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We discuss whether the bound nature of multiquark states in quark models could benefit from relativistic
effects on the kinetic energy operator. For mesons and baryons, relativistic corrections to the kinetic energy
lead to lower energies, and thus call for a retuning of the parameters of the model. For multiquark states, as
well as their respective thresholds, a comparison is made of the results obtained with nonrelativistic and
relativistic kinetic energy. It is found that the binding energy is lower in the relativistic case. In particular,
0Qggq tetraquarks with double heavy flavor become stable for a larger ratio of the heavy to light quark
masses; the all-heavy tetraquarks QQQQ that are not stable in standard nonrelativistic quark models
remain unstable when a relativistic form of kinetic energy is adopted.

DOI: 10.1103/PhysRevD.103.054020

I. INTRODUCTION

In a rather celebrated paper [1], Isgur and his collabo-
rators analyzed how to take out the “naive” and “non-
relativistic” out of the quark model. After this pioneering
work, there have been several other studies on how to
implement a minimal amount of relativity in the quark
model, e.g., [2-5].

We are aware that this is just a small part of the problem.
For instance, in the case of the positronium atom or ion,
there are many effects, very often canceling each other, and
the kinematics is just one of them. See, e.g., [6,7]. We
nevertheless deemed appropriate to examine the role of
relativistic kinematics in the quark model and to go beyond
the case of mesons and baryons. The main motivation is the
current interest about the stability of multiquark hadrons
and the delicate interplay between the energy of collective
configurations and their corresponding thresholds. This is
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precisely the aim of the present article: to study to which
extent the stability of tetraquarks is influenced by relativ-
istic kinematics. This implies that the mesons constituting
the threshold and the tetraquarks are estimated consistently
within the same framework, either nonrelativistic (NR) or
relativistic or, more precisely, semirelativistic (SR), to keep
in mind that we take into account only a fraction of the
relativistic effects. For a given potential, all hadron masses
tend to decrease if one adopts a relativistic form of the
kinetic energy. It will be shown that the mesons are more
affected than the tetraquarks, so that the binding energy
with respect to the lowest threshold becomes smaller for
bound tetraquarks.

For each hadron, we concentrate on its energy FE, so that
its mass is given by M = > m; + E, where the m; are the
constituent masses of its quarks. For the discussion about
the stability of tetraquarks, we have the same cumulated
constituent mass, Z m;, in the tetraquark and in the mesons
entering its threshold.

The paper is organized as follows. In Sec. II, we review
the formalism, focusing on how to estimate the matrix
elements in a variational calculation using a basis of
correlated Gaussians. Then, some applications are given
for ordinary hadrons in Sec. III, and for tetraquarks in
Sec. I'V. In particular, we discuss how the relativistic effects
influence the binding of doubly heavy tetraquarks with
respect to their dissociation into two flavored mesons and

Published by the American Physical Society
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how the fully heavy tetraquarks are affected by the choice
of kinematics. Some conclusions are drawn in Sec. V.

II. FORMALISM

Let us start with the one-body Hamiltonian in three
dimensions

Hy =K(p.m)+V(r). (1)
with K(p,m) being either Kyg =p?/(2m) or Kgg =

(p? + m*)'/? — m. The ground state is sought at variation-
ally using a trial wave function W(r) = Yoo (#)u(r)/r with

u(r) = Zy,-rexp(—a,-rz/Z) = Z}’iw(ah r). (2)

The computation involves the matrix elements of normali-
zation, potential and kinetic energy between two basis
functions w(a, r) and w(b, r), which are noted as

7
n(a, b) = W s

v(a,b) = n(a,b)gy(c),

k(a,b) = n(a,b)f (), (3)

where ¢ = (a+ b)/2 and ¢ = 2ab/(a + b) are suitable
averages. By straightforward calculation, one obtains
gy(c) =3/(2¢) for an harmonic potential, 2/+/cz for a

linear one, 2+/c/x for a Coulomb one, etc. As for the
kinetic energy, in the NR case, one gets fnr(C)=
3¢/(4m), while in the SR case it is

T T (s Y

where some care is required in the computation of the
Bessel function K, at least with some of the available
softwares.

The variational expansion (2) converges remarkably
well. For instance, for m =1 and V(r) = r, for which
the ground state energy is exactly the negative of the first
root of the Airy function, one can estimate

&, H = (H?) — (H)*, (5)

whose vanishing ensures that the Temple-Kato lower bound
coincides with the variational upper bound, as explained,
e.g., in [8]. For a single Gaussian (N = 1), one gets
0,H = 0.027, and for N = 6, 6, = 0.00002. It has been
checked that a similar convergence is obtained for other
potentials and/or kinetic-energy operators.

For a meson, in the center of mass, the NR Hamiltonian
is just (1) with m in Kyg(p, m) being the reduced mass.

For the SR Hamiltonian, one simply adds up Kgg(p, m;)
and Kggr(p,m,). Hence, the estimate of the energy and
wave function is rather similar to that of the one-body case.

For a baryon, in the center of mass, the Hamiltonian
reads

Hy =3 K(pm)+ 3 V(ry), (6)
i=1

i<j

where r;; = [r; —r;|, and ) p; = 0.

In the NR case, it is customary, but not compulsory, to
introduce Jacobi coordinates such that the total kinetic
energy operator becomes diagonal. For our purpose, it is
sufficient to introduce an universal set of variables in
momentum space

P=(p; +p> +P3)/\/§’
p.=(p2—p1)/V2,
p, = (2p3 —p1 —p2)/ V6. (7)

and their conjugate

R=(ri+r+r3)V3,
x=(r —rl)/\/i
y:(2r3—r1—r2)/\/6, (8)

so that the individual momenta p; are linear combination of
P, p, and p,, and the distances r;; linear combinations of x
and y. The most general spatial wave function correspond-
ing to an overall S-wave reads

Wx.y) =) riexp[—{x.y}b A {xpt] (9)

or, in abbreviated form, |y) = > y;|A;), where the sym-
metric, definite-positive, matrices A; contain the range
coefficients. As in the one-body case, the minimization
is reached in two steps: for a given set of A;, the coefficients
y; and the variational energy (V|H;|¥)/(¥|¥) are given by
an eigenvalue equation, and this energy is minimized by
varying the A;.

The matrix elements of interest are obtained by standard
techniques of Gaussian integration [9,10]. If a pair corre-
sponds to a separation r;; = ax + by = a.{x,y}', then the
matrix element of V(r;;) is

AIV(r)|B) = (AIB)gy(a,).  a,=1/aCal, (10)
where C = (A + B)/2.

Similarly, for the kinetic energy, if, say p; = up, +
vpy +wP =g -{p,.py} + wP, then

054020-2
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(AlK(pi.m)|B) = (A|B)f(a,).  a,=p-C-p. (11)
where 2C~! = A~! + B~1.

The extension to tetraquarks is straightforward. One can
introduce momenta such as

P = (p, +p>+p3+ps)/2,
Py = (P2 —Pl)/\/i,
py = (P4 —Pz)/\/i,

p.= (ps +ps—p1 —p2)/2, (12)
and the conjugate variables in position space, and express
the individual momenta and the relative distances in terms
of them. Then, Egs. (9)—(11) are easily extended from
dimension 2 x 2 to 3 x 3.

The convergence of the variational expansion (9) is
as good as for the one-body case. The Gaussian ex-
pansion method, indeed, is well documented, as discussed,
e.g., in a paper written by some of the best experts of few-
body physics, with benchmark calculations in various fields
of physics [11]. In the case of baryons (or multiquarks),
care should be taken that all degrees of freedom are
incorporated, and this is achieved if one introduces 2 x 2
(3 x 3 for tetraquarks) matrices which are not restricted
to a scalar or diagonal form. For instance, if a system of
three equal masses is described with an expansion
S yiexp(—a;(x*> +y*)/2), one will never account for
the possibility of internal orbital momenta ¢, = £, > 0.

Note that the formalism does not need to be modified to
handle unequal masses. On can still use the Jacobi coor-
dinates (7) and (12) in momentum space and their conjugates
in position space. Let us insist on that the center-of-mass
energy is exactly removed if one adopts a variational wave
function that is invariant under translations. For instance, in
atomic physics, many estimates of M e~ e~ ions are made in
a frame attached to the positive nucleus, and the corrections
are taken into account by the “mass-polarization” term. The
beautiful proof of the stability of the positronium molecule
by two pioneers of quantum physics [12] was achieved with
a trial wave function that depends only on some relative
separations r; — r;. Nevertheless, this proof was unjustly
criticized by arguing that the center of mass is not removed
beforehand in the Hamiltonian [13].

III. ORDINARY HADRONS
A. Mesons

As a first illustration, we compare in Fig. 1 the energy
calculated with a potential V(r) = r and constituent masses
(m, m). The energy scale is given by the string tension set to
o = 1.In the NR case, all energies are proportional to m'/3,
while in the SR case, they are recomputed for each m. Not

surprisingly, the SR energy is lower than the NR one. Indeed,

40-
35

r — NR
3.0 - — SR
25

20°

1_0;...1......|...w(...‘ lm
0 1 2 3 4 5 6

FIG. 1. Semirelativistic vs nonrelativistic ground-state energy
of a (m,m) meson bound by a potential V(r) = r. The energy
scale is fixed by the mass m and the string tension set to unity.

(13)

We now turn to the case of a pure Coulomb interaction. Both
NR and SR energies are proportional to m, so we set m = 1
and deal with the well-studied “Herbst” Hamiltonian

a
hsr (@) = \/P2+1—1—;,

and its NR analog with p?/2. As discussed in the literature
[4,14—17], the Herbst Hamiltonian becomes delicate when «
approaches 2/z. It is not our aim to enter the mathematical
subtleties of (14), but to stress that

(1) in the Coulomb regime, the relativistic effects are

governed by the strength of the attractive 1/7;
terms,

(i) when this strength increases, the convergence of the

variational expansion becomes more delicate.

In Fig. 2 is shown a comparison of the ground state of the
Herbst Hamiltonian (14) and its NR version.

Now for a realistic potential such as V(r) = —0.4/r +
0.27, where V is in GeV and r in GeV~!, the SR and NR
energies of (m,m) mesons significantly differ for light
quarks, say m < 1 GeV, and become close in the heavy
quark regime, say m ~ 3-5 GeV. But for very heavy

Ksr(p.m) < Kng(p.m).

(14)

E

-0.10

-0.20

-0.30 -

FIG. 2. Numerical evaluation of the ground state of the Herbst
Hamiltonian (14) vs the NR energy for a (m, m) system with
m = 2, bound by a Coulomb potential a/r. The energy scale is
fixed by the mass m.
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E
1.6
12- —NR
—SR
0.8 -
0.4
0 | | | | m
1 2 3 4 5
E

FIG. 3. SR vs NR ground state energy of (m,m) mesons in a
potential V(r) = —0.4/r + 0.2r, as a function of the mass of the
constituents. Energy in GeV.

constituents, the Coulomb interaction becomes dominant,
and the ratio of energies increases again. This is shown
in Fig. 3.

For all above potentials, the decrease of the meson
energy when going from the NR to SR case is accompanied
by a significant increase of the wave function at the origin,

¥(0) = u’(0)/+/4x. For instance for a binary system with
masses m; = m, = 1 bound by V(r) = r, one gets exactly
|'(0)|> = 1, while the SR analog is |u/(0)|*> ~ 1.8. For a
Coulomb interaction —g/r, the effect is even larger: the
ratio of the |u/(0)[? is nearly 3 for g = 1/2.

For quark models, this dramatic enhancement of the
short-range correlations implies a drastic retuning of the
spin-spin part of the interaction, whether or not it is treated
as first-order perturbation, or included nonperturbatively in
the model. For the latter option, an example is the ALI1
potential [18], according to which the interaction of a quark
of mass m; and an antiquark of mass m; is

2 _2/2
Vij(r):—5+ir—A+ ma exp( r/ro)o_” '
,

3mim;  ©3%r] S
2m;m; \ B
m) =A—1
m,=0315,  m, =183,  m,=5227,
A =0.8321, B = 0.2204, A = 1.6553,
x = 0.5069, a = 1.8609, A =0.1653.

(15)

TABLEI. Comparison of the SR and NR energies for a baryon
with masses m; and potential 3 r;;/2.

my my ns NR SR Diff(%)
1 1 1 3.863 3.522 9

1 4 4 2.985 2.800 6

1 4 8 2.860 2.671 7

1 10 10 2.644 2.454 7

1 10 15 2.591 2.398 7

1 10 20 2.561 2.366 7

1 20 30 2.430 2.222 8

1 30 40 2.353 2.149 8

10 30 40 1.419 1.413 0.5
20 30 40 1.272 1.270 0.2
30 30 40 1.207 1.206 0.1

It fits rather well the ground-state hadrons, and in particular
the spin multiplets of interest in the study of doubly
flavored tetraquarks, for instance m(D) = 1862 MeV
and m(D*) = 2016 MeV.

However, if one adopts the SR kinetic energy, this
potential does not describe reasonably well the quarkonia
nor the flavored mesons, as it leads to hyperfine splittings
that are much too large. Thus, for the SR calculations, we
used a modified version, hereafter referred to as ALIN,
which consists of

m. = m, = 2.007 GeV, A—-> A =135A. (16)

It gives m(D) = 1866 MeV and m(D*) = 2009 MeV.

B. Baryons

For symmetric baryons (m,m,m), the same pattern is
observed as for mesons. For instance, in a simple linear
potential ) r;;/2, the ground state is found at £ ~ 3.863 in
the NR case for m = 1, and is lowered to 3.522 in the SR
case. This corresponds to a decrease by about 9%, very
similar to the decrease by 8% observed for a two-body
system with masses m; = m, = 1 and bound by V(r) = r.

Other mass combinations have been studied, with the
results given in Table 1. There is a smooth transition from
the SR to the NR regime.

We now consider a doubly heavy baryon (M, M, m) with
m = 0.5 and M = 5 whose quarks are bound by a pairwise
interaction ) _ V(r;;)/2 and the same Coulomb-plus-linear
potential V(r) = —0.4/r + 0.2r as earlier for mesons. We
obtain E ~ 0.652 in the SR case, lower than the 0.780 in the
NR case.

If one adopts a naive diquark model, i.e., a two-step
method in which one first solves for QQ using the QQ
potential alone, and then for QQ-¢ using V(r) where r is
the distance from the light quark to the center of the

054020-4
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diquark,1 one obtains 0.746 in the NR case, while the SR
scheme gives 0.473. This means that the distortion induced
by the naive diquark model is seemingly amplified in
semirelativistic calculations.

IV. TETRAQUARKS

We now study tetraquarks, first in simple toy models,
and then in more realistic potentials AL1 and ALIN tuned
to reproduce the ordinary hadrons. We concentrate on two
types of mass distribution for QQgg: MMmm for which
binding is expected if the mass ratio is large enough, and
the “fully heavy” configurations, QQQQ, for which there
are somewhat conflicting predictions in the literature.

A. Doubly flavored tetraquarks

For QQggq, it has been known for decades that in a static
and flavor-independent potential, the system becomes
bound if the mass ratio M/m is large enough. Moreover,
in the case of QQiid with isospin I = 0, the binding is
favored by the chromomagnetic interaction. See, e.g., [19],
and the recent discussion about various dynamical
effects [20].

We start with a purely chromoelectric model, namely a
potential

3 4
= _62 l]’ (17)
<J

and utilize the usual notation T = 33 and M = 66 for the
color states in the gg-gg basis. The energy scale is fixed by
imposing a potential of unit strength for a quark-antiquark
pair forming a meson. In Fig. 4 we show the results fora T
configuration of color. The mass ratio M /m is varied with
M~" + m~! = 2 kept constant, so that the NR threshold is
fixed at E = 4.6762. It is clear that binding occurs at larger
mass ratio in the semirelativistic case. Note that at fixed
M~" 4+ m~!, the SR threshold depends slightly on M /m, as
shown in Figs. 4, 5 and 7. If the exercise is repeated with
larger masses M~' + m~! = 0.4, the NR threshold being
now at E = 2.7347, see Fig. 5, the critical mass ratios of the
SR and NR cases become closer, but still, stability occurs
for a smaller value of the mass ratio M/m in the NR case
than in the SR one.

We have checked that with T-M mixing, still with a
purely linear potential, the same pattern is observed.

We have repeated the study with a purely Coulombic
interaction, that would ideally describe a bound state of
very heavy quarks, provided that none of these quarks
decay weakly too fast. This corresponds to the Hamiltonian

'"To be more specific, the 2-body problem is solved with
masses M and M, and then with masses 2M and m, i.e., the
diquark mass is not renormalized.

L L L L

50 100 150 200

Mim

FIG.4. Comparison of the tetraquark energies with frozen color
T bound by the simple linear potential (17). The masses are such
that M~ +m~! = 2. The energy scale is fixed by the sum of
inverse masses and the string tension set to unity.

3 o g
= —62 v(r) === (18)

The study is restricted to a color T. The pattern is similar to
the one observed for a linear interaction, but the critical
mass ratio for tetraquark binding is significantly lowered.
For a weak coupling g = 0.1, see Fig. 6, the NR and SR
energies are very close, as expected. Their comparison is
just a check of the consistency of our computation scheme.
The results corresponding to a somewhat larger coupling
g=0.5 are shown in Fig. 7. The tetraquark energy is
moderately lowered by relativistic effects, much less than
the threshold energy. Hence the mass ratio required for
stability is higher, and when stability is reached, the
binding of the tetraquark is smaller.

We now do the calculation with the aforementioned AL1
model (15), including the mixing of the T and M color
components. The doubly heavy tetraquarks have been
already studied by several authors with this model
[21,22], with the good surprise that a tiny binding is
obtained for ccitd, and, of course, a more pronounced
binding for the heavier analogs where one or two ¢ quarks
are replaced by b. This is shown in Fig. 8: the curve labeled
ALI1-NR crosses the threshold th-NR before M = m,, if

E

29r
2.8¢
2.7

261

50 100 150 200

FIG. 5. Same as Fig. 4 but for V™' +m™! = 0.4.
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E

-0.002+~

-0.004 +

-0.006 -

-0.008 -

FIG. 6. Ground state energy for a QQg g tetraquark in a T-color
state with a pure Coulomb potential —0.1/r, compared to the
threshold energy, as a function of the quark to antiquark mass
ratio M/m, with M '4+mt=2 kept constant. For this weak
coupling, the NR and SR tetraquark and threshold energies are
almost identical. The energy scale is fixed by the sum of inverse
masses.

-0.05-

-0.10+

-0.15¢

-0.20+-

FIG. 7. NR and SR energies for a T-color QQg g tetraquark in
the limit of a pure Coulomb interaction —0.5/r, as a function of
the mass ratio M/m, with M~' + m~! = 2 kept constant. The
NR curves are just rescaled from Fig. 6. The energy scale is fixed
by the sum of inverse masses.

one fixes beforehand m = m,. Two remarks here are
in order:

(i) a value of the variational energy E > E,, simply
means that binding is not found. The lowest energy
of the 4-body Hamiltonian is E,;,. This is confirmed
by the observation that the color content of the

E
200 R e
O e i
5 6 7 8 9 10
200 = mm e e e cmmmeeoooo.
.
AL1-NR AL1-SR
------ th-NR  =-----th-SR
-600 -

FIG. 8. ALI potential. Tetraquark vs threshold for both NR and
SR forms of kinetic energy. Energies in MeV.

-100 ¢

-150+

-200

-250

ALIN===== th-AL1N

-300*~

FIG. 9. Modified AL1 potential. Energy of the lowest QQg g
state calculated with relativistic kinematics, vs the threshold
energy. Energies in MeV.

variational wave function tends to 1/3 Tand 2/3 M,
corresponding to a meson-meson decomposition.

(i1) the energy with a frozen M color wave function, not

shown, is higher than for T, except near M = m, as
discussed, e.g., in [20].

The SR analogs are also shown in Fig. 8, and the
tetraquark is bound for any value of M/m. This is due to an
unrealistic strength for the hyperfine component, which is
attractive for the itd pair, as discussed in (15).

Using the more realistic AL1N potential, we obtain the
pattern shown in Fig. 9 for the tetraquark vs its threshold. It
can be seen that once again, binding is obtained for a larger
value of the mass ratio M/m than in the NR case.

B. All-heavy tetraquarks

We now consider the case of tetraquarks with two heavy
quarks and two heavy antiquarks. There is a flurry of
calculations, in particular following the announcement by
LHCb of the peak in the J/w-J/y distribution, and its
interpretation as a cccc resonance. One of the questions
raised by the LHCb discovery is whether there exist bound
states of cccc or bbbb. Most of calculations are done in a
simplified scheme with a diquark and an antidiquark. As
shown elsewhere [20], this is not a good approximation to
the standard quark model,2 and hence we do not include the
corresponding papers in our discussion. Using a standard
(color-dependent, pairwise) potential and an expansion on
an harmonic-oscillator basis, Llyod and Vary [23] found a
bound cccc bound state, but their result was not confirmed
by other authors.’ In [20,24] and references therein, an
explanation is given on why in the chromoelectric limit
QQQ0Q is not bound, while the electric analog eTe*e~e™ is
stable against dissociation into two e™ e~ atoms.

2of course, if the diquark is introduced in the formulation of
the theory, we are not dealing with an approximation but with an
alternative model, subject to others pros and cons.
In our opinion, this is due to their use of an individual-particle
basis and a cumbersome subtraction of the center of mass energy.

054020-6
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For instance, if we adopt the above AL1 potential, the
lowest bbbb state is estimated at 18.872 GeV, above the
threshold 18.848 GeV, and this energy would decrease
toward this threshold if the variational expansion were
pushed further. The unbound character is reinforced by the
observation that the color content is nearly exactly 1/3 for
T and 2/3 for M, which corresponds to a singlet-singlet
content. The analog for SR form of kinetic energy is
18.792 GeV for the variational estimate, again with 33% T
and 67% M, above the threshold at 18.772 GeV. So the
relativistic form of kinetic energy does not rescue the

binding of 0QQ0Q.
V. OUTLOOK

Clearly, estimating the mass and properties of ordinary
and exotic hadrons requires sophisticated tools where long-
range and short-range aspects of the dynamics are well
accounted for. Simple models are nevertheless useful to
probe some mechanisms, provided these models are solved
carefully.

In this article, we revisited the effect of relativistic
kinematics in the quark model by studying how the results
are modified by replacing the NR form of kinetic operator

p*/(2m) by \/p* +m* —m. In the meson sector, most
relativistic effects can be absorbed by a tuning of the

parameters. Such change is illustrated in Eq. (16). The
readjustment of the constituent masses is not very dramatic,
and could be supplemented by minor changes of the static

potential. More important is the necessary modification of
the chromomagnetic term, because the relativistic correc-
tions influence the short-range correlations.

The same is true for baryons. The study becomes more
delicate for tetraquarks. For a given potential, both the
threshold energy and the multiquark energy are lowered by
the change of kinetic energy. It is observed that the effect is
more pronounced for the former, so that the binding energy
decreases. In particular, for QQgg configurations in a given
potential, the mass ratio M /m at which the system becomes
stable is larger for the semirelativistic models than for the
nonrelativistic ones. Besides, fully heavy tetraquarks
remain above threshold if relativistic kinematics is used.

In other words, the threshold “benefits” more from the
relativistic corrections than the collective configuration.
This is similar to what is observed for some symmetry
breakings. For instance, if one starts from a QQggq system
with masses {M, M, m, m}, and breaks the particle identity,
then one usually observes that the system {M, M’ , m,m'}
with M’ > M and m’ > m is less bound with respect to the
{M',m'} + {M,m} threshold than the more symmetric
system with respect to its threshold 2{M, m}.
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