sec tor, then reconstructed over the entire structure. f=0.19 Hz, +positive deflection, -negation deflection.

  net tan-. <p + \jf = 0/r R• 2 \jf =0/P. The transmission conditions for the forces, C>cp ncx C>\jf -+ tan-. -=O/rR, C>v 2 C>v o <p =0/P. av will automatically be satisfied by the variational formulation.
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