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Finite element analysis of frequency- and 
temperature-dependent hybrid active-passive 
vibration damping 

Marcelo A. Trindade - Ayech Benjeddou - Roger Ohayon 

Structural Me.chanics and Coupled Systems Laboratory 
Conservatoire National des Arts et Metiers, 2, rue Conte, 75003 Paris 
{trindade, benjedou, ohayonj@cnam.fr 

RESUME. Un nouvel element fini est formule et utilise pour analyser des poutres sandwich a 
peaux piezoelectriques stratijiees. L'amortissement viscoelastique du coeur est modelise par 

trois methodes, a savoir Golla-Hughes-McTavish, champs de deplacements non elastiques et 

une version iterative de la methode des energies modales. Puisque les deux premiers modeles 

augmentent beaucoup la dimension du systeme, on propose une reduction modale. Les modeles 

reduits sont ensuite appliques pour l'analyse de l'amortissement par couche de contrainte ac­

tive d'une poutre encastree-libre, en utilisant un algorithme de controle optimal contraint. En 

outre, l 'effet des variations de la temperature sur la performance de l 'amortissement est etudie. 

ABSTRACT. A new finite element is formulated and used for the analysis of sandwich damped 

beams with laminate piezoelectric faces. The viscoelastic damping of the core is accounted 

for using three models, namely Golla-Hughes-McTavish, Anelastic Displacement Fields and 

Iterative Modal Strain Energy. Since the first two models increase much the system dimension, 

a modal reduction is proposed. The reduced models are then applied to the analysis of 

active constrained layer damping treatments of a cantilever beam, using a constrained input 

optimal control algorithm. Furthermore, the effect of temperature variations on the control 

performance is studied. 

MOTs-cLts: Materiaux viscoelastiques, materiaux piezoelectriques, amortissement hybride actif­

passif, cont role de vibrations, element fini. 

KEY WORDS: Viscoelastic materials, piezoelectric materials, hybrid active-passive damping, vi­

bration control, finite element. 
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1. Introduction 

Since the beginning of the nineties, there ha<; been an increa<;ing interest in hy­
brid active-pac;sive damping technologies, using piezoelectric and viscoelastic mate­
rials in a single treatment. This is mainly due to the complementarities of such dam­
ping treatments. Pac;sive damping is known to be robust and reliable but performance 
is generally limited by weight and dimension constraint<;. While active control al­
lows to overdamp some selected modes with very small actuators. One such hybrid 
damping treatment is obtained by replacing, or augmenting, the constraining layer 
of a passive constrained layer damping (PCLD) treatment by a piezoelectric actua­
tor. This mechanism, the so-called active constrained layer damping (ACLD), allows 
to increa<;e actively the viscoelastic layer shear strain and, consequently, the energy 
dissipation. Review on active constrained layer damping treatments can be found in 
[BEN 99a, INM 97]. The performance of such a treatment is the result of a compro­
mise between increac;e of viscoelac;tic dissipation and loss of actuation transmissibi­
lity. Thus, it is highly dependent on viscoelastic material stiffness and damping pro­
perties, which depend strongly on temperature and frequency. Hence, modeling these 
dependences is very important for the control synthesis. Lesieutre and his co-workers 
[LES 95, LES 96b] and Hughes and his co-workers [GOL 85, MCT 93) proposed the 
so-called Anela<;tic Displacement Fields (ADF) and Golla-Hughes-McTavish (GHM) 
models, which are based on the introduction of internal variables to account for vis­
coela<;tic relaxation and, thus, damping behavior. They were shown to be superior to 
the Modal Strain Energy (MSE) method proposed in [JOH 81 ], although they are more 
complex and much increac;e the system dimension, so that a modal reduction is requi­
red. Both ADF and GHM models parameters are evaluated from materials properties 
at a given constant temperature. Lesieutre and Govindswamy [LES 96a] presented 
an extension of the ADF model capable of predicting self-heating and temperature­
dependence of viscoelac;tic materials in simple shear, however leading to nonlinear 
equations of motion. GHM model wac; applied to ACLD treatment<; mainly by In­
man and his students [PAR 99), who also studied its model reduction, and Liao and 
Wang [LIA 97). On the other hand, Friswell and Inman [FRI 98) proposed the use of 
an iterative version of the MSE method, in conjunction with a complex-bac;ed model 
reduction, a<; an alternative to internal variables approach. They also presented the 
effect of temperature variations of viscoela<;tic material on the control performance. 
Also to account for viscoelastic damping, Plouin and Balmes [PLO 98) proposed an 
augmented real-bac;ed modal reduction technique, however the system dimension is 
doubled. 

Piezoelectric three-layer sandwich beam finite element models were presented in 
previous works [BEN 97, BEN 99b]. They are extended here to treat sandwich dam­
ped beams with laminate piezoelectric faces and viscoelac;tic core. Finite element im­
plementation of ADF, GHM and MSE viscoelastic models is also given. A model 
reduction of the ADF and GHM augmented systems is proposed. Then, the resulting 
reduced models are applied to the analysis of ACLD treatment<; of a cantilever beam, 
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using a constrained input optimal control algorithm. Finally, the effect of temperature 
variations on the control performance is studied and a temperature-dependent control 
synthesis is analyzed. 

2. Finite element formulation 

A sandwich beam made of viscoela<>tic core and laminate, elastic or piezoelectric, 
faces is considered. The latter are modeled using cla<>sical laminate theory, wherea<; 
the face/core/face system is modeled using classical three-layer sandwich theory and 
the kinematics description proposed in [BEN 99b]. All layers are supposed perfectly 
bonded, in plane stress state and having the same transverse displacement. The defor­
mation of the face sheets obeys Euler-Bernoulli theory, whereas Timoshenko one is 
used for the core. Piezoelectric laminaes of the faces are poled through-thickness and 
subjected to transverse electrical fields. Other non-piezoelectric layers are a<;sumed 
insulated. The parameters L, b and h denote length, width and thickness constant<> and 
the subscripts a j. b j and c relate to the j-th laminae of the upper a and lower b faces
and to the core, respectively. 

2.1. Displacement and strain interpolations 

Assuming linear through-thickness axial displacements for the multilayer faces 
and core, and enforcing continuity conditions between layers, one may write the fol­
lowing axial displacements expressions 

where 

and 

u; = u;+ (z-z;)�;; w; = w; i = a,b,c

Uk= U± �; �k = -w'; k= a(+),b(-); Uc= u+dw'; �c = � +J..w'

d- ha-hb . - 4 , A,- ha+hb . Q - 2hc ' Zc = ; Z _ ±hk+hc , k- 2 , 

[1] 

n and mare the numbers of sub-layers of the upper a and lower b faces, respectively.
•' states for 

a. /i.lx. 

The sandwich beam displacements [1] are entirely defined by the mean u = (ua + 
ub)/2 and relative ii= ua - uh axial displacements of the face sheets mid-planes, the 
transverse deflection wand it<; derivative w'. Hence, using Lagrange linear shape func­
tions for the axial mean and relative displacements and Hermite cubic ones for the 
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transverse deflection, leads to a finite element with four degrees of freedom (dot) at 
each node. The interpolation of the generalized displacements d = col( u, u, w) may 
then be written as 

where [1-�
N= 0 

0 

[2] 

is the interpolation matrix with�= x/ Le and Le , the element length. qe is the element 
dof vector given by 

[3] 

where col( ) is used to define column vectors. Using [l] and [2], the displacementc; 
of the faces Uk= col(uk, pk, w) and the core Uc= col(uc, Pc, w) are then discretized ac; 
follows 

Uk = Rkd = Hkqe ; Uc = Red = Hcqe [4] 

where 

[� 
1 

_oa 
l �� [� 

0 
:�] 

±-
2 

Rk= 0 ; k=a(+),b(-); dX he dX 0 1 0 1 

Hk = RkN, He = R:N are the faces and core displacement operators, respectively. 

From the usual strain-displacement relations and using [ 1 ], axial and shear strains 
of the faces and the core may be written as 

E!i = E/ + (z -Z;)Ef ; Esc = e:; ; i =a, b, c 

where membrane E/, bending Ef and shear e:; strains are

[5] 

t t u f!:: = u' ± - · Eb= -w11 • f!"! = U1 + dw11 • Eb= - + /...w11 • e': = - + (/...+ l)w'k 
2' k ' c ' c h ' c h c c 

Using [2] and [5], the strains of the faces Ek= col(Ek',Ef) and the core Ee= col(E� ,E� ,E�)
are then discretized as follows 

[6] 
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where Bk= LkN, Be= LeN are the strain operators for the faces and the core, 

respec­tively, and 

L,= [� ±��2ax0 
_ �2 l ; k=a(+),b(-);

ox2 

2.2. Reduced constitutive equations 

a 
ox 

Le= 0 0 
0 azda-z 

1 a a� 
A.axz he OX 

1 a 
he (A.+ l) ax

The piezoelectric materials are aissumed linear orthotropic with material symmetry 
axes parallel to those of the beam. Their elaistic, piezoelectric and dielectric constantis 
are denoted by c;1, elJ and f.II (i,j = 1, ... ,6;/ = 1,2,3). All layers will be conside­
red piezoelectric, where piezoelectric constants are set to vanish for elaistic and vis­
coelaistic layers. The three-dimensional linear constitutive equations of an orthotropic 
piezoelectric layer can be reduced to [7] 
where 

This reduction is detailed in [BEN 97]. cr1 and cr5 are axial and shear components
of stress, and D3 and £3 are transverse electrical displacement and field. From [7],
one may notice that the piezoelectric effect couples the axial strain and transverse 
electrical field. This is the conventional piezoelectric extension actuation mechanism. 
Its comparison with the shear actuation mechanism can be found in [BEN 00]. 

The electrical field E3kj is assumed constant and induced by a difference of poten­
tial Vkj applied on the krth piezoelectric sub-layer, such that [8] 
2.3. Element stiffness matrix 

The virtual work of electromechanical internal forces of the krth face piezoelec­
tric laminae is 

OHkj = l (OE1k0"1kj -OE3kjD3kj) dD.kj; k1 = a1, ... ,an,b1, ... ,bm [9]
kj 
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 Introducing [7] and [8], the virtual work oHk. can be written, for a given Vk ., as } } 

where 

[ 10] 

The term -e;�jVk)hkj may be considered a<> a piezoelectric stress induced by the
applied electrical field on the krth piezoelectric laminae. Consequently, the second 
term of [ 10] will be considered as the virtual variation of the work of electrical loads 
and detailed in the next section. 

Integrating through-thickness the mechanical internal virtual work oHkjm• and 
using [5] and [6], the discretization of oHkjm leads to the following elementary vir­
tual work 

with Kk· being the elementary stiffness matrix of the krth face laminae, } 

[11] 

[ 12] 

Ak., 4.. and h. are the cross section area and first and second moment<> of inertia of the } } } 
krth sub-layer face, respectively. The elementary stiffness matrix of the face sheet<> is 
then obtained by adding each laminae stiffness contribution 

[13] 

The stiffness contribution of the viscoela<>tic core can be found from it<> mechanical 
internal virtual work, which is composed of axial and shear strains contributions, 

[ 14] 

Integrating through-thickness this expression and using [5], [6] and [7], it<> virtual 
variation oHcm may be discretized, leading to it<> element contribution

[15] 
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where the elementary stiffness matrix of the core is 

[16] 

kc is the shear correction factor. 

The elementary stiffness matrix of the sandwich beam finite element is obtained 
by summation of the face sheets and core contributions 

[17] 

It is worthwhile to notice that each face sub-layer stiffness matrix [ 12] is composed 
of membrane and bending strains and a membrane-bending coupling term, due to the
distance between the mid-plan of each sub-layer and its corresponding layer. 

2.4. Element piezoelectric loads vector 

Using [5]-[8], the element contribution to the virtual variation of the generalized 
piezoelectric loads work Hkiem [10], induced by the applied electrical field, may be 
discretized, for the krth face piezoelectric laminae, as 

where the elementary equivalent piezoelectric load vector Fkie is

[ 18] 

[ 19] 

The applied generalized piezoelectric loads vector of the element is the sum of those 
of each face sub-layer 

b n,m 
F�= L � Fkjek=a1=l 

[20] 

2.5. Element mass matrix 

The elementary ma�s matrix of the sandwich beam may be obtained from the 
virtual variation of the works of inertial forces, which are, for the krth face sub-layer 
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and the core, 

where p states for the volumic mass density and. states for 
a. /ot. 

Integrating through-thickness expression [21) and using [ l ]  and [4], elementary 
contributions of fJTkj and OTc are discretized a<; 

[22) 

with Mk· and M� being the elementary ma<;s matrices of the krth face laminae and J 
the core, respectively, 

[23) 

where 

The elementary ma<;s matrix of the face sheets is then obtained by adding each 
face sub-layer contribution 

b n,m 
M/ = L _EMkjk=aj=I 

[24) 

Finally, the sandwich beam finite element mass matrix is obtained by summation 
of the face sheets and core contributions 

[25) 

As for the stiffness matrix, one may notice that each face sub-layer ma<;s matrix 
[23) is composed of axial and transversal translations and rotation in the xz-plan iner­
tial contributions and an axial translation-rotation inertia coupling term, due also to 
the distance between the mid-plan of each sub-layer and it<; corresponding layer. 

2.6. Discretized equations of motion 

Assembling discretized expressions of elementary virtual works [11), [15), [18), 
[22), and their corresponding matrices [17], [25] and vectors [20), for all elements and 
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using d'Alembert's principle, the following discretized equations of motion may be 
written 

Mq + Dq + Kq = Fm+ Fe [26) 

where a viscous damping matrix D and a mechanical nodal load vector Fm have been
considered a posteriori. M, K, Fe are the global mass and stiffness matrices, and pie­
zoelectric loads vector, of the whole sandwich beam. 

3. Viscoelastic damping models 

Since the core is made of a viscoela<;tic material, one must take into account the 
frequency-and-temperature-dependence of it<; stiffness and damping properties. Sup­
posing a constant Poisson's ratio, the equations of motion [26) are re-written as

Mq+Dq+ [K1+G*(w,8)Kc]q =Fm +Fe [27) 

where G*(w,8) is the frequency-and-temperature-dependent complex shear modulus
of the core and Kc is the modulus factored-out core stiffness matrix. In the following 
subsections, three methods to account for the frequency-dependence of the last equa­
tion, considering a fixed temperature, are presented. Then, for analysis of the tempera­
ture variation effect<;, viscoela<>tic material is modeled using such methods for several 
operating temperatures. 

3.1. Golla-Hughes-McTavish model 

The GHM model represents the material shear modulus as a series of functions, in 
the Laplace domain, such that [MCT 93) 

sG(s) =Go (i + L &.i s2 � 2
A
elnis 

A 
)

i s2 + 2�iWiS + wf 
[28) 

where Go represent<; the relaxed modulus, or static modulus. Notice that, from [28), the
unrelaxed modulus may be written a<; G .. = Go ( 1 + L di). Each function in the series
is dependent on three material constant<>, namely &.i. &i and ei. evaluated from curve­
fitting of the viscoela<>tic material master curves. Substituting [28) in the Laplace­
transfonned equations of motion [27) leads to

[ ( 2 A A )]A s + 2 iWiS - - -s2M+sD+K1+K� l+[ai A 5 A q(s) =Fm(s)+Fe(s) 
i s2 + 2�wis+ wf 

[29) 
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with K� = GoKc being the core static stiffness. Introducing a series of n dissipative 
variables z; ( i = 1, ... , n) such that, 

A2 (l). z·(s) - I q-(s) ' - z 2r A A z s + ..,;ro;s + ro; 
[30] 

one may write the following augmented system 

(s2M+sD+Kt+K�) q(s)-K�[a;z;(s) = Fm(s) +Fe(s) [3la] 
i 

where K;:" = K� (1 + E; &.;) is the unrelax.ed, or high-frequency, core stiffness. Multi­
plying equations [3l b] by a;K� and retransforming [31] to time-domain, it becomes 

with 

and 

M-- [M- 0 
q = col(q,z1, ... ,z,,); F = col(Fm +Fe,O, ... ,0) 

[� O

K� 0 l -
['�,i, K� 

, Du-
a.,, Ko 0� c II [a,�� ��l ; Kqz = [-&.1K� . . . 

�.:K,J 6:>,, c 
-&.,.K�J 

[32] 

Although this form is quite simple, it<> mass matrix is non-singular only for totally 
covered beams, for which K� is also non-singular. Therefore, for the general case, 
one may either substitute the singular K� matrix by the identity matrix in the second 
block line of the matrices of [32], leading to a non-singular ma<>s matrix but also to an 
asymmetric stiffness matrix (Kzq f. K�z), or, otherwise, use a modal reduction of the

matrix K�, such that ¢1-/ =TT z; and A= TTK,, T. Where A is the non vanishing K._.
eigenvalues matrix and T its corresponding eigenvectors matrix. In this case, the mass 
matrix is non-singular, the stiffness matrix is symmetric and, also, the matrices corres­
ponding to dissipative variables are diagonalized and eventually reduced. Hence, the 

10



matrices Mw Dw Kzz and Kqz of [32] are rewritten ac

This method allows both a good representation of the frequency-dependence of 
viscoelastic materials and time-domain analyses of the augmented system, since all of 
it<; matrices are constants. 

3.2. Anelastic Displacement Fields model 

The ADF model, proposed in [LES 95, LES 96b], represents the complex material 
modulus ac; a series of functions in the frequency-domain, such that 

G* (co) = G (1 + '""'� · co2 + jco .ni) 0 L,, I 2 + .Q2 i co i 
[33] 

where, here, the unrelaxed modulus is Goo= Go(l + Li�i) . .O.i and �i are material
parameters evaluated from curve-fitting of material master curves. 

This method is bac;ed on the separation of viscoelac;tic material strains in elac;tic 
and anela<;tic parts. The first one is instantaneously proportional to the stress and re­
presents the energy storage, whereas the other represent<; material relaxation and, thus, 
dissipation. This separation may be obtained by introducing a series of dissipative va­
riables q/1 (i = 1, . . . , n) , such that

[34) 

The variables qe replace then q in the core strain internal work expression, leading to

Mq+Dq+(K1+K;'.")q -K;'."[q/1 =Fm+Fe [35] 
i 

where, here, the unrelaxed stiffness of the core is K;'.° = (1 + Li�;)K�. In addition to 
the last expression, one should write a system of equations describing the relaxation 
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process 

C;Koo·a K00 CK00 a 0 n., c Q; - c q + i c q, = [36]

where the material parameters C; are related to �; such that C; = ( 1 + L �;) / �,. Com­
bining equations [35] and [36] leads to 

where 

with 

M= [Mo oo ] ; D = [D 0 ] ; K= [K1+TK� Kea]
0 Daa Kea Kaa 

q=col(q,q'I, . .. ,q;:); F=col(Fm+Fe,O, . .. ,0) 

Kea= [-K� -K�] 

[37] 

As for GHM model, one may propose a modal reduction of matrix K� to diago­
nalize matrices and reduce augmented system dimension. Hence, let <Pf = TT q:' and
A= TT Kc T so that matrices Daa, Kaa and Kea could be rewritten a<; 

One may notice that, unlike the case of the GHM model, this reduction leads to a sin­
gular mass matrix since, in this case, dissipative variables have no inertia. Therefore, 
instead of solving the second-order system [37], one should construct an odd state­
space system with state col(q, q) rather than col(q, q) to eliminate this singularity.

3.3. Iterative modal strain energy model 

An alternative to the internal variables approach, is to use an iterative version of 
the MSE method [JOH 81]. It considers that the modal loss factor is approximated a<; 

12



the product of the viscoela-;tic material loss factor by the fraction of the dissipative 
energy, present in the viscoelastic material, to the total strain energy. Following this 
definition, the iterative algorithm of Figure 1 is proposed. 

Evaluate K'(<ii,!) = K1+G'(<ii,!)Kc 

Evaluate <if,!+1 = eig[M,K'(<ii,!)] 

>0,5% 

�0,5% 
Evaluate Tl'= <t>;K"4>r/4>'{K'4>r 

Figure 1. Iterative modal strain energy algorithm (K' = �(K*),K" = 3(K*)). 

Using such an algorithm, undamped eigenfrequencies and eigenvectors can be cor­
rectly evaluated and modal low damping well approximated. The convergence is very 
fa-;t, however, evaluation must be repeated for each frequency of interest. This tech­
nique prevents the evaluation of the state-space system complex modes a-; in [FRI 98], 
reducing greatly the computation cost. 

To extend this method to the control synthesis, where several modes are excited 
simultaneously by the controller, let us consider the following eigenfrequency, modal 
loss factor and eigenvector matrices for the m frequencies of interest (r = 1, ... ,m), 

<Pm] [38] 

The viscoelastic damping matrix may be approximated by rt.O.e. Consequently, the 
system [27] may be rewritten as 

[39] 

where the viscous damping matrix D is assumed to be such that T�DT e = 21;.0.e, I; 
being the viscous damping factor. Evidently, Te may not diagonalize K' = �(K*), 
since each column of Te is valid only for a single frequency. Nevertheless, this system 
constitutes a rea-;onable approximation of [27] for lightly damped structures. 
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4. Reduced state-space equations

To apply the frequency-dependent finite element models, presented in the previous 
sections, to an optimal control synthesis, one may write the second-order equations 
[32],[37,[39] as a first-order state-space equation 

x=Ax+Bu+p 
[40] 

y= Cx 

Construction of state-space system and corresponding matrices, for each model, are 
detailed in [TRI 99] and the state vectors x, for OHM, ADF and MSE models, are,
respectively, 

x= [ : ] ,x= [ : ] ,x= [i] [41] 

However, even with a possible reduction of extra dissipative dofs in ADF and OHM models, the state-space system [ 40] is too large for use in the control synthe­
sis. Thus, a modal reduction technique is proposed to reduce the system dimension 
and also to allow a better comparison between the three viscoelastic damping models 
presented previously. The eigensolution of the state-space matrix A is then evaluated

AT,= AT,; ArT, = AT r [42] 

where the right T, and left Tr complex eigenvectors are then normalized by TfT, = I. 

Let us consider a modal decomposition of the eigenvalues matrix A in the form 

A= [Ae 0 ] 0 Ad 
[43] 

where Ae and � are the eigenvalues sub-matrices corresponding to the elastic and 
dissipative dofs, respectively. Similarly, the right and left eigenvectors T, and Tr are
composed of ela<;tic and dissipative eigenmodes a<;sociated to Ae and Ad, 

[44] 

Generally, the eigenmodes associated to dissipative dofs (relaxation modes) are over­
damped, according to [MCT 93]. Consequently, it can be a<;sumed that their contribu­
tion to the system response is negligible. Also, considering just a reduced frequency 
range, one may truncate the modal base neglecting the dynamic contribution of the 
eigenmodes which eigenvalues lies out of the frequency range. Consequently, the sys­
tem [40] reduces to 

i= Ai+:Bu+f> 

y=Cx 
[45] 
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where x = TretX and A= TfetATret ; B = Tfe1B; f> = Tfe1P; c =CT rel. Tret and Tiet 
are the matrices corresponding to the truncated bm;es of retained eigenmodes. 

This modal reduction technique is very simple to implement since the choice of 
eigenmodes to be retained is ba<>ed only on the frequency range considered. Neverthe­
less, for highly damped systems, where elastic modes may also be overdamped, the 
eigenfrequencies analysis must be a<>sociated with an eigenmodes one. Notice that for 
the iterative MSE method, the reduction may be achieved directly from the iterative 
algorithm by just evaluating the frequencies inside the frequency range. 

5. Constrained optimal control strategy

The Linear Quadratic Regulator (LQR) optimal control algorithm is considered. It 
consists in the minimization of a cost function J 

[46] 

subjected to the linear constraint<> [45]. This result<> in a linear full-state feedback 
control law u = - Kgi. where Kg = R-1 :fiTp is a constant control gain matrix, written
in terms of the matrix P, solution of the algebraic Riccati equation

[47] 

Moreover, for an a<>ymptotically stable controlled system, the minimized cost function 
may be written as 

lmin = �xr (O)Px(O) [48] 

This algorithm is very simple to use, since the Riccati equation may be solved, and 
the cost may be evaluated, preliminary to the application of the control feedback gain Kg to the system. However, it<> performance rests on the appropriate choice of the 
weight matrices Q and R. Furthermore, it does not guarantee that the control input u is 
fea<>ible, e.g., electrical fields in piezoelectric actuators are constrained to the coercive 
or depoling electrical field. Hence, an input constraint condition must be imposed to 
such optimization. 

A technique shown to be simple and effective [TRI 00] is ba<>ed on an iterative 
LQR, such that the optimal control input is solved for typical operation conditions 
and its maximum value is used to modify weight matrices until an optimal control 
gain satisfies both optimal closed-loop performance and input constraint. The algo­
rithm presented in [TRI 00] is modified here constraining the input weight matrix R 
instead of the performance Q one, although both constraints are equivalent. Figure 2a 
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shows the typical variation of the first three eigenmodes damping factors(%) with the 
input weight factor "( (R = 'Y I), the minimized cost function lmin and also the maxi­
mum voltage Vmax required to achieve these damping ratios. As expected, damping
performance diminishes for increasing input weight factors. Figure 2a also shows the 
feasible region inside the dotted line square, that is, the region for which the maximum 
voltage is lower than the saturation voltage of the actuator (in this case, 250 V). The 
iterative optimal control algorithm of [TRI 00], shown in Figure 2b, consist-; in finding 
the maximum damping inside the dotted feasible region (Figure 2a). 

-I - },,. .. 10 10-1 10--.!! 
(a) 

10-7 10--6 10-5 R weight factor (y) 

r='Y(LH) 
>0.5% 

10� 
(b) 

Figure 2. (a) Maximum voltage and modal damping factors vs. input weight factory. 
(b) Optimal control design under voltage constraint Vnuu· 

It should be noticed that the maximum voltage, shown in Figure 2a, was evaluated 
from the controlled system response, generated by a given perturbation. Consequently, 
the control input constraint may not be respected for other load conditions. 

In what follows, the performance weight matrix Q is considered to be diagonal 
and composed by element<; of the output vector C, so that Q = diag(ICI), to maximize
the damping of modes with major contributions to the output, here the tip deflection 
of a cantilever beam. The 'Y factor is evaluated so that the maximum electrical field of
500 V /mm on the piezoelectric actuators is not exceeded, for an impulsive transverse 
perturbation force applied to the beam tip, which magnitude imposes a maximum 
beam deflection amplitude of 2 mm. 

6. Damping performance under temperature variations 

The reduced models and control algorithm presented previously are now applied 
to the analysis of a cantilever beam with a bonded ACLD treatment. The beam is made 
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of aluminum, with Young's modulus of 70.3 MPa and mass density of 2700 kg m-3, 
and has a length of 300 mm, a width of 20 mm and a thickness of 2 mm. The hy­
brid viscoela<>tic-piezoelectric treatment is made of Soundcoat's Dyad 606 viscoela<>­
tic material, 0.25 mm thick and of ma<>s density 1600 kg m-3, and PZT5H piezoe­
lectric ceramic, which Young's modulus is 63.5 MPa, mass density is 7500 kg m-3, 
piezoelectric constant e;1 is -23.2 C m-2 and thickness is 0.5 mm. The treatment has 
a length of 50 mm and is positioned at 10 mm from the clamped end of the beam. 

Considering a temperature of 25°C, viscoelastic material properties are used to op­
timize ADF and GHM parameters in the frequency range 2-3000 Hz. These are used 
to evaluate the first five bending eigenfrequencies and corresponding damping ratios, 
shown in Table 1. It can be seen that eigenfrequencies match well for the three models, 
whereas there is a noticeable difference between MSE damping ratios and ADF and 
GHM ones. However, this is due to the difficulty of representing the master curves 
form of this viscoela<>tic material by ADF and GHM models, although five series of 
parameters were used. 

PCLADF 23.6 (1.82%) 139.8 (0.66%) 364.3 (0.46%) 676.1 (0.71 %) 1105.5 (0.90%) 
PCLGHM 23.6 (1.81 %) 139.8 (0.67%) 364.3 (0.45%) 676.1 (0.72%) 1105.7 (0.92%) 
PCLMSE 23.7 (2.56%) 139.4 (0.99%) 363.6 (0.65%) 673.3 (1.00%) 1099.1 (1.23%) 
ACLADF 23.7 (8.40%) 140.0 (5.41%) 364.3 (3.00%) 676.0 (1.07%) 1105.5 (1.13%) 
ACLGHM 23.7 (7.19%) 140.1 (4.59%) 364.2 (2.61%) 676.0 (0.99%) 1105.7 (1.08%) 
ACLMSE 23.6 (6.99%) 139.5 (2.78%) 363.6 (0.84%) 673.3 (1.18%) 1099.1 (l.25%) 

Table 1. Open- and closed-loop eigenfrequencies (Hz) and damping factors at 25°C 

Table 1 also shows the closed-loop eigenfrequencies and damping factors (active 
instead of passive constraining layer). One may see that eigenfrequencies still match 
but damping ratios for MSE disagree with those of ADF and GHM, since the MSE 
model is not well adapted for the transient-based control algorithm. However, smaller 
differences between ADF and GHM damping ratios exist since their eigenmodes, and 
thus control input vectors, are not exactly the same. 

Figure 3a shows the open-loop frequency response function of the cantilever beam 
tip deflection evaluated using the three viscoelastic models. It can be seen that ADF 
and GHM result<> are identical; however, MSE results only match in natural frequen­
cies, that is with almost the same poles but not at all with the same zeros (anti­
resonances). This is because neither input nor output matrices are valid over the whole 
frequency range. In Figure 3b, the equivalent ADF/GHM open-loop frequency res­
ponse is compared with that of the closed-loop system for these two models. As ex­
pected, the controller empha<>izes damping of the first mode, although second and third 
modes are also damped. However, fourth and fifth modes dampings are only slightly 
increa..ed, since they have little contribution to the output. 
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Figure 3. FRF of the cantilever beam tip deflection: (a) Open-loop response using 
ADF, GHM and MSE models; (b) Open- vs. closed-loop response 
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Figure 4. Deviation of control performance relative to 25°C: (a) Hybrid damping

(TJ(0)/rJ(25}}; (b) Maximum voltage (Vmtu(0)/Vmtu(25)) 

Thereafter, one might be interested in using the controller designed previously 
over an operating temperature range. Nevertheless, ac; viscoelac;tic material proper­
ties change with temperature, damping performance requirement<; may not be res­
pected. To apply the controller designed at 25°C to the system at different tempera­
tures, the solution of Riccati equation at 25°C P 0 is used to evaluate the control gainK8 = R-1BTP0 for the system at different specified temperatures. Figure 4 shows the
deviation of hybrid damping and maximum control voltage of the system at tempe­
ratures of 10°C, 30°C and 38°C, relative to that at 25°C, when controlled with the 
controller bac;ed on P 0• In Figure 4a, the damping ratios of the first three modes are
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drawn for each operating temperature and viscoela<;tic model. One may notice that for 
10°C and 30°C, ADP three first modal dampings augment, however the required maxi­
mum voltage also increases (Figure 4b). Similarly, for the other models, an increase 
in damping is accompanied by an increa<;e in the maximum voltage, thus exceeding 
the saturation voltage. On the other hand, for 38°C, one may notice an improvement 
of damping with a diminution of the voltage. However, in this ca<;e, one of the modes 
is further damped (first one for ADP and second one for GHM and MSE), with less 
voltage, whereas in other modes dampings decrease. 

7. Temperature dedicated controller 

In consequence of the previous result<;, one might prefer to design a temperature 
dedicated controller. Therefore, let us consider four different controllers, one for each 
operating temperature. In Figure 5, the open- and closed-loop transient responses are 
drawn for each temperature ( 10°C, 25°C, 30°C and 38°C). One may notice that, al­
though the open-loop response diminishes faster for higher temperatures, the closed­
loop system settles almost equally fast for all temperatures, meaning that the dedicated 
controller maintains a uniform performance in the temperature range. Since, tempera­
ture variations are generally slow, one might envisage evaluating a set of controllers 
inside an operating temperature range and commuting from one to another as tem­
perature changes. Thus, one may preserve a satisfactory damping performance while 
respecting control input limitations. Figure 6 shows the control voltage for 10°C and 
38°C, where one may notice that both controllers present similar responses. Neverthe­
less, one may also notice that ADP and GHM do not present the same voltage transient 
response, although their output responses are very similar (Figures 5a and 5d). 

In Figure 7a, the variation of passive damping with temperature shows an increase 
of all modes damping ratios with increa<;ing temperature, although, from viscoela<;tic 
materials nature, damping is expected to start decreasing at a given temperature. It is 
also worthwhile to analyze the influence of temperature on the hybrid damping gain 
(relative to pa<;sive one), which measures the increase of damping provided by the 
active control system. Notice that, from Figure 7b, it makes less and less sense using 
an active controller for higher temperatures since the improvement of damping may 
not be sufficient to justify the addition of electric cables and filters. 

8. Conclusion 

A new finite element wa<; presented for sandwich beams with laminate piezoelec­
tric faces and viscoela<;tic core. Three models were proposed to represent the viscoe­
la<;tic materials frequency-dependence properties, namely Golla-Hughes-McTavish, 
Anelastic Displacement Fields and Iterative Modal Strain Energy method. Model re-
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ductions were proposed to allow feasible control syntheses. An optimal LQR control 
algorithm, accounting for input constraints, was presented. Using these open- and 
closed-loop finite element reduced models, the vibration control of a cantilever beam, 
through a bonded active constrained layer damping treatment, wac; analyzed and used 
to evaluate internal variables approaches. Thereafter, the control performance of hy­
brid damping treatmentc; was studied under temperature variations. It wac; found that 
damping and input requirements may not be respected inside an operating tempera­
ture range with a temperature-fixed controller. Consequently, a temperature dedicated 
controller wac; analyzed, leading to a satisfactory damping performance, over a 30°C 
wide temperature range, while respecting input constraintc;. A similar analysis is being 
considered to treat other hybrid damping configurations with, for instance, separate 
active and pac;sive treatments. Geometric and material optimization of active-pac;sive 
damping treatmentc; is a natural extension of the present work . 
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Figure 5. Open- and closed-loop transient responses for different temperatures: 
(a) J(JlC; (b) 25°C; (c) J(JlC; (d) 38°C 
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