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Introduction

Since the beginning of the nineties, there ha<; been an increa<;ing interest in hy brid active-pac;sive damping technologies, using piezoelectric and viscoelastic mate rials in a single treatment. This is mainly due to the complementarities of such dam ping treatments. Pac;sive damping is known to be robust and reliable but performance is generally limited by weight and dimension constraint<;. While active control al lows to overdamp some selected modes with very small actuators. One such hybrid damping treatment is obtained by replacing, or augmenting, the constraining layer of a passive constrained layer damping (PCLD) treatment by a piezoelectric actua tor. This mechanism, the so-called active constrained layer damping (ACLD), allows to increa<;e actively the viscoelastic layer shear strain and, consequently, the energy dissipation. Review on active constrained layer damping treatments can be found in [BEN 99a,INM 97]. The performance of such a treatment is the result of a compro mise between increac;e of viscoelac;tic dissipation and loss of actuation transmissibi lity. Thus, it is highly dependent on viscoelastic material stiffness and damping pro perties, which depend strongly on temperature and frequency. Hence, modeling these dependences is very important for the control synthesis. Lesieutre and his co-workers [LES 95, LES 96b] and Hughes and his co-workers [GOL 85, MCT 93) proposed the so-called Anela<;tic Displacement Fields (ADF) and Golla-Hughes-McTavish (GHM) models, which are based on the introduction of internal variables to account for vis coela<;tic relaxation and, thus, damping behavior. They were shown to be superior to the Modal Strain Energy (MSE) method proposed in [JOH 81 ], although they are more complex and much increac;e the system dimension, so that a modal reduction is requi red. Both ADF and GHM models parameters are evaluated from materials properties at a given constant temperature. Lesieutre and Govindswamy [LES 96a] presented an extension of the ADF model capable of predicting self-heating and temperature dependence of viscoelac;tic materials in simple shear, however leading to nonlinear equations of motion. GHM model wac; applied to ACLD treatment<; mainly by In man and his students [PAR 99), who also studied its model reduction, and Liao and Wang [LIA 97). On the other hand, Friswell and Inman [FRI 98) proposed the use of an iterative version of the MSE method, in conjunction with a complex-bac;ed model reduction, a<; an alternative to internal variables approach. They also presented the effect of temperature variations of viscoela<;tic material on the control performance. Also to account for viscoelastic damping, Plouin and Balmes [PLO 98) proposed an augmented real-bac;ed modal reduction technique, however the system dimension is doubled.

Piezoelectric three-layer sandwich beam finite element models were presented in previous works [BEN 97,BEN 99b]. They are extended here to treat sandwich dam ped beams with laminate piezoelectric faces and viscoelac;tic core. Finite element im plementation of ADF, GHM and MSE viscoelastic models is also given. A model reduction of the ADF and GHM augmented systems is proposed. Then, the resulting reduced models are applied to the analysis of ACLD treatment<; of a cantilever beam, using a constrained input optimal control algorithm. Finally, the effect of temperature variations on the control performance is studied and a temperature-dependent control synthesis is analyzed.

Finite element formulation

A sandwich beam made of viscoela<>tic core and laminate, elastic or piezoelectric, faces is considered. The latter are modeled using cla<>sical laminate theory, wherea<; the face/core/face system is modeled using classical three-layer sandwich theory and the kinematics description proposed in [BEN 99b]. All layers are supposed perfectly bonded, in plane stress state and having the same transverse displacement. The defor mation of the face sheets obeys Euler-Bernoulli theory, whereas Timoshenko one is used for the core. Piezoelectric laminaes of the faces are poled through-thickness and subjected to transverse electrical fi elds. Other non-piezoelectric layers are a<;sumed insulated. The parameters L, b and h denote length, width and thickness constant<> and the subscripts a j. b j and c relate to the j-th laminae of the upper a and lower b faces and to the core, respectively.

Displacement and strain interpolations

Assuming linear through-thickness axial displacements for the multilayer faces and core, and enforcing continuity conditions between layers, one may write the fol lowing axial displacements expressions where and u; = u;+ (z-z;) � ;; w; = w; i = a,b,c

Uk= U± �; �k = -w'; k= a(+),b(-); Uc= u+dw ' ; � c = � +J.. w ' d -ha-hb . - 4 , A,-ha+hb . Q -2hc ' Z c = ; Z _ ±hk+hc , k- 2 , [1]
n and mare the numbers of sub-layers of the upper a and lower b faces, respectively.

• ' states for a . /i.lx.

The sandwich beam displacements [1] are entirely defined by the mean u = (ua + ub)/2 and relative ii= ua -uh axial displacements of the face sheets mid-planes, the transverse deflection wand it<; derivative w'. Hence, using Lagrange linear shape func tions for the axial mean and relative displacements and Hermite cubic ones for the From the usual strain-displacement relations and using [ 1 ], axial and shear strains of the faces and the core may be written as

E!i = E/ + (z -Z;)Ef ; Esc = e:; ; i =a, b, c
where membrane E/, bending Ef and shear e:; strains are The piezoelectric materials are aissumed linear orthotropic with material symmetry axes parallel to those of the beam. Their elaistic, piezoelectric and dielectric constantis are denoted by c;1, elJ and f.II (i,j = 1, ... ,6;/ = 1,2,3). All layers will be conside red piezoelectric, where piezoelectric constants are set to vanish for elaistic and vis coelaistic layers. The three-dimensional linear constitutive equations of an orthotropic piezoelectric layer can be reduced to one may notice that the piezoelectric effect couples the axial strain and transverse electrical field. This is the conventional piezoelectric extension actuation mechanism.

Its comparison with the shear actuation mechanism can be found in [BEN 00].

The electrical field E3k j is assumed constant and induced by a difference of poten tial Vk j applied on the krth piezoelectric sub-layer, such that The virtual work of electromechanical internal forces of the krth face piezoelec tric laminae is OHkj = l (OE1k0"1kj -OE3kjD3k j ) dD.kj; k1 = a1, ... ,an,b1, ... ,bm [9] kj Introducing [7] and [8], the virtual work oHk. can be written, for a given Vk . , as

} }
where

[10]

The term -e;� j Vk)hk j may be considered a<> a piezoelectric stress induced by the applied electrical field on the krth piezoelectric laminae. Consequently, the second term of [ 10] will be considered as the virtual variation of the work of electrical loads and detailed in the next section.

Integrating through-thickness the mechanical internal virtual work oHk j m• and using [5] and [6], the discretization of oHk j m leads to the following elementary vir Ak., 4.. and h. are the cross section area and first and second moment<> of inertia of the

} } }
krth sub-layer face, respectively. The elementary stiffness matrix of the face sheet<> is then obtained by adding each laminae stiffness contribution

[13]

The stiffness contribution of the viscoela<>tic core can be found from it<> mechanical internal virtual work, which is composed of axial and shear strains contributions, [14] Integrating through-thickness this expression and using [5], [6] and [7], it<> virtual variation oHcm may be discretized, leading to it<> element contribution [15] where the elementary stiffness matrix of the core is [16] kc is the shear correction factor.

The elementary stiffness matrix of the sandwich beam finite element is obtained by summation of the face sheets and core contributions [17] It is worthwhile to notice that each face sub-layer stiffness matrix [12] is composed of membrane and bending strains and a membrane-bending coupling term, due to the distance between the mid-plan of each sub-layer and its corresponding layer.

Element piezoelectric loads vector

Using [5]-[8], the element contribution to the virtual variation of the generalized piezoelectric loads work Hkiem [10], induced by the applied electrical field, may be discretized, for the krth face piezoelectric laminae, as where the elementary equivalent piezoelectric load vector Fkie is 

Element mass matrix

The elementary ma�s matrix of the sandwich beam may be obtained from the virtual variation of the works of inertial forces, which are, for the krth face sub-layer Finally, the sandwich beam finite element mass matrix is obtained by summation of the face sheets and core contributions

[25)

As for the stiffness matrix, one may notice that each face sub-layer ma<;s matrix [23) is composed of axial and transversal translations and rotation in the xz-plan iner tial contributions and an axial translation-rotation inertia coupling term, due also to the distance between the mid-plan of each sub-layer and it<; corresponding layer.

Discretized equations of motion

Assembling discretized expressions of elementary virtual works [11), [15), [18), [22), and their corresponding matrices [17], [25] and vectors [20), for all elements and using d'Alembert's principle, the following discretized equations of motion may be written

Mq + Dq + Kq = Fm+ Fe [26)
where a viscous damping matrix D and a mechanical nodal load vector Fm have been considered a posteriori. M, K, Fe are the global mass and stiffness matrices, and pie zoelectric loads vector, of the whole sandwich beam.

Viscoelastic damping models

Since the core is made of a viscoela<;tic material, one must take into account the frequency-and-temperature-dependence of it<; stiffness and damping properties. Sup posing a constant Poisson's ratio, the equations of motion [26) are re-written as Mq+Dq+ [K1+G*(w,8)Kc]q =Fm +Fe [27)

where G*(w,8) is the frequency-and-temperature-dependent complex shear modulus of the core and Kc is the modulus factored-out core stiffness matrix. In the following subsections, three methods to account for the frequency-dependence of the last equa tion, considering a fixed temperature, are presented. Then, for analysis of the tempera ture variation effect<;, viscoela<>tic material is modeled using such methods for several operating temperatures.

Golla-Hughes-McTavish model

The GHM model represents the material shear modulus as a series of functions, in the Laplace domain, such that

[MCT 93) sG(s) =Go (i + L &.i s 2 � 2 A elnis A ) i s2 + 2�iWiS + wf [ 28 
)
where Go represent<; the relaxed modulus, or static modulus. Notice that, from [28), the unrelaxed modulus may be written a<; G .. = Go ( 1 + L di). Each function in the series is dependent on three material constant<>, namely &.i. &i and ei. evaluated from curve fitting of the viscoela<>tic material master curves. Substituting [28) in the Laplace transfonned equations of motion [27) leads to

[ ( 2 A A )] A s + 2 iWiS - - - s 2 M+sD+K1+K� l+[ai A 5 A q(s) =Fm(s)+Fe(s) i s2 + 2�wis+ wf [29)
with K� = GoKc being the core static stiffness. Introducing a series of n dissipative variables z;

( i = 1, ... , n) such that, A 2 (l). z • (s) - I q -(s) ' - z 2 r A
A z s + ..,;ro;s + ro; q = col(q,z1, ... ,z,, ); F = col(Fm +Fe , O , ... ,0)

[ � O K� 0 l -[ ' � , i , K� , D u - a.,, K o 0 � c II [ a, � � �� l ; Kq z = [ -&.1K� . . . � . : K, J 6:>,, c -&.,.K�J [32]
Although this form is quite simple, it<> mass matrix is non-singular only for totally covered beams, for which K� is also non-singular. Therefore, for the general case, one may either substitute the singular K� matrix by the identity matrix in the second block line of the matrices of [32], leading to a non-singular ma<>s matrix but also to an asymmetric stiffness matrix (Kzq f. K�z), or, otherwise, use a modal reduction of the matrix K�, such that ¢1-/ =TT z; and A= TTK,, T. Where A is the non vanishing K._.

eigenvalues matrix and T its corresponding eigenvectors matrix. In this case, the mass matrix is non-singular, the stiffness matrix is symmetric and, also, the matrices corres ponding to dissipative variables are diagonalized and eventually reduced. Hence, the matrices Mw Dw Kzz and Kqz of [32] are rewritten ac

This method allows both a good representation of the frequency-dependence of viscoelastic materials and time-domain analyses of the augmented system, since all of it<; matrices are constants.

Anelastic Displacement Fields model

The ADF model, proposed in [LES 95, LES 96b], represents the complex material modulus ac; a series of functions in the frequency-domain, such that

G* (co) = G (1 + '""' � • co 2 + jco .ni ) 0 L,, I 2 + .Q2 i co i [33]
where, here, the unrelaxed modulus is Goo= Go(l + Li�i) . .O.i and �i are material parameters evaluated from curve-fitting of material master curves.

This method is bac;ed on the separation of viscoelac;tic material strains in elac;tic and anela<;tic parts. The first one is instantaneously proportional to the stress and re presents the energy storage, whereas the other represent<; material relaxation and, thus, dissipation. This separation may be obtained by introducing a series of dissipative va riables q/1 (i = 1, ... , n) , such that [34 )

The variables q e replace then q in the core strain internal work expression, leading to Mq+Dq+(K1+K;'.")q -K;'."[q/1 =Fm+Fe 0 Daa K ea Kaa q=col( q,q ' I, . .. ,q;:); F =col(Fm+Fe,O, . .. ,0)

Kea = [-K� -K� ]

[37]

As for GHM model, one may propose a modal reduction of matrix K� to diago nalize matrices and reduce augmented system dimension. Hence, let <Pf = TT q:' and A = TT Kc T so that matrices Daa , Kaa and Kea could be rewritten a<;

One may notice that, unlike the case of the GHM model, this reduction leads to a sin gular mass matrix since, in this case, dissipative variables have no inertia. Therefore, instead of solving the second-order system [37], one should construct an odd state space system with state col(q, q) rather than col(q, q) to eliminate this singularity.

Iterative modal strain energy model

An alternative to the internal variables approach, is to use an iterative version of the MSE method [JOH 81]. It considers that the modal loss factor is approximated a<; the product of the viscoela-;tic material loss factor by the fraction of the dissipative energy, present in the viscoelastic material, to the total strain energy. Following this definition, the iterative algorithm of Figure 1 Using such an algorithm, undamped eigenfrequencies and eigenvectors can be cor rectly evaluated and modal low damping well approximated. The convergence is very fa-;t, however, evaluation must be repeated for each frequency of interest. This tech nique prevents the evaluation of the state-space system complex modes a-; in [FRI 98], reducing greatly the computation cost.

To extend this method to the control synthesis, where several modes are excited simultaneously by the controller, let us consider the following eigenfrequency, modal loss factor and eigenvector matrices for the m frequencies of interest (r = 1, ... ,m),

<Pm] [38]

The viscoelastic damping matrix may be approximated by rt.O.e. Consequently, the system [27] may be rewritten as [39] where the viscous damping matrix D is assumed to be such that T�DT e = 21;.0.e, I; being the viscous damping factor. Evidently, Te may not diagonalize K' = �(K*), since each column of Te is valid only for a single frequency. Nevertheless, this system constitutes a rea-;onable approximation of [27] for lightly damped structures.

Reduced state-space equations

To apply the frequency-dependent finite element models, presented in the previous sections, to an optimal control synthesis, one may write the second-order equations [32],[37, [39] [41] However, even with a possible reduction of extra dissipative dofs in ADF and OHM models, the state-space system [ 40] is too large for use in the control synthe sis. Thus, a modal reduction technique is proposed to reduce the system dimension and also to allow a better comparison between the three viscoelastic damping models presented previously. The eigensolution of the state-space matrix A is then evaluated AT,= AT,; ArT, = ATr This modal reduction technique is very simple to implement since the choice of eigenmodes to be retained is ba<>ed only on the frequency range considered. Neverthe less, for highly damped systems, where elastic modes may also be overdamped, the eigenfrequencies analysis must be a<>sociated with an eigenmodes one. Notice that for the iterative MSE method, the reduction may be achieved directly from the iterative algorithm by just evaluating the frequencies inside the frequency range.

Constrained optimal control strategy

The Linear Quadratic Regulator (LQR) optimal control algorithm is considered. It consists in the minimization of a cost function J [46] subjected to the linear constraint<> [45]. This result<> in a linear full-state feedback control law u = -Kgi. where Kg = R-1 :fiTp is a constant control gain matrix, written in terms of the matrix P, solution of the algebraic Riccati equation Moreover, for an a<>ymptotically stable controlled system, the minimized cost function may be written as

lmin = �xr (O)Px(O) [48]
This algorithm is very simple to use, since the Riccati equation may be solved, and the cost may be evaluated, preliminary to the application of the control feedback gain Kg to the system. However, it<> performance rests on the appropriate choice of the weight matrices Q and R. Furthermore, it does not guarantee that the control input u is fea<>ible, e.g., electrical fi elds in piezoelectric actuators are constrained to the coercive or depoling electrical fi eld. Hence, an input constraint condition must be imposed to such optimization.

A technique shown to be simple and effective [TRI 00] is ba<>ed on an iterative LQR, such that the optimal control input is solved for typical operation conditions and its maximum value is used to modify weight matrices until an optimal control gain satisfies both optimal closed-loop performance and input constraint. The algo rithm presented in [TRI 00] is modified here constraining the input weight matrix R instead of the performance Q one, although both constraints are equivalent. Figure 2a shows the typical variation of the first three eigenmodes damping factors(%) with the input weight factor "( (R = 'Y I), the minimized cost function lmin and also the maxi mum voltage Vmax required to achieve these damping ratios. As expected, damping performance diminishes for increasing input weight factors. Figure 2a also shows the feasible region inside the dotted line square, that is, the region for which the maximum voltage is lower than the saturation voltage of the actuator (in this case, 250 V). The iterative optimal control algorithm of [TRI 00], shown in Figure 2b, consist-; in finding the maximum damping inside the dotted feasible region (Figure 2a). It should be noticed that the maximum voltage, shown in Figure 2a, was evaluated from the controlled system response, generated by a given perturbation. Consequently, the control input constraint may not be respected for other load conditions.

In what follows, the performance weight matrix Q is considered to be diagonal and composed by element<; of the output vector C, so that Q = diag(I C I), to maximize the damping of modes with major contributions to the output, here the tip deflection of a cantilever beam. The 'Y factor is evaluated so that the maximum electrical field of 500 V /mm on the piezoelectric actuators is not exceeded, for an impulsive transverse perturbation force applied to the beam tip, which magnitude imposes a maximum beam deflection amplitude of 2 mm.

Damping performance under temperature variations

The reduced models and control algorithm presented previously are now applied to the analysis of a cantilever beam with a bonded ACLD treatment. The beam is made of aluminum, with Young's modulus of 70.3 MPa and mass density of 2700 kg m-3, and has a length of 300 mm, a width of 20 mm and a thickness of 2 mm. The hy brid viscoela<>tic-piezoelectric treatment is made of Soundcoat's Dyad 606 viscoela<> tic material, 0.25 mm thick and of ma<>s density 1600 kg m-3, and PZT5H piezoe lectric ceramic, which Young's modulus is 63.5 MPa, mass density is 7500 kg m-3, piezoelectric constant e;1 is -23.2 C m-2 and thickness is 0.5 mm. The treatment has a length of 50 mm and is positioned at 10 mm from the clamped end of the beam.

Considering a temperature of 25°C, viscoelastic material properties are used to op timize ADF and GHM parameters in the frequency range 2-3000 Hz. These are used to evaluate the first five bending eigenfrequencies and corresponding damping ratios, shown in Table 1. It can be seen that eigenfrequencies match well for the three models, whereas there is a noticeable difference between MSE damping ratios and ADF and GHM ones. However, this is due to the difficulty of representing the master curves form of this viscoela<>tic material by ADF and GHM models, although five series of parameters were used. 1 also shows the closed-loop eigenfrequencies and damping factors (active instead of passive constraining layer). One may see that eigenfrequencies still match but damping ratios for MSE disagree with those of ADF and GHM, since the MSE model is not well adapted for the transient-based control algorithm. However, smaller differences between ADF and GHM damping ratios exist since their eigenmodes, and thus control input vectors, are not exactly the same.

Figure 3a shows the open-loop frequency response function of the cantilever beam tip deflection evaluated using the three viscoelastic models. It can be seen that ADF and GHM result<> are identical; however, MSE results only match in natural frequen cies, that is with almost the same poles but not at all with the same zeros (anti resonances). This is because neither input nor output matrices are valid over the whole frequency range. In Figure 3b, the equivalent ADF/GHM open-loop frequency res ponse is compared with that of the closed-loop system for these two models. As ex pected, the controller empha<>izes damping of the first mode, although second and third modes are also damped. However, fourth and fifth modes dampings are only slightly increa..ed, since they have little contribution to the output. Thereafter, one might be interested in using the controller designed previously over an operating temperature range. Nevertheless, ac; viscoelac;tic material proper ties change with temperature, damping performance requirement<; may not be res pected. To apply the controller designed at 25°C to the system at different tempera tures, the solution of Riccati equation at 25°C P 0 is used to evaluate the control gain K8 = R-1BTP0 for the system at different specified temperatures. Figure 4 shows the deviation of hybrid damping and maximum control voltage of the system at tempe ratures of 10°C, 30°C and 38°C, relative to that at 25°C, when controlled with the controller bac;ed on P 0• In Figure 4a, the damping ratios of the first three modes are drawn for each operating temperature and viscoela<;tic model. One may notice that for 10°C and 30°C, ADP three first modal dampings augment, however the required maxi mum voltage also increases (Figure 4b). Similarly, for the other models, an increase in damping is accompanied by an increa<;e in the maximum voltage, thus exceeding the saturation voltage. On the other hand, for 38°C, one may notice an improvement of damping with a diminution of the voltage. However, in this ca<;e, one of the modes is further damped (first one for ADP and second one for GHM and MSE), with less voltage, whereas in other modes dampings decrease.

Temperature dedicated controller

In consequence of the previous result<;, one might prefer to design a temperature dedicated controller. Therefore, let us consider four different controllers, one for each operating temperature. In Figure 5, the open-and closed-loop transient responses are drawn for each temperature (10°C, 25°C, 30°C and 38°C). One may notice that, al though the open-loop response diminishes faster for higher temperatures, the closed loop system settles almost equally fast for all temperatures, meaning that the dedicated controller maintains a uniform performance in the temperature range. Since, tempera ture variations are generally slow, one might envisage evaluating a set of controllers inside an operating temperature range and commuting from one to another as tem perature changes. Thus, one may preserve a satisfactory damping performance while respecting control input limitations. Figure 6 shows the control voltage for 10°C and 38°C, where one may notice that both controllers present similar responses. Neverthe less, one may also notice that ADP and GHM do not present the same voltage transient response, although their output responses are very similar (Figures 5a and5d).

In Figure 7a, the variation of passive damping with temperature shows an increase of all modes damping ratios with increa<;ing temperature, although, from viscoela<;tic materials nature, damping is expected to start decreasing at a given temperature. It is also worthwhile to analyze the influence of temperature on the hybrid damping gain (relative to pa<;sive one), which measures the increase of damping provided by the active control system. Notice that, from Figure 7b, it makes less and less sense using an active controller for higher temperatures since the improvement of damping may not be sufficient to justify the addition of electric cables and filters.

Conclusion

A new finite element wa<; presented for sandwich beams with laminate piezoelec tric faces and viscoela<;tic core. Three models were proposed to represent the viscoe la<;tic materials frequency-dependence properties, namely Golla-Hughes-McTavish, Anelastic Displacement Fields and Iterative Modal Strain Energy method. Model re-ductions were proposed to allow feasible control syntheses. An optimal LQR control algorithm, accounting for input constraints, was presented. Using these open-and closed-loop finite element reduced models, the vibration control of a cantilever beam, through a bonded active constrained layer damping treatment, wac; analyzed and used to evaluate internal variables approaches. Thereafter, the control performance of hy brid damping treatmentc; was studied under temperature variations. It wac; found that damping and input requirements may not be respected inside an operating tempera ture range with a temperature-fixed controller. Consequently, a temperature dedicated controller wac; analyzed, leading to a satisfactory damping performance, over a 30°C wide temperature range, while respecting input constraintc;. A similar analysis is being considered to treat other hybrid damping configurations with, for instance, separate active and pac;sive treatments. Geometric and material optimization of active-pac;sive damping treatmentc; is a natural extension of the present work . 
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  tual workwith Kk• being the elementary stiffness matrix of the krth face laminae,
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 1 Figure 1. Iterative modal strain energy algorithm (K' = �(K*),K" = 3(K*)).

  T, and left Tr complex eigenvectors are then normalized by TfT, = I. Let us consider a modal decomposition of the eigenvalues matrix A in the form A = [ Ae 0 ] 0 Ad [43] where Ae and � are the eigenvalues sub-matrices corresponding to the elastic and dissipative dofs, respectively. Similarly, the right and left eigenvectors T, and Tr are composed of ela<;tic and dissipative eigenmodes a<;sociated to Ae and Ad, [44] Generally, the eigenmodes associated to dissipative dofs (relaxation modes) are over damped, according to [MCT 93]. Consequently, it can be a<;sumed that their contribu tion to the system response is negligible. Also, considering just a reduced frequency range, one may truncate the modal base neglecting the dynamic contribution of the eigenmodes which eigenvalues lies out of the frequency range. Consequently, the sys tem [40] reduces to i= Ai+:Bu+f> y=Cx [45] where x = Tre tX and A= TfetATret ; B = Tfe 1B; f> = Tfe 1P; c =CT rel. Tret and Tiet are the matrices corresponding to the truncated bm;es of retained eigenmodes.
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 2 Figure 2. (a) Maximum voltage and modal damping factors vs. input weight factory. (b) Optimal control design under voltage constraint Vn uu•
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 34 Figure 3. FRF of the cantilever beam tip deflection: (a) Open-loop response using ADF, GHM and MSE models; (b) Open-vs. closed-loop response
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 567 Figure 5. Open-and closed-loop transient responses for dif f erent temperatures: (a) J(JlC; (b) 25°C; (c) J(JlC; (d) 38°C

  Construction of state-space system and corresponding matrices, for each model, are detailed in [TRI 99] and the state vectors x, for OHM, ADF and MSE models, are, respectively, x= [ :] ,x= [ :] ,x= [i]

	as a first-order state-space equation	
	x=Ax+Bu+p y= Cx	[40]

Table 1 .

 1 Open-and closed-loop eigenfrequencies (Hz) and damping factors at 25°C

	PCLGHM PCLMSE ACLADF ACLGHM ACLMSE	23.6 (1.82%) 23.6 (1.81 %) 23.7 (2.56%) 23.7 (8.40%) 23.7 (7.19%) 23.6 (6.99%)	139.8 (0.66%) 139.8 (0.67%) 139.4 (0.99%) 140.0 (5.41%) 140.1 (4.59%) 139.5 (2.78%)	364.3 (0.46%) 364.3 (0.45%) 363.6 (0.65%) 364.3 (3.00%) 364.2 (2.61%) 363.6 (0.84%)	676.1 (0.71 %) 676.1 (0.72%) 673.3 (1.00%) 676.0 (1.07%) 676.0 (0.99%) 673.3 (1.18%)	1105.5 (0.90%) 1105.7 (0.92%) 1099.1 (1.23%) 1105.5 (1.13%) 1105.7 (1.08%) 1099.1 (l.25%)
	Table					
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