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1. Introduction

In recent years, considerable research has been devoted to the development and

testing of noise reduction techniques by passive damping treatments. Many ap-

proaches have been proposed in the literature, in particular to model the absorb-

ing material. These approaches are often based on poroelastic material modeling

(Allard, 1993; Atalla et al., 1998; Göransson, 1998; Davidsson, 2004). In this work,

we focus on the formulation of structural-acoustic problems with interface damp-

ing using a wall impedance approach. In this context, let us mention the paper of

Kehr-Candille and Ohayon (Kehr-Candille et al., 1992), where a frequency-dependent

impedance is introduced to describe the absorbing material at the fluid-structure inter-

face, and where a substructuring method is used to solve the dissipative structural-

acoustic system. In that work, the fluid is described by a scalar unknown field (pres-

sure or fluid displacement potential) and the problem is numerically solved in fre-

quency domain by the finite element method. Using the same kind of approach,

Bermúdez and Rodríguez present in (Bermúdez et al., 1999) a finite element method to

compute the dynamic response of an elastoacoustic system with dissipative interface

subject to external harmonic excitations. In their paper, a displacement formulation is

used for both media, requiring a particular attention to the discretization of the admis-

sible class of irrotational motions of the fluid. More recently, an original formulation

for interior structural-acoustic dissipative problems, based on the introduction of the

normal fluid displacement field at the fluid-structure interface, has been proposed by

the authors (Deü et al., 2006; Larbi et al., 2006). In the present paper, the main purpose

is to establish the link between dissipative models by wall acoustic impedance and by

poroelastic approach based on the Biot-Allard theory (Allard, 1993) (cf. Figure 1).
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Figure 1. Structural-acoustic problem with absorbing interface modeled by: a)

porous medium, b) acoustic wall impedance

The dissipative structural-acoustic coupled problem consists of an elastic structure

covered by a thin layer of absorbing material and filled with an inviscid, compress-



ible and barotropic fluid, gravity effects being neglected. In order to take the effect

of a thin layer of absorbing material at the fluid-structure interface into account, a

wall impedance approach is used. The question is here how to model and identify

this impedance. A first strategy consists in using experimental measurements in a par-

ticular frequency range (Pierce, 1989). Another choice, which is developed in this

paper, is to use refined poroelactic approaches. In this context, we present in the first

part of this paper the finite element modeling of poroelastic absorbing material based

on Biot-Allard theory. The associated acoustic wall impedance can then be predicted

from this numerical approach or by an analytical expression in the case of laterally

infinite poroelastic materials excited by unit amplitude normal incidence plane wave.

Next, we present the finite element formulations of structural-acoustic problem with

absorbing interface considering (i) general acoustic impedance model and (ii) approxi-

mate Kelvin-Voigt model. In this last case, the associated matrix system can be solved

in frequency and time domains using direct time integration methods and/or modal

reduction approaches.

2. Poroelastic modeling of absorbing materials based on Biot-Allard theory

In the literature, several 3D finite element models based on Biot-Allard theory are

developed for the forced response of a poroelastic material (Göransson, 1998; Atalla et

al., 1998; Davidsson et al., 2006). We recall in this section the pressure/displacement

(us, pf ) finite element formulation developed by Atalla (Atalla et al., 1998). This

numerical approach will be used to model and identify the normal incidence surface

impedance Z(ω).

2.1. Finite element formulation

We consider a single isotropic porous material described by the Biot-Allard ap-

proach (Allard, 1993). This model is defined by (i) five geometrical parameters (the

porosity φ, the flow resistivity σ, the tortuosity α∞, the viscous characteristic length

Λ, and the thermal characteristic length Λ
′

), (ii) the mechanical characteristics of the

skeleton, and (iii) the saturating fluid properties. A detailed description of this model

can be found for example in (Atalla et al., 1998).

The Biot-Allard poroelasticity equations are written here in terms of the solid

phase displacement u
s and the interstitial fluid pressure pf . It is important to note

that the small movement of the fluid is not irrotational and the dissipation effects are

expressed by complex quantities which depend on the angular frequency ω (cf. signs

"~" in the following equations).



For harmonic motion, the local equations of the poroelastic medium are given in

terms of (us, pf ) by

divσ
s(us) + ω2ρ̃us + γ̃∇pf = 0 [1]

∆pf + ω2
ρ̃22

R̃
pf − ω2

ρ̃22

φ2
γ̃divus = 0 [2]

where σ
s is the in vacuo stress tensor of the poroelastic aggregate. Moreover, we have

ρ̃ = ρ̃11 − ρ̃2
12/ρ̃22, γ̃ = φ(ρ̃12/ρ̃22 − Q̃/R̃), Q̃ = (1 − φ)K̃e, R̃ = φK̃e where K̃e

is the bulk modulus of the fluid phase; ρ̃11 is the corrected mass density for the solid

phase; ρ̃12 is the inertial coupling factor; and ρ̃22 is the corrected mass density of the

fluid phase. All these parameters are defined in terms of the previously mentioned

geometrical and mechanical properties of the porous medium.

From Equations [1] and [2], the variational formulation can be written in the fol-

lowing form

∫

Ωp

σ
s : ε

s(δus) dv − ω2

∫

Ωp

ρ̃us · δus dv

−

∫

Ωp

γ̃∇pf · δus dv −

∫

∂Ωp

(σs
n) · δus ds = 0 ∀ δus [3]

∫

Ωp

φ2

ω2ρ̃22

∇pf · ∇δpf dv −

∫

Ωp

φ2

R̃
pf δpf dv −

∫

Ωp

γ̃u
s · ∇δpf dv

+

∫

∂Ωp

(

γ̃u
s · n −

φ2

ω2ρ̃22

∂pf

∂n

)

δpf ds = 0 ∀ δpf [4]

where Ωp and ∂Ωp refer to the poroelastic domain and its boundary surface, n is the

external normal vector of the boundary ∂Ωp, ε
s is the strain tensor of the solid phase.

The discretization of the previous variational formulation leads to the following

matrix equation

(

K −C̃

0 H̃

) (

U
s

P
f

)

− ω2

(

M̃ 0

C̃
T

G̃

)(

U
s

P
f

)

=

(

F
s

F
f

)

[5]



where U
s and P

f are the vectors of nodal values of u
s and pf respectively, and where

the submatrices of Equation [5] are given by

∫

Ωp

σ
s(us) : ε

s(δus) dv ⇒ δUsT
KU

s ;

∫

Ωp

ρ̃us · δus dv ⇒ δUsT
M̃U

s

∫

Ωp

γ̃∇pf · δus dv ⇒ δUsT
C̃P

f ;

∫

Ωp

γ̃u
s · ∇δpf dv ⇒ δPf T

C̃
T
U

s

∫

Ωp

φ2

ρ̃22

∇pf · ∇δpf dv ⇒ δPf T
H̃P

f ;

∫

Ωp

φ2

R̃
pf δpf dv ⇒ δPf T

G̃P
f

In structural-acoustic problem with absorbing material, this approach leads to a

coupling between porous material degrees of freedom and the surrounding fluid and

structure degrees of freedom. Therefore, the whole problem is very large and thus

computationally time consuming. One of the best ways to avoid this problem is to use

a reduced or impedance models as described in the next sections.

2.2. Computation of normal incidence surface impedance

The surface impedance of laterally infinite poroelastic material predicted by the

presented (us, pf ) model is investigated in this section. The configuration under study

is depicted in Figure 2. The porous layer, of thickness L = 0.1m and material proper-

ties given in Table 1, is bonded onto a rigid wall at x = 0. A normal incidence plane

wave of unit amplitude excites the absorbing material at x = −L.

Rigid wall (x=0)

Normal incidence

plane wave (x=-L)

L=0.1m

Figure 2. Geometry of the normal acoustic impedance problem



Table 1. Physical properties of the porous material

φ σ (Ns/m4) α∞ Λ (μm) Λ
′

(μm) Es (kPa) νs ηs ρs (kg/m3)

.94 40000 1.06 56 110 4400 0 .1 130

The normal incidence surface impedance (Figure 3a) is calculated using the dis-

placement of fluid and solid phases, u
s and u

f respectively, at the input surface

(x = −L) for the unit acoustic pressure excitation by the following equation

Z(ω) =
1

iω [φuf (−L) + (1 − φ)us(−L)]
[6]

where the displacement of fluid and solid phases are calculated using the previous

(us, pf ) formulation.
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Figure 3. Real and imaginary parts of normal incidence surface impedance: (a) nor-

mal incidence surface impedance computed from Biot-Allard theory, (b) identification

of normal impedance parameters kI and dI in frequency range [0 - 300 Hz]

In frequency range [0 - 300 Hz], the normal incidence surface impedance can be

approached by a Kelvin-Voigt model, i.e. sum of a constant real part and an imaginary

part inversely proportional to the frequency:

Z(ω) = dI + ikI/ω [7]

The parameters kI and dI (kI ≈ 1.1× 106 Pa/m and dI ≈ 1290 Pa.s/m), characteriz-

ing respectively the elastic and the viscous aspect of the absorbing layer, are deduced

from the acoustic surface impedance by a least squares method (Figure 3b).

3. Finite element formulations of structural-acoustic problems with absorbing

interface

This section concerns the finite element modeling of structural-acoustic prob-

lems with absorbing interfaces. The absorbing material is modeled by a frequency-



dependent wall acoustic impedance. We present here a pressure/displacement formu-

lation with (i) general acoustic impedance and (ii) Kelvin-Voigt impedance models.

3.1. General acoustic impedance model

We consider an elastic structure occupying the domain ΩS at the equilibrium. The

structure is clamped on a part Γu and subjected to surface force density F
d on the

complementary part of its external boundary Γt. The damping interface Σ between the

fluid and the structure corresponds to a third domain without thickness. This domain

is modeled by a wall acoustic impedance Z(ω). The local equations of this structural-

acoustic coupled problem with damped interface can be written in terms of structure

displacement u and fluid pressure field p by

divσ(u) + ρSω2
u = 0 in ΩS [8]

σ(u)nS = F
d on Γt [9]

σ(u)nS = pn on Σ [10]

u = 0 on Γu [11]

∆p +
ω2

c2

F

p = 0 in ΩF [12]

∇p · n = ρF ω2
u · n + i

ρF ω

Z(ω)
p on Σ [13]

where nS and n are the external unit normal to ΩS and ΩF ; ρS and ρF are the structure

and fluid mass densities; cF is the speed of sound in the fluid; and σ is the structure

stress tensor.

The variational formulation of the problem is obtained using the test-function

method. For this purpose, we introduce the spaces Cu and Cp of sufficiently smooth

functions associated with the field variables u and p respectively.

Let δu be the test function associated to u, belonging to the admissible space

C⋆
u = {δu ∈ Cu | δu = 0 on Γu}. Multiplying Equation [8] by δu ∈ C⋆

u, applying

Green’s formula, and finally taking Equations [9] and [10] into account, we have:

∫

ΩS

σ(u) : ε(δu) dv −

∫

Σ

pn · δu ds − ω2

∫

ΩS

ρSu · δu dv

=

∫

Γt

F
d · δu ds ∀δu ∈ C∗

u [14]



Similarly, let δp be the test function, associated to p, belonging to the admissible

space Cp. Multiplying Equation [12] by δp ∈ Cp, applying Green’s formula, and

finally taking Equation [13] into account, we obtain:

1

ρF

∫

ΩF

∇p · ∇δp dv − i
ω

Z(ω)

∫

Σ

pδp ds − ω2

∫

Σ

u · nδp ds

−
ω2

ρF c2

F

∫

ΩF

p δp dv = 0 ∀δp ∈ Cp [15]

Thus, the variational unsymmetric formulation of the elastoacoustic problem with

interface damping consists, for given appropriate initial conditions, in finding (u, p) ∈
(C⋆

u, Cp) such that, ∀(δu, δp) ∈ (C⋆
u, Cp) Equations [14] and [15] are satisfied.

After discretizing by the finite element method the bilinear forms in Equations [14]

and [15], we obtain the following matrix system of the coupled problem:

[(

Ku −Cup

0 Kp

)

− i
ω

Z(ω)

(

0 0

0 Dp

)

− ω2

(

Mu 0

C
T
up Mp

)] (

U

P

)

=

(

F

0

)

[16]

where U and P are the vectors of nodal values of u and p respectively; F is the vector

of external forces defined by
∫

Γt
F

d · δu ds ⇒ δUT
F; and the real and frequency-

independent submatrices of Equation [16] are given by:

∫

ΩS

σ(u) : ε(δu) dv ⇒ δUT
KuU ;

∫

ΩS

ρSu · δu dv ⇒ δUT
MuU

1

ρF

∫

ΩF

∇p · ∇δp dv ⇒ δPT
KpP ;

1

ρF c2

F

∫

ΩF

pδp dv ⇒ δPT
MpP

∫

Σ

pn.δu ds ⇒ δUT
CupP ;

∫

Σ

pδp ds ⇒ δPT
DpP

3.2. Kelvin-Voigt impedance model

Due to the frequency complex dependence of the acoustic wall impedance Z(ω),
the previous unsymmetric formulation can be written only in frequency domain and

allows to nonlinear system in terms of angular frequency ω. To avoid this problem, a

new finite element formulation based on the introduction of an additional scalar un-

known, namely the normal fluid displacement field η at the dissipative interface, has

been recently presented by the authors (Deü et al., 2006; Larbi et al., 2006). In this

case, the acoustic wall impedance Z(ω) is approximated by a Kelvin-Voigt rheological

model, i.e. sum of a constant real part and an imaginary part inversely proportional

to the frequency: Z(ω) = dI + ikI/ω (see Section 2). The local equations of the



structural-acoustic problem with absorbing material can then be written in terms of

structure displacement u, fluid pressure p and normal fluid displacement at the inter-

face η:

– Structure

divσ(u) − ρS

∂2
u

∂t2
=0 in ΩS [17]

σ(u)nS =F
d on Γt [18]

u =0 on Γu [19]

σ(u)nS =

[

kI(η − u · n) + dI(
∂η

∂t
−

∂u

∂t
· n)

]

n on Σ [20]

– Fluid

∆p −
1

c2

F

∂2p

∂t2
= 0 in ΩF [21]

∇p · n = −ρF

∂2η

∂t2
on Σ [22]

– Interface

p + kI(u · n − η) + dI(
∂u

∂t
· n −

∂η

∂t
) = 0 on Σ [23]

The variational formulation of the problem is obtained using the test-function

method.

Multiplying Equation [17] by δu ∈ C⋆
u, applying Green’s formula, and finally

taking Equations [18] and [20] into account, we have:

∫

ΩS

σ(u) : ε(δu) dv + kI

∫

Σ

(u · n)n · δu ds + dI

∫

Σ

(
∂u

∂t
· n)n · δu ds

−kI

∫

Σ

ηn·δu ds−dI

∫

Σ

∂η

∂t
n·δu ds+

∫

ΩS

ρS

∂2
u

∂t2
·δu dv =

∫

Γt

F
d ·δu ds

[24]

Similarly, multiplying Equation [21] by δp ∈ Cp, applying Green’s formula, and

finally taking Equation [22] into account, we obtain:

1

ρF

∫

ΩF

∇p · ∇ δp dv +
1

ρF c2

F

∫

ΩF

∂2p

∂t2
δp dv +

∫

Σ

∂2η

∂t2
δp ds = 0 [25]



Finally, we consider the space Cη of sufficiently regular functions η defined in Σ.

Multiplying Equation [23] by δη ∈ Cη, we have:

kI

∫

Σ

η δη ds − kI

∫

Σ

u · n δη ds

+ dI

∫

Σ

∂η

∂t
δη ds − dI

∫

Σ

∂u

∂t
· n δη ds −

∫

Σ

p δη ds = 0 [26]

Thus, the variational unsymmetric formulation of the elastoacoustic problem

with interface damping consists, for given appropriate initial conditions, in finding

(u, η, p) ∈ (C⋆
u, Cη, Cp) such that, ∀(δu, δη, δp) ∈ (C⋆

u, Cη, Cp), Equations [24],

[25] and [26] are satisfied.

After discretizing by the finite element method the bilinear forms in Equa-

tions [24], [25] and [26], we obtain the following matrix equation of the coupled

system:

⎛

⎝

Mu 0 0

0 0 0

0 C
T
ηp Mp

⎞

⎠

⎛

⎝

Ü

Ḧ

P̈

⎞

⎠ +

⎛

⎝

dI
Gu −dI

Guη 0

−dI
G

T
uη dI

Gη 0

0 0 0

⎞

⎠

⎛

⎝

U̇

Ḣ

Ṗ

⎞

⎠

+

⎛

⎝

Ku + kI
Gu −kI

Guη 0

−kI
G

T
uη kI

Gη −Cηp

0 0 Kp

⎞

⎠

⎛

⎝

U

H

P

⎞

⎠ =

⎛

⎝

F

0

0

⎞

⎠ [27]

where U, H and P are the vectors of nodal values of u, η and p respectively and the

new submatrices are given by

∫

Σ

p δη ds ⇒ δHT
CηpP ;

∫

Σ

∂2η

∂t2
δp ds ⇒ δPT

C
T
ηpḦ

∫

Σ

(u · n)n · δu ds ⇒ δUT
GuU ;

∫

Σ

η δη ds ⇒ δHT
GηH

∫

Σ

ηn · δu ds ⇒ δUT
GuηH ;

∫

Σ

u · n δη ds ⇒ δHT
G

T
uηU

This formulation has the advantage that it can be solved in frequency and in time

domain by introducing only one unknown per node on the damping interface (normal

fluid displacement η). On the other hand, it has the disadvantage of yielding unsym-

metric matrices. The symmetric formulation can be obtained through the introduction

of an intermediate unknown field, namely fluid displacement potential ϕ defined up to

an additive constant (Morand et al., 1995; Deü et al., 2006).



4. Example: dissipative acoustic pipe submitted to a pressure load

In this example, a pressure load is applied to the left edge of a straight pipe (of

length A = 5 m and width B = 0.5 m) containing air (density ρF = 1 kg/m3, speed

of sound cF = 340 m/s) and with an absorption wall at the right edge (Figure 4). This

absorbing boundary is modeled by the previously described wall acoustic impedance

Z(ω) = dI + ikI/ω. The damping parameters, given in Section 2.2, are chosen in

order to attenuate the vibration amplitudes without shifting the frequencies in a too

significant way. The considered harmonic excitation has the following form pd(t) =
p0 sin(2πt/T1) with 1/T1 = 200 Hz and p0 = 1000 Pa. Moreover, the transient

response of the acoustic pipe is computed using a direct time integration method.

0.5 m
ΓR

ΩF
ΓA

5 m

Absorbing wall

Μ
pd(t)

Figure 4. Straight pipe submitted to a pressure load at the left end

Figure 4 shows the frequency responses of the damped and undamped acoustic

pipe at the point M (2.5 m,0.4 m). This figure indicates that the damping significantly

reduced the first resonant peaks, with the largest reductions achieved after the excita-

tion (at 200 Hz). Moreover, it can be observed that the absorbing boundary caused a

small shift of the resonant frequencies. This is due to the spring effect of the Kelvin-

Voigt model used for the impedance.
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Figure 5. Pipe frequency responses to harmonic pressure in the damped and un-

damped cases



5. Conclusions

Finite element formulations of interior vibroacoustic coupled problems with ab-

sorbing interfaces have been presented in this work. The dissipative interface is mod-

eled by wall acoustic impedance in a limited frequency range. The used technique

is based on the prediction of the surface impedance parameters from a Biot-Allard

poroelastic model. This approach, combined with an original structural-acoustic finite

element formulation developed by the authors, is tested on an acoustic pipe example

with damping interface.
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