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Abstract: In this paper, we address the problem of exponential stability for a class of linear hyperbolic
systems with distributed sampled-data control. First, we recast the original system into a hybrid model
via an augmented system approach. Using this model, the link between the sampling interval, the system
state and its sampled vector is characterized by an Integral Quadratic Constraint (IQC). The obtained
IQC is used for deriving numerically tractable stability criteria. The method is illustrated by an open
loop unstable numerical example.
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1. INTRODUCTION

Many physical and chemical phenomena can be described
by partial differential equations (PDEs). These dynamics take
place in an infinite dimensional space, which makes it hard-
er to analyze than finite dimensional systems. This prompted
many scholars to study the control of PDEs (See Krstic and
Smyshlyaev (2008); Necas et al. (1996); Majda (2003)). In
practice, controllers are implemented numerically with algo-
rithms on computers. At present, it is a challenging research
topic to analyze infinite dimensional systems with sampled-data
controllers (Logemann (2013); Ke et al. (2009)). Here we study
the sampled-data controller for hyperbolic systems.

Typically, sampled-data control can be handled by discrete time
(Kao and Fujioka (2013)), time-delay (Fridman et al. (2004)),
Input/Output (Fujioka (2009)), and hybrid system (Postoyan
and Nesic (2011)) methods (see e.g., Hetel et al. (2017) for
a survey). For infinite dimensional systems, fewer results are
available. In Logemann and Mawby (2002), the sampled-data
low-gain control is studied for systems with input hysteresis.
(see also Logemann et al. (2003, 2005) for other sampled-data
control laws). For parabolic PDEs, the time-delay method has
been used in Selivanov and Fridman (2016, 2017); Fridman and
Blighovsky (2012); Kang and Fridman (2018) for systems with
distributed sampled-data control. Event-triggered control of hy-
perbolic PDEs was developed in Espitia et al. (2016, 2017b). In
Espitia et al. (2017a); Davó et al. (2018), the authors introduced
the backstepping approach to stabilize a class of event-triggered
hyperbolic systems. Compared with the existing paper address-
ing the boundary control case (Diagne et al. (2012); Safi et al.
(2017); Tang and Mazanti (2017)), few results addressing the
case of distributed sampled-data control for hyperbolic systems.
Recently, in our previous work (Wang et al. (2020b) and Wang
et al. (2020a)), based on the Lyapunov-Razumikhin method,
⋆ This work was partially supported by the French “Règion Hauts- de-France”
grant.

new stability conditions have been provided. The method there-
in allows to check local practical stability for hyperbolic PDEs
with distributed sampled-data control.

In summary, it can be seen for the literature survey that there
is a wide open research space for the analysis of sampled hy-
perbolic PDEs. In this paper, we proposed a new hybrid system
approach for the analysis of hyperbolic PDEs with distributed
sampled-data control. The idea of this paper is to use an aug-
mented state model with an impulsive form (see Haddad et al.
(2006); Naghshtabrizi et al. (2008)) for the finite dimensional
case in order to derive Integral Quadratic Constraints (IQCs)
(Megretski and Rantzer (1997)) which characterise the effect
of the sampling. Using the obtained IQCs, we derive numerical
criteria for analyzing stability. Compared with our previous
local practical stability conditions (Wang et al. (2020b)), this
work provides global exponential stability conditions in the
form of linear matrix inequalities (LMIs).

The structure of this paper is as follows. Section 2 re-models
the system to be studied into an augmented hybrid system
and states the purpose of our research. In Section 3, a useful
preliminary result is proposed in order to obtain an IQC char-
acteristic of the sampling effect. Next the main stability result is
proposed. A numerical example is shown in Section 4. Finally,
we summarize the paper with a conclusion.

Notations: N is a nonnegative integer from 0 to infinity, the set
of real numbers is denoted by R, R+ is the set of non-negative
reals, Rn is used to denote the set of n-dimensional Euclidean
space with the norm | · |. L2(0,L) stands for the Hilbert space of
square integrable scalar functions on (0,L) with the correspond-

ing norm ∥ · ∥, defined by ∥ ρ ∥ L2(0,L) =

√(∫ L
0 |ρ (x)|2dx

)
. The

set of functions ψ : [0,L] → Rn such that
∫ L

0 |ψ (x)|2dx < ∞ is
denoted by L2([0,L];Rn). The notation M ≼ 0 denotes that M



is a symmetric negative semidefinite matrix, and the symmetric
elements are denoted by ⋆. The identity matrix is denoted by I.

2. PROBLEM STATEMENT

We consider the following hyperbolic systems.
∂ty(t,x)+Λ∂xy(t,x)+ϒy(t,x)+u(t,x) = 0,
u(t,x) = Ky(tk,x) ,∀t ∈ [tk, tk+1),k ∈ N,
y(t,0) = y(t,L),∀t ≥ 0,
y(0,x) =y0(x),∀x ∈ [0,L] ,

(1a)
(1b)
(1c)
(1d)

where y : [0,+∞)× [0,L]→ Rn, Λ = diag{Λ+, Λ−},
Λ+ = diag{λ1, · · · ,λm}, Λ− = diag{λm+1, · · · ,λn} with λ1 >
· · ·λm > 0 > λm+1 > · · ·> λn, K and ϒ are real n×n constants
matrices.

The sampling sequence is defined as {tk}k∈N where
t0 = 0, tk+1 − tk ∈ (0, h̄]. (2)

and h̄ > 0. Let ŷ indicate a piecewise constant signal represent-
ing the latest state measurement of the plant available at the
controller, ŷ(t,x) = y(tk,x), for all t ∈ [tk, tk+1),k ∈ N. Using
the augmented system state η = [yT (t,x), ŷT (t,x)]T ∈ R2n,
we recast system (1) into an augmented hybrid model with the
following structure:

∂tη (t,x)+A∂xη (t,x)+Bη (t,x) = 0,
∀t ∈ (tk, tk+1),k ∈ N,
η (tk,x) =Cη

(
t−k ,x

)
, t = tk,k ∈ N,

η(t,0) = η(t,L),∀t ≥ 0,

η(0,x) = η0(x) = [y0 (x) y0 (x)]
T ,∀x ∈ [0,L] .

(3a)
(3b)
(3c)

(3d)

with A =

[
Λ 0n×n

0n×n 0n×n

]
, B =

[
ϒ K

0n×n 0n×n

]
, C =

[
In×n 0n×n
In×n 0n×n

]
,

η
(
t−k , ·

)
= limt↑tk η (t, ·).

As a result, the closed-loop system can be regarded as an aug-
mented impulsive system of the y(t,x)-variable and the y(tk,x)-
variable. In this article, we intend to find the exponential stabil-
ity criteria of the original system with the help of augmented
one.

3. STABILITY ANALYSIS

Before the statement of the main result, a technical lemma is
first given based on model (3) to characterize the link between
the system state y of system (1) and its sampled vector ŷ by an
IQC. The idea of Lemma 1 is to use a norm Φ depending on the
augmented system state and study its growth along the solution
of hybrid system (3) during one sampling interval [tk, tk+1).
Then we overbound the growth of exponential function with
maximum growth rate α . Next, stability conditions for system
(1) are derived using the obtained IQC.

3.1 IQC Condition

Lemma 1: Let α ∈ R and Θ ∈ R2n×2n a symmetric positive
matrix satisfying

2αΘ−BT Θ−ΘB ≼ 0. (4)
Then, the inequality∫ L

0
ηT (t,x)N(t − tk)η (t,x)dx ≥ 0, t ∈ [tk, tk+1),k ∈ N (5)

holds along the solutions η ∈ L2
(
[0,L] ; R2n

)
which is the

solution of (3), with N(h) defined for all h ∈ [0, h̄] as

N(h) = e−2αh
[

0n×n In×n
0n×n In×n

]T

Θ
[

0n×n In×n
0n×n In×n

]
−Θ. (6)

Proof: Let us consider the following functional Φ defined for
all η ∈ L2([0,L];R2n):

Φ(η) =
∫ L

0
ηT Θηdx, (7)

with η ∈ L2
(
[0,L] ; R2n

)
solution of (3).

Computing the time derivative of Φ along the solution to (3)

Φ̇(η) =
∫ L

0

(
ηt

T Θη +ηT Θηt
)
dx

=
∫ L

0

(
(−A∂xη −Bη)T Θη +ηT Θ(−A∂xη −Bη)

)
dx

=
∫ L

0
−∂x

[
ηT AΘη

]
dx+

∫ L

0

(
−ηT (BT Θ+ΘB

)
η)dx,

(8)
using the boundary condition (3c), we get

Φ̇(η) =
∫ L

0

(
ηT (−BT Θ−ΘB

)
η)dx. (9)

Since the condition (4) holds, then we have

Φ̇(η)+2αΦ(η) =
∫ L

0

(
ηT (2αΘ−BT Θ−ΘB

)
η)dx ≤ 0.

(10)

Then, according to the comparison lemma we have

Φ(η(t, ·))≤ e−2α(t−tk)Φ(η(tk, ·)),∀t ∈ [tk, tk+1),k ∈ N. (11)

The inequality (11) can be rewritten as:

e−2α(t−tk)Φ(η(tk, ·))−Φ(η(t, ·))

=
∫ L

0
ηT (t,x)N(t − tk)η (t,x)dx ≥ 0, (12)

with N(t − tk) defined in (6). �
Remark 1. The parameter α in the above lemma can be
negative. It represents an upper bound on the growth rate of the
function Φ (norm of the state η) between two sampling points.
This upper bound is shown in (11). The following example
provides a more intuitive explanation. The function Φ capture
the growth of the norm of η .

Example 1. Consider system (3) with

L = 1,A =

 1 0 0 0
⋆ −2 0 0
⋆ ⋆ 0 0
⋆ ⋆ ⋆ 0

 ,B =

−1.5 1 9 0
−3 2 7 6
0 0 0 0
0 0 0 0


y0 (x) =

[
2.5−1.5cos4πx
−0.8sin6πx−1

]
,

and a maximum sampling interval h̄ = 0.08. Condition (4) in
Lemma 1 is an LMI that can be used in order to characterize
the link between the system state and sampled version based on
the IQC (5). Using Lemma 1 with α = −5, we can derive an
IQC of the form (5) and (6) with (13) given below:

Θ = 10−2 ×

 46.89 −7.67 −52.57 6.07
⋆ 16.19 1.98 −16.54
⋆ ⋆ 97.66 2.63
⋆ ⋆ ⋆ 26.58

 . (13)



Fig. 1. Time-evolution of the norm Φ along the trajectory of
system (3) for the system describing Example 1 (green)
and its upper bound in each sampling interval (red).

The bounded growth performance of function Φ(η(t, ·)) and
the upper bound e−2α(t−tk)Φ(η(tk, ·)) as stated in (11) for all
sampling intervals [tk, tk+1),k ∈ N are shown in Fig. 1.

3.2 Main Stability Result

Next, the following theorem gives two LMIs allowing to check
the exponential stability of system (1).

Theorem 1: Consider the system (1)-(2). Assume that there
exist ε > 0,λ > 0, α ∈ R and symmetric positive matrices
Q ∈ Rn×n, Θ ∈ R2n×2n satisfying (4) in Lemma 1

2αΘ−BT Θ−ΘB ≼ 0,

and

M+ εN(0)≼ 0, M+ εN(h̄)≼ 0, (14)

with M defined as

M =

[
2λQ−ϒT Q−Qϒ −QK

⋆ 0n×n

]
, (15)

and N(h) defined for all h ∈ [0, h̄] as in (6):

N(h) = e−2αh
[

0n×n In×n
0n×n In×n

]T

Θ
[

0n×n In×n
0n×n In×n

]
−Θ.

Then system (1) is exponentially stable in L2−norm for any
sampling sequence satisfying (2), with a decay-rate larger than
λ .

Proof: We consider the original system (1) and choose a Lya-
punov function as

V (y) =
∫ L

0
yT Qydx. (16)

For simplicity, we use the notation y instead of y(t,x). For t ∈
[tk, tk+1),k∈N, the time derivative of V (y) along the trajectories
of (1) is

V̇ (y) =
∫ L

0

(
yt

T Qy+ yT Qyt
)
dx

=
∫ L

0

(
(−Λ∂xy−ϒy−Ky(tk, ·))T Qy

+ yT Q(−Λ∂xy−ϒy−Ky(tk, ·))
)

dx

=−
[
yT ΛQy

]L
0

+
∫ L

0

(
−yT (ϒT Q+Qϒ

)
y− yT (tk, ·)KT Qy

−yT QKy(tk, ·)
)

dx. (17)

Using the boundary condition (1c) and adding the term 2λV (y)
to both sides of (17), then, we have

V̇ (y)+2λV (y)

=
∫ L

0

(
yT (2λQ−ϒT Q−Qϒ

)
y (18)

−yT (tk, ·)KT Qy− yT QKy(tk, ·)
)

dx

=
∫ L

0
ηT Mηdx (19)

with M defined in (15) and η =
[
yT (t,x) ŷT (t,x)

]T , ∀t ∈
[tk, tk+1),k ∈ N.

Since condition (14) is linear in e−2αh and t − tk < h̄, by
using a convexity argument, we have M + εN(t − tk) ≼ 0, for
t ∈ [tk, tk+1),k ∈ N and tk+1 − tk ∈ (0, h̄]. Therefore, we get∫ L

0
ηT (M+ εN(t − tk))ηdx ≤ 0, (20)

recalling the condition (5)∫ L

0
ηT N(t − tk)ηdx ≥ 0.

Since condition (14) holds and the Integral S-procedure in the
appendix implies that if (20) and (5) are satisfied then we obtain∫ L

0
ηT Mηdx ≤ 0. (21)

In view of (18) and (21), we have
V̇ (y)+2λV (y)≤ 0 (22)

for ∀t ∈ [tk, tk+1),k ∈ N, which means that the following
inequality is obtained:

V (y(t, ·))≤ e−2λ tV (y0) ,

i.e. ∀t ∈ [tk, tk+1) ,k ∈ N, we have

∥ y(t, ·) ∥2
L2([0,L];Rn)≤

λmax (Q)

λmin (Q)
e−2λ t ∥y0∥2

L2([0,L];Rn) .

Hence, according to Proposition 1, we can conclude that the
system is exponentially stable. �
Remark 2. Theorem 1 provides a numerical method for check-
ing the stability of system (1). In order to ease the applicability
of the results, we now summarize each parameter in detail.
α is a scalar which is an upper bound of the growth rate of
functional Φ used in Lemma 1. λ is a positive scalar which is
an lower bound of the decay rate of V . ε is found by line search
to realize (14). With a fixed α , Θ,Q can be found by solving the
LMIs in (4) and (14) in Matlab using Yalmip Lofberg (2004).
An example illustrating the tuning of these different parameters
is given in section 4.

4. NUMERICAL EXAMPLE

Consider system (1) and (2) with



Fig. 2. Response of state y1 for the open-loop system.

Fig. 3. Response of state y2 for the open-loop system.

Fig. 4. Feasible region (blue area) and nonfeasible region (red
area) guaranteed by Theorem 1 with λ = 10−5, ε = 2.

L = 1, Λ =

[
1 0
0 −2

]
, ϒ =

[
−1.5 1
−3 2

]
,

y0 (x) =
[

2.5−1.5cos4πx
−0.8sin6πx−1

]
.

Figs. 2-3 demonstrate the time evolution of states y1 and y2 for
the open-loop system. It is seen that the open-loop system is

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

6
Feasible region
Nonfeasible region

Fig. 5. Feasible region (blue area) and nonfeasible region (red
area) guaranteed by Theorem 1 with α =−5, ε = 2.

Fig. 6. Response of state y1 for the closed-loop system.

Fig. 7. Response of state y2 for the closed-loop system.

unstable. Then, we consider the closed-loop system under the
sampled-data controller with

K =

[
9 0
7 6

]
.

Following Remark 2, Theorem 1 was tested for several values
of α and h̄. The results are illustrated in Fig. 4, where the
growth rate −α of Φ can be infinite, however, there is a min-
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Fig. 8. Time-evolution of function V.

imum value and as the growth rate −α decreases, h̄ increases.
This is consistent with Lemma 1. Fig. 5 illustrates that the
sampling interval h̄ decreases as the decay rate λ increases for
some constant parameters:

α =−5, ε = 2.
Such figure can be used in order to find a tradeoff between
system performance (in terms of decay rate) and robustness
to the sampled-data implementation (in terms of maximum
allowable sampling interval). In order to illustrate the response
of the state, we choose one point

h̄ = 0.08, λ = 2,
and Lyapunov function in Theorem 1 with

Q =

[
0.1291 −0.0277

⋆ 0.0447

]
,

which satisfy the conditions (4) and (14). The results for the
closed-loop system are presented in Figs. 6-8. Figs. 6-7 show
that the states converge to the origin with the controller. The
time-evolution of Lyapunov function V is shown in Fig. 8.

5. CONCLUSION

This paper focused on the distributed sampled-data control for
a class of hyperbolic systems using hybrid system approach.
The closed-loop system is first represented as an augmented
impulsive hybrid system. In addition, by means of the IQCs, we
prove the exponential stability of the system. In the future, we
will pay more attention to sampled-data control using space and
time discretization for different types of hyperbolic systems.
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Appendix A. A DEFINITION AND PROOF

Definition 1 (Integral S-procedure): According to the defini-
tion of S-procedure in Primbs and Nevistic (2000), the defini-
tion of Integral S-procedure is given as follows:

Let F and G be symmetric matrices. Assume that the strict
integral inequality ∫ L

0
yT (x)Gy(x)dx ≥ 0,

holds. Then the implication∫ L

0
yT (x)Fy(x)dx ≤ 0

holds if and only if there exists some nonnegative number ϖ
such that ∫ L

0
yT (x)(F +ϖG)y(x)dx ≤ 0.

Proposition 1 : Consider the systems (1)-(2) and a candidate
Lyapunov function V : L2 ([0,L] ; Rn) → R+ in Bastin and
Coron (2016) which is differentiable for all t ∈ [tk, tk+1),k ∈ N
w.r.t. its argument b ∈ L2 ([0,L] ; Rn) and there exist 0 < a1 <
a2, such that:

a1 ∥b∥2
L2([0,L];Rn) ≤V (b)≤ a2 ∥b∥2

L2([0,L];Rn) . (A.1)

Assume that along the trajectories of the system (1)-(2), the
corresponding solution y(t, ·) satisfies

V̇ (y(t, ·))+2λV (y(t, ·))≤ 0,∀t ∈ [tk, tk+1),k ∈ N (A.2)
for some λ > 0. Then the system is exponentially stable in
L2−norm with a decay-rate larger than λ , that is for any initial
condition y0 ∈ L2(0,L) for t ∈ [tk, tk+1),k ∈ N

∥y(t, ·)∥2
L2([0,L]; Rn) ≤

a2

a1
e−2λ t ∥y0∥2

L2([0,L]; Rn) . (A.3)

Proof: Consider the differentiable Lyapunov function V :
L2 ([0,L] ; Rn)→ R+ for which

V̇ (y(t, ·))+2λV (y(t, ·))≤ 0,∀t ∈ [tk, tk+1),k ∈ N (A.4)
for some λ > 0.

Applying the comparison lemma, we have

V (y(t, ·))≤ e−2λ (t−tk)V (y(tk, ·)),∀t ∈ [tk, tk+1),k ∈ N, (A.5)
then we can derive

V (y(tk, ·))≤ e−2λ (tk−tk−1)V (y(tk−1, ·)),∀k ∈ N\{0} , (A.6)
by recursion, the following inequality holds

V (y(tk, ·))≤e−2λ (tk−tk−1)e−2λ (tk−1−tk−2)V (y(tk−2, ·))
≤·· ·
≤e−2λ (tk−tk−1)e−2λ (tk−1−tk−2)

· · ·e−2λ (t1−t0)V (y(t0, ·)), (A.7)
Then instituting (A.7) into (A.5), we obtain

V (y(t, ·))≤e−2λ (t−tk)V (y(tk, ·))
≤e−2λ (t−tk)e−2λ (tk−tk−1)e−2λ (tk−1−tk−2) · · ·

e−2λ (t1−t0)V (y(t0, ·))
=e−2λ (t−t0)V (y(t0, ·))
=e−2λ tV (y0). (A.8)

Combining (A.1) and (A.8), we get

∥y(t, ·)∥2
L2([0,L];Rn) ≤

a2

a1
e−2λ t ∥y0∥2

L2([0,L];Rn) ,

∀t ∈ [tk, tk+1),k ∈ N.
This concludes the proof of Proposition 1. �


