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Abstract. This paper presents a finite element formulation for transient dynamic analysis of sandwich 
curved beams with embedded viscoelastic material whose constitutive behavior is modeled by means of 
fractional derivative operators. The sandwich configuration is composed of a band as a viscoelastic core 
bonded to elastic metallic strips. The viscoelastic model used to describe the behavior of the core is a 
four-parameter fractional derivative model. The Grünwald definition of the fractional operator is used to 
implement the viscoelastic model into a finite element formulation. Then, discretized motion equations 
are solved with a direct time integration scheme based on the Newmark method. A useful aspect of 
the procedure is that only the anelastic displacements history is kept. This allows an important save of 
computational resources associated with the non-locality of the operators for fractional derivatives. Nu-

merical studies are presented in order to validate the curved beam model with other approaches (frames 
of straight beams) as well as to analyze the influence of different parameters in the transient dynamics of 
naturally curved sandwich beams.
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1 INTRODUCTION

In recent years the research community has manifested a sound interest in the investiga-

tion of dynamic behavior of slightly damped structures. Many researchers have shown that the

employment of viscoelastic materials can improve the dynamics of such structures. These ma-

terials can be incorporated into different types of structures by means of a number of methods

and techniques. For example, a common and well known treatment to reduce structural vibra-

tions is the constrained layer passive damping technique that is usually employed together with

schemes of active control (Baz, 1997; Trindade et al., 2001).

The viscoelastic solids are known to manifest a certain dependence of their dynamic proper-

ties with respect to the vibration frequency in a broad frequency range (Coronado et al., 2002).

This feature leads to the problem of the proper characterization of the damping properties of

such material. The classical models for linear viscoelastic solids, based on integer derivative

operators or convolution integrals or internal variables, have a complicated application due to

the important amount of parameters to characterize the material behavior. Under this circum-

stances the employment of viscoelastic models based on fractional derivatives applied to both

strains and stresses offer interesting simplification alternatives.

The use of the fractional derivative concept, in the context of viscoelasticity, was commonly

applied as an effective technique for curve-fitting of experimental data. Bagley and Torvik

(1983) developed a one-dimensional model for a viscoelastic material using fractional deriva-

tive operators. Since then, this model for viscoelastic solids was incorporated in many structural

applications (Galucio et al., 2004) as well as specific implementation of fractional constitutive

models into computational procedures such finite elements. In this context, the numerical meth-

ods in the time domain are generally associated with the Grünwald definition for the fractional

order derivative of the stress-strain relation in conjunction with a time discretization scheme

(see e.g. Padovan (1987)). The finite element formulation proposed by Enelund and Jossefson

(1997) employs the fractional calculus involving convolution integral description with a sin-

gular kernel function of Mittag-Leffler type. Galucio et al. (2004) developed a finite element

formulation to analyze the transient dynamics of a sandwich beam with viscoelastic embedded

layer whose material behavior was modeled with fractional derivative operators. They used the

four-parameters model of Bagley and Torvik (1983) to characterize the frequency-dependence

of the viscoelastic layer. Most of the aforementioned works are restricted to bar models or

straight beam models as well as one degree of freedom models, but none of them is dedicated to

analyze the transient dynamics of common but more complex structures such as curved beams.

Studies on the dynamics of naturally curved beams deserved the attention of no few re-

searchers in the very recent years, specially in layered configurations. Baba and Thoppul (2009),

among others, carried out experimental studies on the dynamics of sandwich composite curved

beams with cracks and debonded interfaces. Sunsanto (2009) analyzed the dynamics of lay-

ered curved beams with piezoelectric skins by means of the Rayleigh-Ritz method. To the au-

thors’ knowledge there are no reports concerning the dynamic of sandwich curved beams with

embedded viscoelastic materials whose frequency-dependence behavior is modeled with frac-

tional derivative operators. Thus, in the present work a new model introduced and a numerical

formulation based in the method of finite elements is developed in order to study the transient

dynamics of sandwiched viscoelastic curved beams. The curved structure is composed by two

elastic layers covering a viscoelastic core, which is modeled with the formalism of Bagley and

Torvik (1983). The viscoelastic core is assumed to be shear deformable for flexure whereas the

outer layers keep the conventional assumptions of Bernoulli-Euler modeling but applied to a
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beam with curved axis. Higher order curvature effects are disregarded assuming the structure

as a slim and shallow curved beam.

Numerical studies are carried out in order to analyze modeling features such as the effects of

truncation, solution convergence aspects, and validation and comparison with other approaches

in the literature as well. Other set of studies are devoted to analyze the influence of different

geometric and material parameters in the transient dynamics of viscoelastic sandwich curved

beams.

2 STRUCTURAL MODEL DEVELOPMENT

2.1 Model assumptions

In Figure 1 one can see a sketch of curved structural member. The beam is made of two

elastic layers (numbered as 1 and 2) that cover a viscoelastic core (identified with number

3). A global circumferential reference system located at point O is employed. The beam is

constrained to move only in the plane XY, consequently no out-of-plane motions are involved.

In order to construct the dynamic model of a sandwich curved beam, the following assumptions

are considered:

(1) The elastic layers are perfectly bonded to the viscoelastic one.

(2) The bending shear deformability is considered only in the viscoelastic layer but neglected

in the elastic ones.

(3) A plane stress state is assumed for all layers.

(4) The longitudinal elastic modulus and the shear elastic modulus of the viscoelastic core are

proportional (this implies that Poisson coefficient is frequency-independent).

(5) The structure is featured as a shallow circular curved beam.

(6) The ratio of the thickness to the curvature radius is small, consequently no higher order

effects due to curvature are considered.

Figure 1: Beam configuration.
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2.2 Kinematic description

Taking into account the aforementioned assumptions the displacement field for a sandwich

curved beam can be written in the following form (Piovan and Cortı́nez, 2007):

uxi(x, y, t) = ui(x, t) − (y − yi)(θi(x, t) − ui(x, t)/Ri)
uyi(x, y, t) = v(x, t)

(1)

where the subscript i = 1, 2, 3 stands for upper, lower and inner layer, respectively. uxi and uyi

are the axial and transverse displacements of each layer, ui are the axial (or circumferential)

displacement of the center line of each layer (these entities can be understood more clearly by

observing Figure 2). θi are the bending rotation of each layer measured from the corresponding

centerlines of each layer. v is the transverse (or radial) displacement that is common for all the

layers. yi are the distance between middle lines of adjacent layers, whereas Ri are the curvature

radius at the center line of each layer.

Figure 2: Detail of the curved beam showing the main displacements.

According to the assumptions (2) to (5) and taking into account the condition of continuity

of the displacement field in the interfaces A13 and A23 as shown in Figure 2, one can obtain the

displacements of the viscoelastic core in terms of the displacements of the elastic outer layers.

The bending rotation of the outer layers is assumed to be the same for both layers. The axial

displacement and the rotation in the centerline of the viscoelastic core can be written in the

following form:

u3 =
u1 + u2

2
+ v′

h1 − h2

4
−

h1u1

4R1

+
h2u2

4R2

,

θ3 =
u2 − u1

h3

−
h1 + h2

2h3

+
h2u2

2h3R2

+
h1u1

2h3R1

+

u1 + u2

2R3

+ v′
h1 − h2

4R3

−
h1u1

4R3R1

+
h2u2

4R3R2

,

(2)

where hi are the thicknesses of the corresponding layers. The curvature radius Ri are:

R1 = R + y1 = R + (h3 + h1)/2,
R2 = R − y2 = R − (h3 + h2)/2,

R3 = R.
(3)
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Now introducing the mean and relative axial (or circumferential) displacements defined in

Eq. (4), one can redefine all displacement as in Eq. (5).

ū =
u1 + u2

2
, ũ = u1 − u2, (4)

u1 = ū +
ũ

2
, u2 = ū −

ũ

2
θ1 = v′, θ2 = v′,

u3 = ū + v′
h̃

4
−

h1

4R1

(

ū +
ũ

2

)

+
h2

4R2

(

ū −
ũ

2

)

,

θ3 = −
ũ

h3

−
v′h̄

h3

+
v′h̃

4R
+

ū

R
+

h1

2h3R1

(

ū +
ũ

2

)

+
h2

2h3R2

(

ū −
ũ

2

)

,

(5)

where for the sake of notation simplicity apostrophes mean derivation with respect to the vari-

able x. h̄ and h̃ are defined by:

h̄ =
h1 + h2

2
, h̃ = h1 − h2. (6)

Notice that when the condition R → ∞ the displacement field given in Eq. (5) reduces to

the case of a straight beam developed by Galucio et al. (2004) and Trindade et al. (2001).

2.3 Strain-displacement relations

The strain-displacement relationship defined according to the circumferential reference sys-

tem adopted for the curved beam can be written as:

εxxi =

(

∂uxi

∂x
+

uyi

R

)

F ,

γxyi =

(

∂uyi

∂x
−

uxi

R

)

F +
∂uxi

∂y
,

(7)

where F = R/(R + y). However taking into account the assumptions (5) and (6), one gets

F ≈ 1. It should be remembered that due to assumption (2), γxy1 = γxy2 = 0, and γxy3 is the

only relevant component of the shear strain of the beam.

Now, substituting Eq. (1) into Eq. (7) the following expressions are reached:

εxxi = εD1i − (y − yi)εD2i,
γxy3 = εD33,

(8)

where, εD1i and εD2i are the membrane strains and bending curvatures of each layer, respec-

tively; whereas εD33 is the shear deformation of the viscoelastic core. Taking into account the

definitions of Eq. (4) and Eq. (6), εD1i, εD2i and εD33 can be written in the following form:

εD11 =

(

ū′ +
ũ′

2

)

+
v

R1

, εD21 = −v′′ +
1

R1

(

ū′ +
ũ′

2

)

, (9)

εD12 =

(

ū′
−

ũ′

2

)

+
v

R2

, εD22 = −v′′ +
1

R2

(

ū′
−

ũ′

2

)

, (10)
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εD13 = ū′

(

1 −
h1

4R1

+
h2

4R2

)

−
ũ′

2

(

h1

4R1

+
h2

4R2

)

+
v′′h̃

4
+

v

R3

,

εD23 =
ũ′

h3

(

1 −
h1

4R1

+
h2

4R2

)

+
h̄

h3

v′′
−

ū′

2h3

(

h1

R1

+
h2

R2

)

,

εD33 =
ũ

h3

(

1 +
h1

4R1

−
h2

4R2

)

+ v′

(

1 +
h̄

h3

+
h̃

R3

)

+
ū

R3

+
ū

2h3

(

h1

R1

+
h2

R2

)

.

(11)

If h1 = h2 = 0 and R → ∞ the previous Eq. (11) corresponds to a simple straight shear

deformable (or Timoshenko) beam.

2.4 Constitutive description of a viscoelastic layer

The viscoelastic behavior of the core can be described by the one-dimensional constitutive

model of Bagley and Torvik (1983):

σ(t) + τα dασ(t)

dtα
= Eoε(t) + ταE∞

dαε(t)

dtα
, (12)

where σ and ε are the stress and the strain, respectively. The following four parameters Eo, E∞,

τ and α are the relaxed elastic modulus, the non-relaxed elastic modulus, the relaxation time

and the fractional derivation order, respectively.

The definition of the fractional derivative of a certain function f (t) is given by the following

expression introduced by Riemman-Liouville:

dαf(t)

dtα
=

1

Γ(1 − α)

d

dt

∫ t

0

f(s)

(t − s)α
ds, (13)

where Γ is the gamma function. The fractional order α is such that 0 < α < 1.

This four-parameter constitutive model has been shown to be an efficient tool to represent

the frequency dependence of many viscoelastic materials as one can see in the works of Bagley

and Torvik (1983) and Pritz (1996).

A given viscoelastic material can effectively characterized if the four parameters Eo, E∞,

τ and α are identified. There are several experimental ways to identify these parameters, for

example by means of transient or harmonic dynamic tests one can obtain the longitudinal elastic

modulus (by traction and/or compression), on the other hand the shear elastic modulus can be

obtained by means of torsional tests.

The characterization of material parameters of the viscoelastic model can be performed by

applying the Fourier Transform to the Eq. (12), obtaining the following elastic complex modu-

lus:

Ê(ω) =
σ̂(ω)

ε̂(ω)
=

Eo + E∞(iωτ)α

1 + (iωτ)α
(14)

where σ̂ and ε̂ are the Fourier transforms of σ(t) and ε(t), respectively. The variation of Ê(ω)
is bounded by two values (see Figure 3), i.e. the static modulus of elasticity, Eo (with ω → 0)

and the high frequency elastic modulus, E∞ (with ω → ∞). These parameters are such that

Eo < E∞, for τ > 0 and 0 < α < 1. From the real and imaginary parts of Eq. (14) it is possible

to obtain the expression for the storage modulus E1(ω) and loss modulus E2(ω), which are
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Figure 3: Beam configuration.

employed to calculate the mechanical loss factor η(ω) = E2(ω)/E1(ω) that fits experimental

results.

The order of the fractional derivative can be obtained by assuming the values of storage

modulus E1(ω), i.e. Eo and E∞ and the maximum mechanical loss factor (obtained from

experiments). Finally the relaxation time τ can be estimated by minimization of difference

between theoretical and experimental data of the complex modulus Ê(ω). A more detailed

explanation of this identification procedure can be followed in the work of Galucio et al. (2004).

Notice that in Figure 3 the classical Zenner model (i.e. with α = 1)) is included for comparison

purposes. This makes evident how effective is the fractional derivative approach to correlate the

frequency dependence of the storage modulus.

3 VARIATIONAL FORMULATION

The dynamic equations of the curved sandwich beam are derived from the Hamilton’s prin-

ciple:

t2
∫

t1

(δT − δU + δW ) dt = 0 (15)

where δW is the variation of the work done by external forces acting on the beam. δT is the

variation of the kinetic energy and δU is the variation of the strain energy. The variation of

strain and kinetic energies can be written as:

δU =
3
∑

i=1

δUi, δT =
3
∑

i=1

δTi (16)
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where according to the assumptions:

δTi = −

∫

V

ρi (üxiδuxi + üyiδuyi) dV ∀i = 1, 2, 3,

δUi =

∫

V

σxiδεxxidV ∀i = 1, 2,

δU3 =

∫

V

(σx3δεxx3 + σxy3δγxy3) dV .

(17)

Substituting Eq. (1) in Eq. (17) one obtains:

δTi = −

∫

L

{

δui

[(

I
(i)
0 +

2I
(i)
1

Ri

+
I

(i)
2

R2
i

)

üi − I
(i)
1 +

I
(i)
2

Ri

)

θ̈i

]}

dx−

−

∫

L

{

δθi

[

I
(i)
2 θ̈i − I

(i)
1 +

I
(i)
2

Ri

)

üi

]

+ δv
(

I
(i)
0 v̈
)

}

dx ∀i = 1, 2, 3,

(18)

δUi =

∫

L

{

δεD1i

[

J
(i)
0 εD1i + J

(i)
1 εD2i

]

+ δεD2i

[

J
(i)
2 εD2i + J

(i)
1 εD1i

]}

dx ∀i = 1, 2, (19)

δU3 =

∫

L

{

δεD13

(

J
(3)
0 εD13

)

+ δεD23

(

J
(3)
2 εD23

)

+ δεD33

(

J
(3)
3 εD33

)}

dx. (20)

It should be soundly noted that for the sake of algebraic simplicity Eq. (20) is obtained from

δU3 of Eq. (17) by assuming the core with elastic behavior (this implies a relaxation time with

value zero). The purpose of this handing in the inner layer lies in the possibility to model also

a sandwiched curved beam with elastic behavior as a limiting case of the present development.

However, in order to complete the description of the viscoelastic behavior of the core, Eq.

(20) will be reconsidered afterwards within the finite element context, taking into account the

concepts of Section 2.4.

The coefficients of Eq. (18) and Eq. (19) are defined in the following form

{

I
(i)
0 , I

(i)
1 , I

(i)
2

}

= b

lbi
∫

lai

ρi

{

1, (y − yi) , (y − yi)
2} dy ∀i = 1, 2, 3, (21)

{

J
(i)
0 , J

(i)
1 , J

(i)
2

}

= b

lbi
∫

lai

Ei

{

1, (y − yi) , (y − yi)
2} dy ∀i = 1, 2. (22)

The limits of these integrals, lai and lbi can be easily deduced from Figure 2, the values of

yi, i = 1, 2, 3 as well; whereas b is the width of the beam, ρi is the mass density of each layer,

Ei means the modulus of elasticity of each elastic layers. The coefficients J
(3)
0 and J

(3)
2 can be

calculated appealing to Eq. (22) with the geometric and material properties corresponding to

the core layer, whereas J
(3)
3 can be calculated as:

J
(3)
3 = k3G3h3b (23)
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Note that Eq. (23) can be interpreted as the conventional shear rigidity of the Timoshenko

beam, where G3 and k3 are the transverse modulus of elasticity and the shear coefficient, re-

spectively.

4 FINITE ELEMENT FORMULATION

4.1 Basic formulation

Finite Element models can be constructed through discretization of the Hamilton principle

given in Eq. (15). The finite element is formulated by discretizing the generalized displacements

ū and ũ given in Eq. (4) and the bending displacement v in the following form:

ū = N1qe,
v = N2qe,
ũ = N3qe,

(24)

where:

qe = [ū1, v1, v
′

1, ũ1, ū2, v2, v
′

2, ũ2]
T ,

N1 = [F1, 0, 0, 0, F2, 0, 0, 0] ,
N2 = [0, F3, F4, 0, 0, F5, F6, 0] ,

N3 = [0, 0, 0, F1, 0, 0, 0, F2] ,

(25)

and

F1 = 1 − ζ, F2 = ζ,
F3 = 1 − 3ζ2 + 2ζ3, F4 = Leζ(ζ − 1)2,
F5 = ζ2(3 − 2ζ), F6 = Leζ

2(ζ − 1),
ζ = x/Le.

(26)

Le is the length of the element.

Thus, the finite element representation of displacements and rotations of the layers given in

Eq. (5), can be written as:

u1 = N11qe, θ1 = N′

2qe,
u2 = N21qe, θ2 = N′

2qe,
u3 = N31qe, θ3 = N32qe,

v = N2qe,

(27)

where:

N11 = [F1, 0, 0, F1/2, F2, 0, 0, F2/2] ,
N21 = [F1, 0, 0,−F1/2, F2, 0, 0,−F2/2] ,

N31 = [ηaF1, ηoF
′

3, ηoF
′

4,−ηbF1, ηaF2, ηoF
′

5, ηoF
′

6,−ηbF2] ,
N32 = [ηdF1, ηeF

′

3, ηeF
′

4,−ηcF1, ηdF2, ηeF
′

5, ηeF
′

6,−ηcF2] .

(28)

The membranal (εD1i, i=1,2,3), bending (εD2i, i=1,2) and shear (εD33) components of strain

can be written in the following discretized form:

εD11 = B11qe, ǫD21 = B21qe,
εD12 = B12qe, ǫD22 = B22qe,
εD13 = B13qe, ǫD23 = B23qe,

εD33 = B33qe,

(29)
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where:

B11 =
N′

1

Le

+
N′

3

2Le

+
N2

R1

, B12 =
N′

1

Le

−
N′

3

2Le

+
N2

R2

,

B21 = −
N′′

2

L2
e

+

(

N′

1

Le

+
N′

3

2Le

)

1

R1

, B22 = −
N′′

2

L2
e

+

(

N′

1

Le

−
N′

3

2Le

)

1

R2

,

B13 =
ηaN′

1

Le

−
ηbN

′

3

Le

+
ηoN′′

2

L2
e

+
N2

R3

,

B23 =
ηcN

′

3

Le

−
ηkN′

1

Le

+
ηlN

′′

2

L2
e

, B33 = ηfN1 − ηgN3 +
ηhN′

2

Le

.

(30)

In Eq. (28) and Eq. (30) the following definitions have been introduced:

ηa = 1 −
h1

4R1

+
h2

4R2

, ηb =
h1

8R1

+
h2

8R2

, ηc =
ηa

h3

, ηd =
4ηb

h3

+
1

R3

,

ηe = −
h̄

h3

+
h̃

4R3

, ηf = −ηd, ηg = ηc, ηk =
ηb

h3

,

ηh = 1 +
h̄

h3

−
h̃

R3

, ηl =
h̄

h3

, ηo =
h̃

4
.

(31)

Now substituting Eq. (27) in Eq. (18) one obtains the variation of the kinetic energy of the

finite element:

δT = −δqT
e Meq̈e (32)

where Me is the elementary mass matrix given by:

Me = Me1 + Me2 + Me3 (33)

in which Me1, Me2 and Me3 are the mass contributions of the three layers which can be written

in the following form:

Me1 =

1
∫

0

[

I(1)
x NT

11N11 + I
(1)
0 NT

2 N2 −
I

(1)
xr

Le

(

NT
11N

′

2 + N
′T
2 N11

)

+
I

(1)
2

L2
e

N
′T
2 N

′

2

]

Ledζ,

Me2 =

1
∫

0

[

I(2)
x NT

21N21 + I
(2)
0 NT

2 N2 −
I

(2)
xr

Le

(

NT
21N

′

2 + N
′T
2 N21

)

+
I

(2)
2

L2
e

N
′T
2 N

′

2

]

Ledζ,

Me3 =

1
∫

0

[

I(3)
x NT

31N31 + I
(3)
0 NT

2 N2 + I
(3)
2 NT

32N32

]

Ledζ,

(34)

where in order to contract notation I
(i)
x and I

(2)
xr are defined as follows:

I(i)
x = I

(i)
0 +

2I
(i)
1

Ri

+
I

(i)
2

R2
i

)

∀i = 1, 2, 3,

I(i)
xr = I

(i)
1 +

I
(i)
2

Ri

)

∀i = 1, 2.

(35)
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The elementary stiffness matrix can be obtained substituting Eq. (27) and Eq. (29) into Eq.

(19). It should be remembered that Eq. (20) was obtained under the assumption of elastic core.

Then, the variation of the internal energy of the finite element is:

δUe = δqT
e Keqe (36)

Thus, the elementary stiffness matrix Ke, in the limiting case of the inner layer behaving

elastically, can be written as:

Ke = Ke1 + Ke2 + Ke3 (37)

where:

Ke1 =

1
∫

0

[

J
(1)
0 BT

11B11 + J
(1)
1

(

BT
11B21 + BT

21B11

)

+ J
(1)
2 BT

21B21

]

Ledζ,

Ke2 =

1
∫

0

[

J
(2)
0 BT

12B12 + J
(2)
1

(

BT
12B22 + BT

22B12

)

+ J
(2)
2 BT

22B22

]

Ledζ,

Ke3 =

1
∫

0

[

J
(3)
0 BT

13B13 + J
(3)
2 BT

23B23 + J
(3)
3 BT

33B33

]

Ledζ.

(38)

However, as the core is viscoelastic, the σx3 and σxy3 of Eq. (17) are no longer time in-

dependent, consequently the stiffness matrix component Ke3 (that was derived in this section

assuming the core with elastic behavior) has to be reformulated in view of the concepts intro-

duced in Section 2.4.

Finally the virtual work of the external forces of the finite element is given by:

δWe = δqT
e Fe (39)

4.2 Finite element description of the viscoelastic core

The operator of the fractional derivative defined in Eq. (13) can be approximated by several

procedures, for example the Grünwald approximation (see: Grünwald (1867)). There is also a

numerical method based on the Gear scheme for the approximation of fractional derivatives in

the context of finite differences methods, as one can see in the work of Galucio et al. (2006).

The Grünwald procedure is adopted here since, being valid for all values of α, it is easy to

implement in a finite elements procedure. Thus, the finite difference approximation of the

Grünwald definition is given by:

dαf(t)

dtα
≈

(

∆t
)

−α
Nt
∑

j=0

Aj+1 f
(

t − j∆t
)

(40)

where ∆t is the time step increment of the numerical scheme. The upper limit of the sum Nt

is strictly lower than N , and Aj+1 represents the Grünwald coefficients given either in terms of

the gamma function or by the recurrence formulae, that is:

Aj+1 =
Γ(j − α)

Γ(−α)Γ(j + 1)
or Aj+1 =

j − α − 1

j
Aj (41)
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Now the following strain function as internal variable is introduced:

ε̄ = ε −
σ

E∞

(42)

such that the constitutive model described in Eq. (12) can be rewritten as:

ε̄ + τα dαε̄

dtα
=

E∞ − Eo

E∞

ε (43)

This change of the strain variable leads to the presence of only one fractional derivative

operator in the constitutive expression of Eq. (43) instead of the two fractionary operators in

Eq. (12). Using the Grünwald approximations, i.e., substituting Eq. (40) in Eq. (43), and

taking into account that A1 = 1, it is possible to arrive to the following discretized form of the

constitutive relation:

ε̄(n+1) = (1 − c)
E∞ − Eo

E∞

ε(n+1)
− c

Nt
∑

j=1

Aj+1ε̄
(n+1−j) (44)

where c is a dimensionless constant given by

c =
τα

τα + ∆tα
(45)

It should be mentioned that the Grünwald coefficients in Eq. (44), which are strictly decreas-

ing when j increases, describe the fading memory phenomena. In other words, the behavior of

the viscoelastic material at a given time step depends more strongly on the recent time history

than on the distant one (see Galucio et al. (2004)).

Now the variation of the axial and shear stress of the core can be defined from the definition

anelastic strain in Eq. (42) and considering its discretized form in Eq. (42). Thus, remembering

assumption (4) one obtains for the viscoelastic core:

σ
(n+1)
i3 = E∞

(

ε
(n+1)
i3 − ε̄

(n+1)
i3

)

(46)

or in extended form:

σ
(n+1)
x3 = E3

[

(

1 + c
E∞ − Eo

E∞

)

ε
(n+1)
x3 + c

E∞

Eo

Nt
∑

j=1

Aj+1ε̄
(n+1−j)
x3

]

σ
(n+1)
xy3 = G3

[

(

1 + c
E∞ − Eo

E∞

)

γ
(n+1)
xy3 + c

E∞

Eo

Nt
∑

j=1

Aj+1γ̄
(n+1−j)
xy3

] (47)

where E3 and G3 are the longitudinal and shear elastic moduli of the viscoelastic core that can

be written in terms of the relaxed modulus Eo as follows:

E3 = Eo, G3 = Go =
Eo

2 (1 + ν)
(48)

In order to derive the expression of the stiffness matrix of the core layer accounting for

the viscoelastic behavior, one should recall the definitions of the axial and shear strains of the
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core given in Eq. (8) and Eq. (11). Then taking into account Eq. (33) the finite element

representation of the viscoelastic strain components can be written in following form:

ε
(n+1)
x3 = (B13 − yB23) q(n+1)

e

γ
(n+1)
xy3 = B33q(n+1)

e

(49)

The anelastic strains ε̄
(n+1)
x3 and γ̄

(n+1)
xy3 can be obtained with the same form given in Eq.

(49) but in terms of the discretized anelastic unknowns q̄
(n+1)
e . These unknowns depend on the

displacement history and are updated using the following expression:

q̄(n+1)
e = (1 − c)

E∞ − Eo

E∞

q(n+1)
e − c

Nt
∑

j=1

Aj+1q̄(n+1−j)
e (50)

Thus, taking into account Eq. (49) and Eq. (50) the stresses of the Eq. (47) can be written

as:

σ
(n+1)
x3 = E3 (B13 − yB23)

[

(

1 + c
E∞ − Eo

E∞

)

q(n+1)
e + c

E∞

Eo

Nt
∑

j=1

Aj+1q̄(n+1−j)
e

]

σ
(n+1)
xy3 = G3B33

[

(

1 + c
E∞ − Eo

E∞

)

q(n+1)
e + c

E∞

Eo

Nt
∑

j=1

Aj+1q̄(n+1−j)
e

] (51)

Now concerning the internal energy (see Eq. (17)) of the viscoelastic core and employing

Eq. (51) one has in the domain of the finite element the following expression:

∫

Ve

[

(

BT
13 − yBT

23

)

σ
(n+1)
x3 + BT

33σ
(n+1)
xy3

]

dV =

(

1 + c
E∞ − Eo

E∞

)

Ke3q(n+1)
e +

c
E∞

Eo

Ke3

Nt
∑

j=1

Aj+1q̄(n+1−j)
e

(52)

From Eq. (52) one can obtain the stiffness matrix component of the curved finite element

with the viscoelastic core. Notice that Ke3 is the stiffness matrix component of the core defined

in Eq. (38).

4.3 Discretized equations of motion and algorithm implementation

Once the elementary mass and stiffness matrices are completely formulated, after putting

together Eq. (32), Eq. (36), Eq. (39), Eq. (52) and performing some algebraic handling one

obtains the elementary equation of motion as:

Meq̈(n+1)
e +

(

Ke + K̄e3

)

q(n+1)
e = F(n+1)

e + F̄
(n+1)
e (53)

where Me and Ke are the mass matrix and the stiffness matrix of the element as defined in

Eq. (39) and Eq. (52). The modified stiffness matrix K̄e3 and loading vector F̄
(n+1)
e that appear
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from the viscoelastic behavior of the inner layer, are given by:

K̄e3 = c
E∞ − Eo

E∞

Ke3

F̄
(n+1)
e = −c

E∞

Eo

Ke3

Nt
∑

j=1

Aj+1q̄(n+1−j)
e

(54)

It is interesting to note that Eq. (53) contains in a unified fashion the cases of sandwich

beams with viscoelastic core or elastic core. For the case of elastic core K̄e3 and F̄
(n+1)
e vanish

since the dimensionless constant c = 0, consequently Eq. (53) is reduced to a classical equation

of motion.

Appealing to the common assembly procedure Eq. (53) becomes in:

MQ̈
(n+1)

+
(

K + K̄3

)

Q(n+1) = F(n+1) + F̄
(n+1)

(55)

where M and K are the global mass and stiffness matrices, respectively. K̄3 is the global stiff-

ness matrix of the viscoelastic core, Q is the global vector of degrees of freedom, and F is the

global loading vector and F̄ is the global modified loading vector. Super-indexes in the previous

equations intend for the nth calculation step.

In order to implement the algorithm for calculation of transient dynamics, the Newmark

method is employed. However some changes in the classical Newmark scheme should be car-

ried out in order to tackle the problem of the viscoelastic core modeled with fractional calculus

(Deü et al., 2003; Galucio et al., 2004). For detailed descriptions the reader should see the work

of Deü et al. (2003). Thus, in Figure 4 one can see a flux diagram of the resolution algorithm.

5 NUMERICAL ANALYSIS AND PARAMETRIC STUDIES

5.1 Validation and comparison of the present model

In this section numerical computations are performed in order to validate and compare the

model with other studies of the international literature.

The first example corresponds to a simply supported straight viscoelastic Timoshenko beam

(Chen, 1995; Galucio et al., 2004). This implies to set, in the present model, R → ∞ and to

eliminate the influence of the external layers (or simply set h1 = h2 = 0). The length, width and

height of the beam are L = 10 m, b = 2 m and h3 = 50 cm. The shear coefficient of the beam

is defined by k3 = 10(1 + ν)/(12 + 11ν). The beam is modeled with 50 finite elements with

an external uniform step loading of FE = 10 H(t) N/m on its top side. H(t) is the Heaviside

step function. The viscoelastic material is characterized by means of the following properties:

Eo = 19.6 MPa, E∞ = 98 MPa, ρ = 500 kg/m3, ν = 0.3 and τ = 2.24 s.

In Figure 5 the time-dependent displacements at the center of the beam for a standard solid

model (α = 1.00) and for a fractional derivative one (α = 0.75 and α = 0.50) are shown. In

this Figure the responses obtained with the present approach and with the approach of Galucio

et al. (2004) are compared. As one can see both responses are in well agreement.

The second example corresponds to a sandwich shallow arc. The arc is composed by a vis-

coelastic core (specimen of 3M(TM) number ISD112 at 27◦) with a thickness of 5 mm bounded

by metallic (aluminium) layers with thickness of 2.5 mm. The width of the arc is b = 20 mm
the curvature radius and the subtended arc are R = 2.525 m and Φ = 0.4 rad. The mechanical

characteristics for the elastic faces are ρ = 2690 kg/m3, ν = 0.345 and E = 70.3 × 103MPa.

The mass density and Poisson coefficient of the viscoelastic material are ρ = 1600kg/m3 and
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Figure 4: Flow-chart of the modified Newmark method.

ν = 0.5, whereas the material parameters for the fractional derivative viscoelastic model are 
identified (Galucio et al., 2004) as Eo = 1.5 MP a, E∞ = 69.9495 MP a, α = 0.7915 and 
τ = 1.4052 × 10−2 ms. The arc modeled with fifty finite elements is subjected to a unitary 
Heaviside step flexural point load located at the center of the arc and directed towards the cen-

ter of curvature.

In Figure 6 one can see the radial displacement of the node where the load is placed. The 
response obtained with curved elements is tested with a frame model of straight sandwich beam 
elements (Deü et al., 2003; Galucio et al., 2004) programmed ad-hoc. It is possible to note 
the agreement between both approaches. It should be mentioned that both approaches con-

verge monotonically to the same values as the number of elements in the models are increased. 
Although the frame approach proved to be faster than the arc approach, this aspect may be 
associated with the shape functions employed here for the arc. These shape functions can be 
replaced in the arc element in order to improve approximations and accelerate the convergence.
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Figure 5: Comparison of displacements at the center of the beam.

However this is matter of future extensions.

5.2 Parametric studies on the dynamics of sandwich curved beams

In this section some parametric studies are carried out in order to characterize the dynamics

of curved viscoelastic sandwich beams. In Figure 7 one can see a sketch of a shallow curved

beam with clamped ends. The horizontal distance Lh between the geometric centers of the

clamped ends is a constant while the shallowness parameter ∆R can vary form zero (i.e. a

straight beam) to a certain value in terms of a percentage of LR, normally no longer than 20%.

The first example of this section corresponds to a fully viscoelastic arc. The width and

height of the beam are b = 2 m and h3 = 50 cm. The horizontal distance is Lh = 10 m.

Since this example is suited only for viscoelastic arcs, the influence of elastic external layers is

eliminated (i.e. h1 = h2 = 0). The properties of the viscoelastic material are: Eo = 19.6 MPa,

E∞ = 98 MPa, ρ = 500 kg/m3, ν = 0.3 and τ = 2.24 s. The shear coefficient of the beam is

defined by k3 = 10(1+ν)/(12+11ν). The beam is subjected to an outward radial and uniform

step-load of FE = 1000H(t) N/m. The curved arc is modeled with 100 finite elements, in

order to have quite precise results.

In Figure 8 one can see the history of the radial displacement in the middle of the arc for

the case where α = 0.5 and for four different shallowness ratios. As one can see the transient

oscillation period can be substantially diminished for the curved cases. In this last figure, an

interesting aspect related to the relationship between the stationary response and arc dimensions

can be also regarded. Note that as ∆R/Lh → 0 (or R → ∞) the length L of the curved beam

(i.e. L = R3Φ, where Φ is the subtended angle) is such that L → Lh. Thus with a small

change in the length L with respect to the straight beam case (L = Lh) one gets an important

reduction in the displacement response. For example, notice that for the case ∆R/Lh = 0.05
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Figure 6: Comparison of displacements at the center of the shallow arc.

one can calculate the ratio arc length to Lh, that is L/Lh = 1.0066; in other words this means

that with a slightly curved beam with an arc length less than 1% larger than the length of the

straight beam one gets displacements that can be less than 50% of the corresponding values of

the straight beam case (compare responses of ∆R/Lh = 0 and ∆R/Lh = 0.05 in Figure 8)

The second example of the transient behavior of sandwich curved beams corresponds to a

shallow arc with a viscoelastic core (specimen of 3M(TM) number ISD112 at 27◦) bounded by

aluminum layers. The material data for this calculation can be taken from the second example in

the previous subsection. The fractional derivative order for the viscoelastic material is α = 0.79.

Considering once again Figure 7, the geometry of the structure is such that Lh = 1 m and

∆R/Lh = 0.10, the width is b = 40 mm and the height is h = 20 mm (i.e. h = h1 + h2 + h3).

The elastic external layers are such that h1 = h2. The structure is subjected to a radial step load

Figure 7: Geometric characterization of shallow circular arc.
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Figure 8: History of displacements at the center of the beam, for α = 0.5 and different shallowness ratios ∆R/Lh.

of value FE = 10H(t) N located at center of the beam and directed outwards. The calculation

is carried out over a period T = 500 ms which proved to be enough to reach a stationary

constant response for all the analyzed cases. In this study the influence of the thickness of the

viscoelastic core is analyzed.

In Figure 9 the time history of radial displacements at the loading point is depicted. The

radial displacements of this figure are re-scaled by normalizing them with respect to the corre-

sponding stationary radial displacement (i.e. v(L/2, t)/v(L/2, t500)), in order to have the same

screen in all the cases, for comparative purposes. Thus, for a very thin (h3/h = 0.01) viscoelas-

tic layer it is possible to see a very short transient that ends after 40 ms, whereas for the other

cases the transient periods are larger with a high oscillatory behavior.

6 CONCLUSIONS

In the present paper a model of sandwich curved beams with viscoelastic layer for tran-

sient dynamic analysis has been proposed. The structural model consist of three layers, where

a viscoelastic core is bounded by two elastic layers. The behavior of the core has been de-

scribed employing a four-parameters viscoelastic constitutive model defined in terms of frac-

tional derivative operators of strains and stresses. The curved beam model has been numerically

implemented in the context of the finite element method. Thereafter the constitutive model has

been rearranged in order to be represented only in terms displacements. Thus only anelastic

displacements had to be kept to represent the dynamics of the viscoelastic sandwich curved

beam. The present model contains the straight beam and bar models as particular cases when

the curvature radius is set to infinity (in practice to a large value). Numerical computations have

been carried out to show the usefulness of the present approach as well as the transient behavior

of the curved viscoelastic sandwich beams.
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