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Abstract

For over a decade, most wind turbines have worked by adapting their rotation
speed to that of the wind. This operating method, now widely used, allows opti-
mal tip speed ratio to be achieved whatever the weather conditions, and in fact
produces much better output than stall controlled turbines, particularly in calm
weather conditions. However, this improvement means that monitoring systems
are required to adapt to constant macroscopic variations in load and speed. In
addition, these non-stationary operating conditions make it difficult to under-
take machine diagnostics over the long term, due to the fact that the operating
conditions in which successive indicators are obtained will almost never be the
same. The scientific community has, in many respects, proved the usefulness of
regression analysis of these indicators in relation to properly selected variables.
The focus of this paper is on regression methods based on machine learning
tools, which are becoming more and more popular. The difficulty lies in de-
signing a robust self-adaptive method for estimating the statistical behaviour
of an indicator in relation to operating conditions. Indeed, the concern is that
indicators may obey disparate and unpredictable multivariate laws: there are
many complications which make it difficult to use linear regression tools. Kernel
machines, used in this paper as a robust and efficient way of normalising indi-
cators, have proved to be capable of greatly improving a monitoring system’s
diagnostic capabilities. The demonstration is based on a practical example:
monitoring a bearing defect by analysing the instantaneous angular speed of
the wind turbine shaft line. As this defect can only be detected under certain
operating conditions a priori unknown the chosen example will be particularly
effective in highlighting the usefulness of such an approach.
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Nomenclature
CRPS Continuous ranked probability score
IAS Instantaneous angular speed
IRLS Tteratively reweighted least squares
LOOHKRR Leave one out heteroscedastic kernel ridge regression
PRESS Predicted residual error sum of squares
RBF Radial basis function
SVR Support vector regression
SVM Support vector machine

1. Introduction

Instantaneous Angular Speed (IAS) has turned out to be an original and
promising tool for monitoring rotating machines. To date, unlike traditional
vibration monitoring, there is not a great deal of feedback from those with
first-hand experience, and this tool is still largely confined to testing laborato-
ries. TAS obtained through the elapsed-time method has the advantage of being
angularly discretised by its very nature. Most cyclostationary phenomena are
therefore concentrated in a single frequency channel, regardless of variations in
the rotation speed of the mechanism being monitored. This makes it a particu-
larly appropriate tool for machines operating in non-stationary conditions, such
as wind turbines. Other specificities of this method, such as the quantification
error or the inevitable angle aliasing, are set out in detail in [1]. Certain pro-
cessing tools have been specially adapted for use with this method in order to
observe extremely low-energy cyclical phenomena under conditions with highly
variable speeds [2][3][4]. A mechanical model has also been developed which
provides a digital analysis of how the beginnings of a bearing defect can be
detected by an encoder on the other side of a shaft line [5].

However, one aspect which makes it difficult to monitor a rotating machine is
the simple fact that the sensors are activated not only by the components being
monitored. In most cases, measurements are disrupted by noise which drowns
out the indicator revealing the condition of the component being monitored.
Although the noise should remain constant as long as operating conditions re-
main stable, this is no longer the case as soon as there are variations in the
rotational speed of the machine being monitored. Macroscopic load variations
have an effect on the rotating machine’s modal response, and macroscopic vari-
ations in speed will alter the position of characteristic frequencies in relation to
the vibrational modes of the rotating machine.



Furthermore, it may not be possible to observe the defect under certain as
yet unknown operating conditions. For example, a bearing’s characteristic fre-
quencies are known to be dependent on the angle of the ball bearings’ contact
with the inner and outer rings of the bearing. This angle is notably depen-
dent upon the ratio between the axial and radial loads placing pressure on the
bearing. If one of the rings has the beginnings of a localised flaw, the ball bear-
ing will only roll over the imperfection if the contact angle allows it to do so.
The fault can therefore only be observed under certain operating conditions.
These operating conditions are a priori different from those causing the defect
characteristic frequencies to match the vibrational modes of the machine being
monitored.

The two previous paragraphs explain why simple order analysis alone cannot
solve the issue. Although an angular description of the signal does allow cyclical
phenomena to be contained within thin frequency intervals, it does not enable
one to differentiate between those changes in the amplitude of the indicator
which are linked to the development of a fault and those linked to a match with
a vibrational mode or, more generally, those linked to a match with a noise
whose statistical characteristics depend on operating conditions.

In structural health monitoring, a method using normalised parameters has
been used to reduce the effect of temperature on the modal behaviour of struc-
tures [6],[7]. In the more specialised area of rotating machine diagnostics,
Stander et al’s ground-breaking work uses a straightforward method for load
normalisation [8]. As this method can only be applied in cases where there is
strictly linear dependence between the indicator being monitored and the load,
it cannot be used more widely, and only provides a partial response to the issue
previously outlined. McBain and Timusk then continued with Worden et al’s
[9] work, by subdividing non-stationary signals into stationary sub-signals, then
categorising them into bins representing each operating condition [10]. Statis-
tical parameters means and variances are calculated for each subdivision so
that a statistical model can be assigned to each bin. Finally, these statistical
parameters can be interpolated in order to calculate their values for operating
conditions, without the need to use training data for every operating conditions.

This last paper tackles the core of the problem: the number of points needed
to build a model is directly influencing the computation cost along with the
time needed to gather enough training data. Especially in the domain of wind
turbine monitoring, where some operating conditions are rarely met. Another
solution has been proposed two decades ago, by Saunders et al, and does not
require to fill a priori defined bins[11]. Based on fundamental works of Vapnik
et al [12], they circumvented this limitation by introducing kernel functions into
ridge regression algorithms. The commonly named kernel trick approach takes
inspiration from methods based on the use of kernels, first developed to address
support vector machine (SVM) classification problems [13] [14].

Whilst the solution put forward in the present paper is influenced by this
research, the objective of the first section is to provide a summary of the entire
procedure. The second section present the measurement campaign and describe



in detail the influence model configuration parameters have on the efficiency of
the monitoring system.

2. Material and methods

The method set out in this paper has two objectives: firstly, to estimate the
statistical parameters of indicators in relation to operating conditions, and sec-
ondly to use these parameters to normalise the indicators. The first stage could
be described as regression: overall statistical behaviour is estimated from data
constituting a baseline. The second stage could be described as standardisa-
tion: the indicators are reduced in such a way as to follow a normal distribution
centred on 0 with unit standard deviation.

2.1. Machine learning

Since the advent of data science, which is increasingly attracting attention
from across the scientific community, machine learning protocol has been used
to address regression problems: in particular regarding our hopes of being able
to standardise monitoring indicators, which depends on building a model from
indicators obtained during a learning phase. The indicators obtained during
this period are compared with the preestablished model, and the only aspect
which is of interest from this point onwards is the discrepancy between them.
Of course, the learning phase is based on the assumption that the component
being monitored is in good working order. The goal is therefore first to estimate
a model to define Hj using a supervised learning approach, before testing future
data against Hy.

Machine Learning is used here to carry out regression analysis rather than
classification analysis. This analysis can be carried out using parametric meth-
ods such as polynomial coefficients, where hypotheses initially formulated about
the form of the model give access to a set of parameters which have yet to be
estimated. Non-parametric methods can be used instead in adverse conditions
where theories regarding the form of the model cannot be formulated. This
second group of methods is also more appropriate in cases where samples are
not uniformly distributed, and/or where the number of indicators needed to
estimate the model is too great.

The objective of non parametric regression is to estimate the function f de-
scribing at best the law followed by the monitored indicator, which is symbolized
by the random variable I :

I=f0(x)) = f(H(x), u(x),0(x)) (1)

0 is a vector containing all parameters describing the evolution of the observed
indicator I. This vector contains three parameters:

e H: the actual health status of the monitored element.

e ,i: the noise mean value



e o: the noise standard deviation

All of them depend on the vector x, whose coordinates describe every operating
conditions. x is defined in the operating condition space 2 , whose dimension
depends on the number of influential operating conditions. The dependency of
H illustrates the conditional visibility of the fault, which is not always excited
for all operating conditions. Under Hy, it has no influence over the indicator
value, which then is defined such that: I = f(u(x),o(x)).

The normalized indicator I(™) proposed in this paper is defined such that:

I(H(x)) = L= (2)

o(x)

2.2. Kernel machines

Of all the available algorithms for establishing a nonparametric regression
model, kernel machines appear to have the advantage of being both simple and
effective [15][16]. Kernel machines have primarily been used in regression prob-
lems [17], nevertheless adjusting them to ridge regression problems has allowed
the weaknesses in parametric models to be addressed without making the prob-
lems themselves significantly more complex. These tools effectively allow linear
models to be set up with non-linear input data. They can also work with sparse
estimation: the statistical parameters can be estimated using just enough com-
ponents to form a basis in the subspace in question, provided that the presumed
continuity has been verified.

2.2.1. continuity hypothesis
The respect of the continuity hypothesis is mandatory, and this constitutes
a clear limit to the application of the method put forward in this paper.

A first example is proposed to picture the problem: let’s consider a lift op-
erating either with a given weight or without any. The load is, in this case,
not defined continuously. Since the continuity hypothesis is not respected, the
method presented here cannot estimate the behaviour of the loaded lift using
the empty lift measurements. two different models must be built for the loaded
and the empty cases respectively using only the loaded and empty case mea-
surements.

The validity of the continuity hypothesis is now discussed in the case of
wind turbines. At first, some technical terms must be introduced: the nacelle
is the name of the frame carrying the gearbox and the generator studied in
section 3.1. The turbine rotor axe is parallel to the main axe of the nacelle
which consequently needs to track the wind direction. For this purpose, the
yaw system is the name of the geared bearings that ensures reliable and precise
tracking and following of the wind direction. This slewing bearing is indirectly



actuated by a wind vane to cope with the variations of wind direction. This
yaw motor activates intermittently and therefore is one of the systems invalidat-
ing the continuity hypothesis. This hypothesis is maintained as long as every
influential operating conditions vary in a continuous manner. Ancillary com-
ponents operating intermittently, such as the yaw motor, are expected to affect
the monitoring sensors and indicators. The method set out in this paper must
be combined with a multi-label classification algorithm, in order to produce
sub-models for all discontinuous operating conditions.

2.2.2. Non linear ridge regression

Assuming that the measurements respect the continuity hypothesis, each
indicator can be used to estimate the function f, under Hy, for any operating
conditions experienced by the machine. Of course, the influence of an indicator
obtained under similar operating conditions will be larger than if it was obtained
under completely different operating conditions. This weighting is operated by
the kernel, and gives access to a non linear estimation of the function f for any
operating conditions. The objective function minimized in constructing a kernel
ridge regression model is given by:

n

L(w,b) = Sallwl? + - 57 (5~ (w, 60x1)) — 0)° )
i=1

with x; the i*" indicator operating conditions, I; the indicator measured value,
~ the regularization term, w and b are the objective coefficients of the regres-
sion. ¢ is a black box function that carries the problem in a high dimensional
feature space: Z (¢ : & — %). This function is used to introduce the non
linear kernel function K : 2" - 2" — R | K(x4,%x;) = (#(x;), ¢(x;)) but is not
precisely developed. It suffices to know K rather than ¢ explicitly which allows
us to restate the support vector optimization problem. Kernel functions repre-
sent dot products in a feature space, which allows the algorithms to be used in
a feature space without having to carry out computations within that space.

By introducing Lagrange multipliers «, the output of the least-square sup-
port vector machine is then given by the kernel expansion:

fx) = ZO@K(X’Xi) +b (4)

2.2.8. Gaussian RBF kernel

The choice of kernel function is very important and different kernel leads
to different Support Vector Regression (SVR) algorithm. Commonly used ker-
nel functions include the linear kernel, the polynomial kernel, the radial basis
function (RBF) and the sigmoid kernel function. The gaussian RBF kernel is



commonly used because it has fewer parameters and is applicable in many sit-
uations, no matter how small and high dimensions samples. The gaussian RBF
kernel is defined as [18]

X; — X5 2
K ) = exp (-1 12) 6

At this stage, the problem is aiming at determining «, b, A and ~; that is to say
dim(x) + 3 parameters.

2.3. Heteroscedasticity issue

Homoscedasticity refers to the circumstance in which the variability of a first
variable is equal across values of a second variable that predicts it. Heteroscedas-
ticity refers, on the contrary, to the circumstance in which the variability of a
dependent variable is unequal across the range of values of the independent
variable that predicts it.

With the kernel ridge regression method, statistical parameters such as the
mean can be estimated for one operating condition using points obtained with
different operating conditions. The further away the points used are, the more
difference there will be between the statistical laws they obey and those fol-
lowed by the points being investigated, which is not an issue provided that the
variance remains the same. If one zone shows higher variance than the zones
around it, the points contained within it will be overestimated and will carry
more statistical weight when estimating the mean of the surrounding zones.
The aforementioned algorithm may therefore only be applied if the distribution
variance is not dependent on operating conditions, which at first glance seems
unlikely. This issue is tackled through the introduction of a zero mean gaussian
error whose variance depends on the operating condition [19]. The minimized
objective function therefore becomes:

L(wt. b Ub"'—l/i w2 10’ o2 ln 1 ) (lu(xl)i‘[l)Q

(wh, 0%, w,67) = S llwh 4507 w7124 2 D log (o) + =5
i=1 o

(6)

where v* and 7 are regularization parameters, and where:

wh =370 o ¢ (xi)

w7 = E?:l a7 97 (x;) (7)
p(x) = 32, o K(x, %) + b

logo(x) =>" , a? K7(x,x;) + b7

At this stage, the problem is aiming at determining a*,a, b*, b7, \¥ A7, yH
and ~7; that is to say (2 - dim(x) + 6) parameters.

A robust way of estimating the parameters of conditional means and conditional
variances is the Iteratively Reweighted Least Squares (IRLS) method [20]. The
quality of the mean and variance models is quantified using criteria that are
adapted to each specific case. The IRLS method is based on two alternative



criteria: the Predicted Residual Error Sum of Squares (PRESS) criterion when
estimating the mean model, and the CRPS criterion when evaluating the vari-
ance model [21].

PRESS = S, (I; — u(xy))?

CRPS = o(x;)- (If") : (2@ (If")) _ 1) 42 (1§”>) N #) (8)

With Ii(") = %x(’)“) and where ® and ¢ represent the standard gaussian prob-
ability density and cumulative distribution functions, respectively. Amongst
the many indicators of the variability estimation quality, the CPRS criterion
shows the benefit to penalize prediction which are located too far away from
the training data [22].

2.4. Model hyper parameter selection

Blind regression induces the danger that the model over-fits reality: the pre-
diction could correspond too closely to a particular set of data, and therefore
runs the risk of moving towards a model which, rather than describing the statis-
tical law generated by the learning base, describes the specificities of that base.
Overfitting must therefore be limited if useless reproduction of the vagaries of
one particular case is to be avoided. Regulating the model in this way through
the use of hyperparameters produces smoother models. The hyperparameters
are also subject to an iterative method, all of which leads to an optimal solution.
Various cross-validation diagrams allow a model’s capacity for generalisation to
be quantified. Each diagram offers a different way of partitioning the learning
data in order to assess how appropriate it is to apply a model based on indepen-
dent data. Cawley et al demonstrated that the best results were achieved by
using leave-one-out cross-validation of an SVM, which produces the best ratio
between the quality of the optimisation and the computational cost. [23]. Leave
One Out Heteroscedastic Kernel Ridge Regression (LOOHKRR) is therefore the
model used in the method outlined below.

The optimization function is realized with the matlab function fminsearch,
which uses the Nelder-Mead simplex algorithm as described in Lagarias et al.
[24] [25]. This algorithm uses a simplex of n + 1 points for n-dimensional vec-
tors x. The algorithm first makes a simplex around the initial guess xqo by
adding 5% of each component x¢(7) to xg. The algorithm uses these n vectors
as elements of the simplex in addition to zg. Then, the algorithm modifies the
simplex repeatedly according to an iterative procedure minimizing the objec-
tive function, which either is the PRESS or the CPRS criterion. The Matlab
function is only improved to deal with the constraint imposing positive criterion.

The overall normalization algorithm is resumed here under:

1. Rescale x to avoid ill conditioned problem.
2. Define the initial condition:

)\“[0’0] _ )\0[070] _ mam(x)/\—omzn(x)

~¥[0,0] =~7[0,0] =1



3. Main loop: iterate on M[i, 7], v*[i, 4], A7 [i, 7] and v7[¢, j] for i = 0...N — 1
(a) First sub loop: iterate on A\[i, j] and y*[i, j] for j = 0..M —1,
i. Assuming: \“[i, j], 7"[2 J1,A%[4, 0], v7[i, 0]
ii. optimize a*, b*, a® and b’ using LOOHKRR (through P iter-
ations).
iii. optimize AX[i,j + 1] and v*[i, j 4+ 1] using PRESS criterion
(b) after M steps of the previous subloop, define:
NJi+1,0] = \e[i, M]
i+ 1,0] = [z, M]
(c) Second sub loop: iterate on A?[i, j] and v7[i, j] for j = 0..M — 1,
i. Assuming: A[i + 1,0], v*[¢ + 1,0],A\7[¢, 5], v [4, ]
ii. optimize a*, b*, @ and b” using LOOHKRR (through P iter-
ations).
ili. optimize A?[j + 1] and ?[j + 1] using CRPS criterion,
(d) after M steps of the previous subloop, define:
Aol + 1,0] = Ag[i, M]
70[1. + 1,0] = ’Yg[i7M}.
4. After N steps of the main loop, define the final estimation of the SVR:
AN ot a b* and b
5. Estimate u(x) and o(x) using Eq.7.
6. Normalise the indicator using Eq. 2 after having unscaled x.

3. Experimental validation

The approach set out in this paper is a combination of various tools which
have already been used successfully in various fields. Whether or not this ap-
proach is of interest to those working in rotating machine monitoring remains to
be seen. This paper sets out one possible application where automatic detection
of a bearing defect would not be possible without using this method. The first
step must therefore be to describe the practical example, which is based on spec-
tral analysis of Instantaneous Angular Speed, an alternative to the traditional
vibration monitoring method.

3.1. Experiment presentation

The wind turbine monitored in this paper is an onshore machine with an
80m diameter rotor, delivering 2MW of nominal power. The low-speed shaft
connects the hub blades to the gearbox, which reduces the torque by a factor of
100. The high-speed shaft connects the gearbox to the generator via a flexible
fuse coupling. Using this coupling means that problems relating to misalign-
ment and the radial load on the generator bearings can be kept to a minimum.
Figure 1 shows the shaft line of the wind turbine which was analysed. The defect
analysed in this case was in one of the generator’s two bearings. A peculiarity
of this machine is that the generator’s two bearings are identical: the same ring
geometry, the same number of rolling elements, and therefore the same charac-
teristic frequencies. The characteristic frequencies of these deep groove bearings



depend on the contact angle between the rolling element and the internal and
external rings. The contact angle depends on the ratio between the axial and
radial loads. As the shaft is tilted to 5, these two loads are partly connected to
the weight of the shaft itself. They are also liable to take on torsion torque via
the coupling of the helical gears on the gearbox output shaft. The relationship
between the axial and radial loads is not necessarily the same for all speed and
load conditions, and this may lead to two eventualities: firstly, the characteristic
frequency will change from one load condition to another; secondly, the rolling
elements can only make contact with the defect under certain load conditions.
The operator of the wind farm shared a database containing 400 measurements
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Figure 1: Kinematic Scheme of the wind turbine set-up.

from turbines without defects and 600 measurements where the probable defect
emerged at an unknown time. The measurement campaign analysed here com-
prises signals detected via the elapsed-time method, using an optical encoder
with a resolution of 2048 pulses per revolution, via a 120MHz high-frequency
clock. Signals length is 3-10° points. The measurements from turbines without
defects were used to provide learning data, as though they had been taken when
the monitoring system was put in place. The unknown measurements are con-
sidered to be those taken after the learning period. In fact, the measurements
from turbines with no defects were taken in another time period, once the faulty
bearing had been replaced.

3.2. Results

The scalar indicators used in this paper to build the SVR model are ex-
tracted from the spectral observation of the TAS signal, as explained in [2]: the
mean value of the whitened spectrum between the null frequency and the 10*?
harmonic of the bearing characteristic outer cyclic frequency. These indicators
are dotted in black on Fig 2 at abscissae corresponding to the average speed of
their respective measurements.

The regression law p(x) is drawn as a continuous blue curve, while its standard
deviation o(x) is drawn in dashed red above and under it. Both of these sta-
tistical parameters have been obtained using the algorithm presented in part
2.4, and whose optimization parameters are defined such as: \g = 10, M = 4,
N =10, P = 10. The influence of these parameters on the SVR quality will be

10



discussed later on.

The left plot shows the unsteady variability of the indicator: low speed measure-
ments give relatively weak and stable indicators while high speed measurements
give relatively great and variable indicators.

The green points plotted on Fig. 2 right plots show the indicator amplitudes
obtained in January, just before the defective bearing removal. Top figure shows
that in the presence of defect, low speed measurement give higher level indica-
tors while indicators obtained under high speed measurement are not moved.
Top right and bottom right plots shows the same measurements presented ei-
ther in raw or normalized format. The bottom plot presents the normalized
indicators obtained using Eq. 2. The value of 40 means that the indicator is
400 (x) away from its mean value for such an operating condition x, assuming
that the bearing is healthy. As a consequence of the previous observation, this
great scattering is only obtained for low speed measurements.

Although this specific result cannot be generalized since it only corresponds
to this machine, this defect and this indicator; this case enlightens the normali-
sation process proposed in this paper: low speed measurements being here more
precise, they are more sensible to a slight evolution of the bearing health sta-
tus. Moreover, since the raw amplitude of the indicator obtained under H; are
lower than those obtained under Hy, a threshold on the raw indicator cannot
differentiate Hy from Hj.
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Figure 2: Left: mean and variance regression law for a bearing indicator observed under
different speed conditions, under Hy: healthy case.

Right: raw indicators (on top) and normalized indicators (on bottom) against their respective
acquisition date.

Fig 3 plots every indicator obtained from the 600 undetermined measure-
ments against their acquisition date. On left, the ordinates represent the exact
amplitude of the indicator. This amplitude can be seen as the multiplication of
the defect harmonic amplitude by the transfer function between the fault and
the sensor, which is completely unknown. As a consequence, it is hard to grasp
any evolution on the left plot.

On right, ordinates present the normalized indicator level. Moving average,

11
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Figure 3: Raw indicators (on left) and normalized indicators (on right) against their respective
acquisition date. red lines are moving average.

plotted in red for both chart, takes 20 points into account. The raw indicator
average (left plot) is weakly increasing while the normalized indicator goes from
0 to almost 10. As one could expect, indicator normalization appears as an
efficient tool to automate condition monitoring: a threshold can now easily be
tuned to differentiate Hy from Hj.

3.8. Discussion

The paper is not focused on determining the most efficient indicator in term
of early detection, but is rather focused on underlining the optimization of any
indicator once it is normalized. Although the indicator chosen in this paper does
not differentiate Hy from H; as plainly as many other could, it was chosen since
its improvement through normalization appeared plainly necessary to advocate
for the presence of a defect.

The left plot presented on Figure 2 shows that this raw indicator does not
follow a univariate gaussian law, but a multivariate law which is perfectly fit
for this normalization. This specific indicator presents higher values around
1500rpm and its distribution is spreading out for higher speeds, but other in-
dicators might behave completely differently: in any cases, the kernel ridge
regression proposed in this paper does not require any assumption regarding
the shapes of the local mean value and variance except two: they must be de-
scribable by continuous functions and the indicator noise needs to be gaussian.
An indicator that is affected by a x? noise would not be modified as it should
by the normalization, although this indicator is independent from the operating
conditions.

12



The SVR approach proposed in this paper relies on several parameters that
need to be tuned beforehand. This limitation is even more problematic if some
awkward parameter tuning lead to a wrong diagnostic: a miss or false alarm.
Figures 4 and 5 aim to moderate that risk.

The attention is first drawn on the five plots in figure 4, where A is set
equal to 10, which means that each gaussian kernel is wide as one tenth of the
operating condition entire span (see Eq. 5). In this case, measurement mean
speed lays within [1000 — 1800] rpm, and Ao = 10 = A¥[0, 0] = 80rpm, which is
consistent with the expected shape of the aimed model along with the number
of indicator used to estimate it. As a consequence, every time series but the
last one presents similar result: only P needs to be kept equal to 10 for the
regression to be efficient. P is the number of iteration used in the LOOHKRR
to estimate a*,a”,b* and b?. The four right plots show the influence of each
step of the PRESS and CRPS sub loop on the hyper parameter values. As a
reminder, PRESS sub loop only influence \* and v* while CRPS sub loop only
influence A% and «“?. These plot shows the first subloop is already able to reach
a stable estimation of \*. This implies this hyper parameter is mainly influenc-
ing the regression quality, and that the M, N, P values should not considered as
a source of error when )\ is correctly initialised.

In the five plots of figure 5, Ag is intentionally set to 1000, which is obvi-
ously too high: every kernel will hardly find more than one training data to
estimate a regressed value. As a consequence, the time series present various
shape depending on the number of iteration performed by the algorithm. Only
M = P = N = 10 presents results similar to the case where \g = 10. The
four right plots shows the number of steps needed by the algorithm to converge
towards a stable estimation of A* and A?. For that matter, Fig. 6 shows the
functions p(x) + o(x) estimated after M = 5 and after M = 8. These plots
underline both the importance and the difficulty of correctly estimating p(x).

One should finally mention that although only speed was taken into account,
there is no strong limitations to adding other operating conditions with the SVR
technique, except computation time. The computation is not expected to be
run in a real-time approach but only once per indicator. The results will then
be instantaneously reused to normalize each new indicator.

4. Conclusion

In the wide domain of machine monitoring, although scalar indicators ex-
tracted from TAS as well as vibration signals are both numerous and unique,
they all are subject to noise. Although the noise should remain constant as
long as operating conditions remain stable, this is no longer the case as soon
as there are variations in the rotational speed or macroscopic load variations of
the machine being monitored. The method set out in this paper has two ob-
jectives: firstly, to estimate the statistical parameters of indicators in relation
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after the 5t step (top) and the 8t step (bottom).

to operating conditions, and secondly to use these parameters to normalise the
indicators. The first stage could be described as regression: overall statistical
behaviour is estimated from data constituting a baseline. The second stage
could be described as standardisation: the indicators are reduced in such a way
as to follow a normal distribution centred on 0 with unit standard deviation.
This paper aims at providing a summary of the entire procedure and to describe
in detail the influence model configuration parameters have on the efficiency of
the monitoring system. The approach set out in this paper is a combination of
various tools which have already been used successfully in other fields. Whether
or not this approach is of interest to those working in rotating machine moni-
toring remains to be seen. This paper sets out one possible application where
automatic detection of a bearing defect would not be possible without using this
method. However, this approach relies on the hypothesis that the healthy state
indicators follow a gaussian law. Therefore, this approach could be improved
through an adaptation of its process to other statistical behaviour.
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