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Abstract: A quasistatic unilateral contact problem with a non-local friction law is considered. We
propose a new variational formulation of this problem consisting of two inequalities. By applying an
implicit time discretization scheme, we obtain an incremental formulation which, if the friction
coefficient is sufficiently small, has a unique solution for which appropriate estimations are obtained.
This incremental solution enables us to construct a solution to the quasistatic problem by establishing
the weak convergence of a subsequence of mappings interpolating the incremental solution. An
algorithm is derived and a simple numerical example is presented. )

1. INTRODUCTION

We consider a quasistatic unilateral contact problem with a non-local Coulomb friction law
[1,2]. For such evolutive problems the main difficulty that arises in establishing the variational
formulation of the quasistatic problem is the simultaneous presence of the displacement field,
which appears in the unilateral contact condition, and of the velocity field which appears in the
friction law. Most of the theoretical results on friction concern static contact problems.

For quasistatic problems, results have been obtained by using a regularization of the
unilateral and friction conditions. Friction conditions based on the normal compliance model
(see [3,4]) have been studied by Klarbring er al. [5,6) for incremental formulations of
quasistatic problems and by Martins and Oden [7] for dynamic problems. The existence of a
solution for quasistatic contact problems with a normal compliance law was proved by
Andersson [8], using an implicit scheme, and in the presence of a time regularization, by
Klarbring er al. [9], by a different technique.

Here both unilateral and friction conditions are strictly imposed and we do not use either
penalization or normal compliance. We present in Section 2 a new variational formulation that
combines two inequalities: an inequality which represents the unilateral contact condition
and an inequality which describes the friction condition under a differential form with the
velocity field as test function. The functional background and notations are also given in this
section.

A time discretization is adopted in Section 3. We prove that if the friction coefficient is
sufficiently small then the equivalent incremental formulation we have derived from this
discretization has a unique solution. Appropriate estimations for this solution are then
obtained.

Section 4 contains the proof of the existence of a quasistatic solution. Using the incremental
solution obtained in Section 3 we construct a sequence of piecewise constant mappings defined
on the time interval considered. A set of technical lemmas enables us to establish in the first
place that some subsequence of the above sequence has a weak limit and then to conclude by
showing that this weak limit is a quasistatic solution.



Finally in Section 5 an algorithm for computing the incremental solutions is presented and a
simple numerical example is given.

2. QUASISTATIC FORMULATION

2.1 The quasistatic unilateral problem with friction

We consider an evolutive Signorini problem with non-local Coulomb friction. We deal with
an clastic body occupying a domain Q of RY, d =2, 3, with a sufficiently regular boundary
I=T,uUl,Url; The displacements are prescribed on It and mes(I';)) >0. An evolutive
force density o, is applied on I',. The solid is initially in contact with a rigid fixed support on I's,
the evolution of the deformations on this part of the boundary is restricted by a unilateral
condition of non-penetration into the support and submitted to friction forces when contact
occurs. The possibility of an initial gap a will be introduced in the computations; from a
theoretical point of view this introduces no further difficulty as long as a is supposed sufficiently
small to be of the same order as the deformation u as the present formulation is set under a
small deformation formulation. On Q a volume force density ¢, is applied.

The given forces ¢, and ¢, are sufficiently smooth in space and time, ie. ¢ €
W'2(0, T; (L2())") and ¢, e W0, T: (L%(T,))"), and we suppose that we may neglect the
inertia effect involving the acceleration terms.

We denote by @ = (o;) the stress tensor, e = (e;) the strain tensor, u = () the displacement
field, & the contact density forces on I'y, and E the elasticity tensor of the material with the
usual properties of ellipticity and symmetry. On I'; we use the following notations for the
normal and tangential components of the displacement vector and stress vector:

o = onn + O, u=uyn+ oy
“N :H,-H,-. “|:“_u3qn
TN = OyH;, Cr=0-"n— oy,

where n = (n;) is the outward normal unit vector to .

The problem can be set now by considering the equilibrium equations where & is the
unknown contact force, the constitutive equation (elasticity), the kinematic relation (under the
small deformations hypothesis), the unilateral conditions and the Coulomb friction law.

ProBLEM £.
Find u such that for all ¢ € [0, T)

dive=—¢ in Q (2.1)
o=Eein Q (2.2)
e =gradu in (2.3)
with the initial condition

u(0) =u, in (2.4)

and with the following boundary conditions for all t € [0, T']
u=0onT, : (2.5)
a'n=¢g onl, (2.6}
g'n=donl; (2.7)
un=0, on=0, unon=0o0nTl}; (2.8)

if loy| <pt [Ron|Zar =00n I}

=
|ov|= p [Rowl - and {it‘ oy = 12 [Roy|>3A=0 ity = — Aoy on T

(2.9)



where u is the friction coefficient and Roy is a regularization of the normal contact force
[10-12].

The notation |-| denotes the absolute value when applied to a scalar and the euclidian norm
when applied to an element of R,

2.2 Varniational formulation

We shall adopt the following notations:

V ={v e (H'(Q))"; v =0 almost everywhere on I' },
W=Ww"0,T:V),
K ={v e V; vy =0 almost everywhere on I';},

||| shall denote the norm on V and (-, -} the scalar product on (H'(Q))",
|-|tw shall denote the norm on W and ((-,-)) the scalar product on L*0, T; V) (see, e.g.

[13]),
(-, -) shall denote the duality pairing on H'*(T's) x H™"4(Ty),

where
H'"([y) = {wir; we H(I),w=0onT}.

Throughout this paper we consider only the Lebesgue measure. We shall therefore omit the
integration variable whenever there is no ambiguity (for example we shall set [ f for
Ja fx)d).

Before giving a variational formulation of problem P, let us state in which sense the duality
pairing (-, *) is taken.

It is well known (see e.g. [4]) that if o e (L*(Q))* and diveo e (L))" in the sense of
distributions then o - n belongs to [(H'*(I')']" and the following generalized Green’s formula
holds:

for all ¢ & (H'*()Y', o 0,91 = [ - e@) + | (@iva)de

where @ e [H'()]? and @ = ¥ a.e. on I and ((', -)) denotes the duality pairing on
[(H"HI) ) % (H"(T)".

Now if o + n belongs to (L(I's))" in the sense of distributions, i.e. 3g e (L%(T';))? such that

(@ n.e)=| g Ve e (i),
we define oy as follows:

for all w in H'?([3), {on, w) = ((v'n,ﬁ}}‘[ gw,
I

where
we(H"” () andw=0onT,, Wy=0o0nTs wy=won I},
It is easy to verify that this definition does not depend on the choice of w having the above

properties.
Now we have the following weak formulation of equation (2.1) using a test function v



(homogeneous to a velocity) in V. Supposing u is sufficiently regular with regard to the space
variable, Green's formula holds, so that for all ¢ € [0, T| and for all v € V

a(u(t), v—ma(s)) - _[.{r ~n{v —a(r)) - L(p.(\f -a(r)=0 (2.10)
with

a(u, v) = L o (u)e(v).

We shall omit from now on the variable ¢ in order to simplify the notations.
Using relations (2.5) and (2.6) and the boundary conditions on the various parts of T":

awv =)~ [ o) | i) - f Oy — i) — f or(vr— i) =0, (211)

A variational formulation, equivalent to (2.9), of the Coulomb law is given by the following
inequality (see [14]):
VveV j(u,v)—j[u,il}+J; o(vy =) =20 (2.12)
with .‘
ju,v)= fn p [Row(u)f [vrl. (2.13)

Then (2.11) and (2.12) yield the following implicit variational inequality:

VeV a(my—i)— (6v-i)+j(ny) - () - [ () (U — in) =0

with

f,v)= L(pw + J; @av.

Concerning the unilateral condition (2.8) the following weak formulation can be given (if the
solution is sufficiently regular):

Vze K, | onu)(zy - un)=0. (2.14)

I
We suppose that p = L*(I';) and @ =0 almost everywhere on T, that

R:H ™ '"(T';)— L*(T’5) is a compact linear operator, and that the initial condition u, belongs to
K and satisfies the following compatibility condition:

a(ug, w — ) + j(ug, W —up) = (f(0), w — ) YweKk (2.15)
We shall adopt the following weak formulation of problem P,.

PrROBLEM P,.
Find w e W'(0, T: V) such that u(0) = u, and for almost all t € |0, T), u(r) € K and

a(u(r), v —(r)) + j(u(e), v) = j(u(r), a(r)) = (£(1), v — (1) + (on(u(t)), v —in(t)) VeV,
(2.16)
(on(u(r)), 2y —un(N=0 Vzek. (2.17)

If the solution u of problem £, is sufficiently regular, u shall also be a solution of problem P,
because:



—Equations (2.1)-(2.3) are easily obtained by choosing v =u+¢ on Q with ¢ e (C5(2)*
then equation (2.6) is obtained by setting v=u+yson I'; with e Vand v=i on I's.

—Inequality (2.12) then holds which establishes the friction relations (2.9).

—_The choice of u in K ensures the unilateral condition uy =0 and by choosing zy =0 and
Zn = 2uy in inequality (2.14) we obtain:

j Tl = U. (2.18)
Iy

It follows that [, onzy=0 Vz e K which implies ox =0 and finally, using equation (2.18),
that relation (2.8) holds.

REMARK 2.1.

It is interesting to note that we have {oy(u(t)), tin(1)) = 0 for any element u such that, for
all £ € [0, T], u(r) belongs to K and satisfies inequality (2.17). This is obtained simply by using
the fact that

HN(I + af} - uN(f])E O

(o), -

and

MN(I - At) — HN(I))ED

<UN(“{f))s At

for all Ar >0 and sufficiently small and for all ¢ belonging to ]0, 7.

REMARK 2.2,
We shall not consider the mapping j(-, ) defined as in equation (2.13) but we shall define
j(, *) by:
jlu,v)=| p|Ron(Pu)| vy for (w,v)e VXV,
sy

where P is the projection of V onto the space V, with V, = {w e V, div o(w) = —¢, in Q}. If wis
a solution of P, then u= Pu therefore both definitions coincide. This definition has the
advantage of enabling us to define j(-,-) on V x V [15].

3. INCREMENTAL FORMULATION

We shall prove the existence of a solution to the quasistatic problem by considering its
variational formulation P, given in Section 2. The bilinear form a(-, ) and the mapping G, )
involved in this variational formulation have the following properties:

a(-, -) is continuous on V X V and coercive, i.e. satisfies

IM>0 YueV VYveV  a(u,v)=Mul|vi, (3.1)
Am>0 VYueV  a(uu)=m |ul? (3.2)
and the mapping j(-, +) satisfies the following property (see [15]):
3C>0  VY(u,u,v,v)eV!
|j(uy, vy) = (. va) = (g, vi) + (g, ¥o)l = AC [w — el v — w2 (3.3)

with g = [l



It shall be useful in the following to note that j(-, -) also satisfies the following inequality:
Y(u,v,v;) eV jlu, vy —jlu, v) = j{u, v, — v,). (3.4)

An incremental formulation is obtained by operating a time discretization of problem A,
taking n € N* and setting At = T'/n, t, =i - Arand ' =£(t;) for i =0, ..., n. We use an implicit
scheme and obtain the following sequence (P}) i=0,...,n—1 of variational inequalities
defined for a given u” € K by:

PROBLEM P7.
(Find u’*' € K such that

i+

i i+l i

. u - u : u — ; u —u

a “'Hr“'_ )+'“| } ( .«+l )E(fﬁl, o )
( At i V- ile Ar Y

{on(u ™), 2y —unN =0 Vzek.

3.1 Existence of a solution of problem P}

In order to show that there exists a solution of each problem P} we shall construct equivalent
problems.

Let us first consider the following sequence of problems, obviously equivalent to Py,
obtained by multiplying the first inequality in P by Ar and by setting w = Aty + o'

ProsLEM Q7.
Find w'*' ¢ K such that

a(“n—l.w__ i+ I}+J( ;+I _ )_j{“gv] l+]_“')2(fj+l,w—u;+lj
+{on(u" "), wy — ul YwelV,

(on(u™), zn —ull =0 Vzek

Problems Q7 are a sequence of intermediate problems which we are going to show to be
equivalent to the following sequence:

PrROBLEM 5.
{Find u'*' & K such that
?“’ u+|)+j(u1+]

i+

a(u —u)—jiu " —u) = w—u"") Vwek

RemaRrk 3.1.

Inequalities such as 57 have been shown to possess a unique solution if the friction coefficient
which appears in j(-, -) is sufficiently small (see, e.g. [10,11,15]). To be more precise the
friction coefficient must satisfy the following inequality x = u, <m/C where m and C have
been defined by the relations (3.2) and (3.3). We shall from now on suppose that the friction
coefficient is small enough to ensure that the above inequality is true.

By a similar argument to that used in Section 2, §7 is shown to be equivalent to the following
relations:

dive(u )+ ¢, '=0in Q
o (“IH) n= (PHI on 1"2

if jor(u ")) < w [R(orw(w'™))| then uy™' = ut
if not then uy'' — w5 = —Ao(w*') A=0

uNy'=0  on <=0 on Ml '=0 onT.

or(u” ) = [R(on(™ ") on T, and

It is also easy to verify that above conditions are equivalent to Q.



RemARK 3.2
We suppose that u” satisfies the same condition (2.15) that we have imposed on wy, i.e. that
u’ satisfies:

a(u’,w—u") +ju’, w-u")= (" w—u") Ywe K. (3.5)

Then by setting w=u" in Sj and w=u' in inequality (3.5) and adding both inequalities we
obtain

—a(u' —u’,u' — )+’ 0" —u’)— ', u —u)= (- —u") (3.6)
as a(-, -) and j(-, -) satisfy (3.2) and (3.3), (3.6) yields
m flu’' = o’ |* = | = ] o' — o] + ZC [ju’ —u”?
(m = gC) '’ = |If' - £

Therefore if ZC <m, f' = implies that u' = u".
In the following we shall suppose that u” satisfies inequality (3.5).

3.2 Bounds for the solution of P}

In this section we shall exhibit bounds for the incremental solution v’ and also for the
difference u' "' — u’.
By setting in inequalities §7, for i =0, ..., n — 1, w=0 we obtain:

a ™ o)y =@E o Y+t —u) —ju e ) Vi=0,...,n-1
and by (3.4) we have
a ™ Y= Y+, -ty VWi=0,.. n—1,
From relations (3.2) and (3.3) we obtain:
m T E = e aC et Vi=0, -
so that if 2C < m we have:

- ||fl +1 “

ll“l —
(LT m—iC

Vi=0,...,n—1,

and by setting w =0 in condition (3.5) we finally obtain:

[lu']| = e Vi=0,...,n (3.7)
T
Let us now set Au' =w'*' —u' and A" =f""'—f'for i =0,..., n — 1. Considering inequality
S7 in which we set w=w' and adding it to inequality S;_, in which we set w=u'"" [if i =0 we
set w=u' in condition (3.5)] we obtain the following inequality:

a(Au, Aw') = (AF, An') + j(w, Au’ + Au' ") — j(w', Au' ) —j(u™! Aw)  Wi=0,...,n—- 1
And from relations (3.2) and (3.3) we obtain the following bound for Aw':

C' At

lAw' || = m— aC Yi=0,..., n—1 (3.8)



4. EXISTENCE OF A QUASISTATIC SOLUTION

We define, for all n e N*, a function f,:[0, T]— V by £,(0)=1£(0) and f,(r) =1f(;.,) for
telt, t;y,] where t,=i- At and At = T/n.

We then consider inequalities S} with f' =1(t;) for i =0,..., n in order to define a function
w, € L*(0, T; V) by u,(0) = u’ = u, where u, K is the initial condition of problem F; satisfying
(2.15) and for t € |1, ;4] by w,(t) =u'*" solution of §7, i=0,...,n-L

4.1 Weak convergence for u,

Four quite straightforward results can be found in the following lemma and shall be useful
tools in the proofs of the next lemmas.

LEMMA 1.
3C, such that Vr € [0, T], YV e N* |lu,(0) || = C,, (4.1)
3C, such that Vn e N*¥i =0, ..., n—1, Ju'"' —u| = C, J' li(r)] dr, 4.2)
3C, such that Vn e N* Wi =0, ..., n—1, Ju'*' —w/|>=C] mj"' (o)1 d, (43)
In'lirl(l+..‘t.4'.?|"} i
3C, such that Vn e N*Vs,1 € [0, T], s <t, {|u,(s) —w, ()|l =C, J ()l dT. (4.4)
Proor.

Inequality (4.1) follows directly from (3.7) and inequality (4.2) follows from (3.8) and from
the fact that f is absolutely continuous (see [13]). Inequality (4.3) is established by using (4.2)
and the Cauchy-Schwarz inequality.

In order to establish (4.4) for s <1 and for a given n let us take i =j such that s € |, #.,] and
t € Jt;, t;41] so that

!
lu, () —w,(s)] = W == X u" —u”

m=i+|
so that from inequality (4.2) we have
i w1 fiel iR+ AL 1) ;
w0 -uei=c S [Timiar=c [iorar=c | ()] dz
m=i+1", fis *

Lemma 2.

There exists a subsequence (u, ), of u, such that for all t € [0, 7] (u,(r}), converges weakly
in V.
PROOF.

Let E be a countable dense subset of [0, T], E = (7;);e~. As by (4.1), for all j € N and for all
n e N*, we have ||u,(7;)| = C,, by a diagonal process we can extract a subsequence (u, ), of u,
such that for all j € N the sequence (u, (1;)), converges weakly towards an element of V noted
by u(t;). We shall omit the subscript p from now on whenever no confusion is possible.

Let us now consider for all & € V and for all ¢ € [0, T the sequence (u,(t), &) for which we
have

Vg=0 and VT,
(W1 (1) = W, (1), D) = (W2 (1) = B o (7)), DN + (W, (1) — 0 (T), D)+ 10 (7)) — 0, (0), D))
(0,4, (1) = 0, (1), )| = [, 1o () = W, (D) + 0, (7) = w1 + 11 (7) — (7). S)]



so that by taking 7; >t and using relation (4.4) we obtain

T+ Tin)

(0,44 (1) = w,(0), D) =2 [ b] C, J IR T + (w4 (7,) — u, (7)), ).

As E is dense in [0, T'] there exists a 7; arbitrarily close to 1 and as the sequence (u,(7;), d) is
convergent therefore a Cauchy sequence, for all t € [0, T'[, (u,(t), &) is also a Cauchy sequence
of R therefore convergent. The case r = T can be treated by a similar argument.

Remark 4.1.
For all 1 belonging to [0, T'] and for all # € N*, u,(¢) belongs to K so that the weak limit u(t)
also belongs to K.
In order to show that u is sufficiently regular we shall now define the following sequence of
functions:
("l ~ Ifr‘) i+1
At (

,(0) = ',

u,()=u + -u') te b, ti]

where n belongs to the subset of N corresponding to the subsequence of u, one has exhibited in
the proof of lemma 2. The mapping ii, is obviously an element of W"*(0, T; V).

Lemma 3.
There exists a subsequence of @, that converges weakly in W'*(0, T V) and the weak limit
of this subsequence is equal to w in L*(0, T; V).

ProckE.
The sequence i, is bounded in W indeed, by using relations (4.1) and (4.3),

d “2
—iu, (£) de
di b.( ).

T T
0= [ 1.1 |
0 ]

PRl B—

At

2

Tis

n—1
=CT+ D, dr

i=0 ¥,

=1 . 2 fiel
=ar+ Y QU ()1 de ) de
=0 v, ﬂf i,
so that i, ||3 = C3T + C3 1 |f(2)|)> dt < +o=.
There exists therefore a subsequence of ii, which converges weakly in W'*(0, T; V) towards
. Let us now consider that n belongs to the subset of N corresponding to this subsequence.
We shall now show that u =i. We have

n=1

C@ 0 -0, e =S [T (o S - - o)
o A At

=

(@, —u,, @))i =

w—k i _ _ n=1 rie ) _ W2 n—1 ey irz
=3 [T - winewias (3 [ -wira) (3 eora)
fi =0 <t

i=0 i=0

From inequality (4.3) it follows that
T W 12 T 172
(@ - =i [ 1iora) ([ o)

So that ((ii, —u,, ¢))—=0 Ve e L0, T:V).

H—®



And as for all ¢ € [0, T], u,(f) converges weakly towards u(r), we shall have
((n, —u,¢))—— 0 and therefore ((ii—w,¢))=0 Yo e LX0, T, V).

Thus as i belongs to W"0, T; V) we shall also have (d/dr)ii, converging weakly towards

do_d . 12 7.
=g vin L0, T V).

4.2 The weak limit of u, is a solution of problem P,

The functions u, and @, are defined by using u’*', solution of S/, but also solution of P{, for
i=0,...,n—1. A solution of P is such that {(ox(u™"), uy'}=0 and as on(uw'*')=<0 and
wh =0 we have {on(u'™"), ki) =0 so that

F+1

<"~(“” D, un— M> = (an(u'™!), vy

At
and therefore w'*' shall satisfy for i =0,...,n - L:
i+l ) T ¢ a'+l_u:'
H(IIH-I,\"- v “)+,f(u"’1.“)—f(ll'+],u v u)z(f”—lp‘i’—“ v )+<0N(“'+I)9UN)'

So that we have for all v e L0, T: V)
d d d_
(.0, ) = $8.0) + (0,0, v0) = {00, $8.0) 2 (1,050 - 5800

+ (‘TN(“H(U)s UN{[]}
and by integrating both sides of this inequality on [0, T'] we obtain:

[[ (a0 v0) - §8.0) 00300 {000, §3.0)) )&

= LT (f,,(f), v(t) - c%ﬁn(rj) dHL {on(w, (1), u(tyde. (4.5)

Lemma 4.
For all v e L*(0, T; V) we have

im | (f,,(r], v(:)-dﬂﬁ,,(:)) dr = jﬂ (8(0), v(1) — (1)) dt,

H—= !

T

lim | j(u, (1), v()) dr = ij(“(fJ, v{)) dy,

e Jy
T

lim | a(w,(t), v()) di = Jra{u(r), v(r)) de

H—= J))

Proofr.

The proof is straightforward as u, converges weakly towards w, (d/df)ii, converges weakly
towards @ in L*(0, T; V) and f, converges strongly towards f.

Lemma 5.
We have

T

lim inf a(n,,(r), gﬁ"(t)) dr= f " atu(e), (1)) dr

s i}

10



Proor.
By using the fact that the mapping a(-, -) is bilinear, symmetric and coercive,

r ( u,. (1), —uﬂ(r))dr‘n:{:a— ' a(u**‘.u*‘*'—u*)d:=§a(u"”.uf'l—u")
! S T £ =
J; a(u,,(r),aii,,(t)) de = E} a(u™! ! —u')—igna(um —wut - )
and
- sl

E a(ur'-—l,ur'-!-l _“-')_1 2 a(u" 1 _"p', ! _“;)=%n§_‘j [ﬂ(“.-n1 ut! - “.)+“(u;-| —_— u’)]

=0 25

2 f[au™', w*") - a(u, u)] = % [a(u”, u") — a(u’,u’)]

NI'—‘

so that

L Ta(u,,(r), &ii,,(r)) dr > % [a(u,(T), u,(T)) — a(u,(0), w,(0))] = % (a(u,(T), u,(T)) - a(ug, uo)]

and as we have

fo alu(r), 6(0)) di = 3 [ £ a(ur), o)) d = a(w(7), w(7)) = a(u ), w(O))]

finally we obtain

jr (r), u(#)) dt =limi fl[( (T),w(T))—a(u {O)u(O)}]-ﬂliminija(u{f) Eﬁ (r})dt
X a(u(r), u(s) _lum_lf 2au,, 4, «(0), u, =hminf } a(), 5 B

LEMMA 6.
We have
T

lim inf (u,,(z} — u,,(f)) dr= J‘ J(u(r), w(?)) d.

n—

Proor.
We shall first show that

lim T[ (u,.(r}, d u,.(r)) (u{z) — (1)) ]dr= 0. (4.6)

m—x Jgy

By definition of j we have

:(j(u,,(r)r%ﬁn(r))_f(u(r).iﬁﬂ(r))) d;‘ _ UT H |R(J‘N(u,,(f)}|—|RUN(||(;)}|)\E|’|"1{I) dr
‘EJ:J._ p [Ron(u,(t) —u(@)| H%ﬁm(r)Hd;g T J 2 \Row (1) ~ u(r))| “2 J;‘ wd:

f (O~ 1RO =0 u*.(r){

df = Cﬁ ” RUN(“H - “}”I.z((l.T] I|iin ” W
e
where ||| ;0.7 is the norm in L0, T L"'(I‘g,)), Thus we have

U;-r' (j(u,,(r). c%ﬁ,,(:)} “,r'(u(t), % ii,,(:})) df‘ <7 ||Ron(m, = 0)|l 0.1y
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As R is a compact operator Roy, is therefore compact and as u,,(t) converges weakly towards
u(r) for all r € [0, T), lim,_... |[Ron(n, — w207, = 0.
We shall now show that
. d _. .
lim inf ,f(u(:), ~,(0) ) dr = J' ju(r), u(r)) dr. 4.7)
o de / o

s

Let W e L™(0, T: (L*(I"3))") be such that

u(1) e
Wiy =1t o070
0 if not.

Then u [Ron(u)| W e L0, T, (Lz(l}})" ) and using the Cauchy—-Schwarz inequality in R?

Lr (1 o, 25,0) - f R #0) i)

WAy
T d
<[ [ wikowwr | S| a
0 Jry t
but

, ‘. .
lim i (y. |Rorp(w)| W(t), — (:)) dr=L (p |[Ron(w)] W(e), o) )2y A

T d (‘a_!{l'_‘”:r

=[] w ko) (P, aete)as
(1} I's

- f J,  |[Row(u)| (1)) de.

So that we have

J J’ [Rory(u)] [or(e) d:ﬂllmlnff J’ |[Roy(u)| ,,J(r)‘dr

By adding relations (4.6) and (4.7) proof of lemma 6 is achieved.

THEOREM 1.
The weak limit u of u, satisfies the following inequality: ¥v € L*(0, T V)

[[ (a0, 0 = 50 + a0, v = i), )
= [ @ v0 50+ [ (onuie), vt — i) (48)

L

and satisfies the unilateral condition

Viel[0,T] Yve K (ornlu(2)), vy —un(rp) =0. (4.9)

Proor.

We begin by proving inequality (4.9). For this we shall return to the definition of the
sequence u, which is such that for all s belonging to |0, T], u,(t) satisfies the following
inequality:

a0, % = 1)) + {0, w = (1= 7)) = 0,0, .0~ w, (¢~ T
= (£.(1), w —u,(1)) Ywe K, (4.10)
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but for all 1 belonging to ]0, T] we have

CEHEUDE

and as by (4.4) we have

T
w(t= D) -u| tel + @0 -0, 0)  Veev

¢ T minls+(Tim). 1) i
u,,(r—;)—u,,(:}HECI [[f(T)] d7, (4.11)

—{Tin)

we therefore obtain

mn{r+{ ). T}

' T .
(w1=—) - w0 ¢) =ter € IR T+ (w0 - ui) @) VeeV.

t—(Tin)

So that w,(¢t — (T'/n)) converges weakly to u(t) for all + £ 10, T'] and by going to the limit in
inequality (4.10) using relation (4.11), the properties of a and j and the weak convergence of
u,(rt — (T [n)) towards u(r) we obtain the following inequality for all r € [0, T]:

a(u(t), w—u()) + j(u(), w —u()) = (f(1), w —u(1)) Ywe K. (4.12)

Finally, by using Green's formula as in Section 2, one obtains inequality (4.9).
By going to the limit in inequality (4.5) using lemmas 4-6 and the properties of continuity of
o, one obtains the following inequality:

T

J; (a(ur), v(r) — (7)) + j(u(r), v(r)) — j(u(r), w(r))) dr EJ: (f(e), ¥(1) — 0(z)) dr

.
+ | {on(u(®)), vn(r)) dr
0

and then, as (on(u(t)), tin (1)} = 0 (see remark 2.1), one obtains inequality (4.8) which is a weak
form of problem P,. If we set in (4.8) v e L*(0, T; V) defined by:

w fors et r+h]
u(s) otherwise

v(s):{

we obtain the following inequality:
l BN ]
2| @), w— i) + ats), w) - jats), i) ds

Py t+h
= —1h~ J: ((s), w—u(s)) ds + % [ (on(u(s)), wn — in(s)) ds

and passing to the limit one obtains that u satisfies problem P for almost all t [0, T].

5. ALGORITHM AND NUMERICAL APPLICATION

5.1 The discretized problem

In order to solve the quasi variational inequality S} we introduce a fixed point method on the
sliding limit, denoted by g in the following: the quasi variational inequality is then replaced by a
fixed point iteration on g, each iteration requires solving a variational inequality which can be
considered as the variational form of a contact problem with Tresca friction. When the fixed
point is reached the sliding limit shall be equal to g |ow(u)|, which is the sliding limit given by
the Coulomb friction law. Details can be found, for example, in Refs [16] and [17].

We use a finite element method (P1 elements) for solving each variational inequality which
can be set as a minimization problem. Let U”" (respectively K") be the finite dimensional space

13



associated with discretization. The dimension of U*, M, is equal if d =2 to twice the number of
nodes.

At each fixed point iteration on g we must solve the following discretized problems:

ProBLEM V.
Find ii; ' € [I}Y, K; such that

M
LagYy=1m  wellKk (5.1)
i=1
with
5(¥) = ; VAV — (F* )% + () [vr — i, (5.2)

where K, =R"™ if je . and K, =R if j ¢ I. with I the set of integers corresponding to the
degrees of freedom related to the normal component of the contact nodes and where the
components of the vector G are given by G, = [, glo,|fora=1,..., card [, where w, is the
shape function associated with the node a.

Problem V{ is a minimization problem under constraints of a quadratic functional including a
non-differentiable term induced by the friction. The variables are the current displacements,
the convex characterizing the constraints is independent of the evolution of the solution, the
dependence on the loading history, i.e. the memory of the system induced by the friction,
appears with the term & present in the expression (5.2) of J,(¥). These problems are solved
through an iterative method such as the successive over-relaxation method with projection or a
projected conjugate gradient method.

The fixed point problem is solved through a diagonal process which consists in doing rough
resolutions for the first values of g when solving problem V. The vector G'*' is updated during
the fixed point process by:

(éi+])m+l =u |GN('—|'(T|J$| (5.3)

where the normal contact force is computed directly from the values of the defect of
equilibrium.

REMARK 5.1,
The alternative incremental formulation given in Refs [16] and [18] can be deduced from
=i+ i+

problem S} by keeping the increments Alii;' as variables (setting i ' = il; + Aul’'). In that
case problem V7 is written as follows.

ProBLEM W,
Find Auii;' e [, K| such that

M
LAY =hE)  WellK! (5.4)
i=1
with
1 o -
J(¥) = 5 VIAY — (R + AF" )V +(G'')T ¥y, (5.5)

where the convex depends on the solution obtained at the previous step and is given by
{ Rifjel,

Ki= .
{a;(a+v)=0}ifjel

I

(5.6)

R'=F' — AW’ being the previous defect of equilibrium (equal to the contact forces).

In this case the variables are the displacement increments, the convex depends at each step
on the solution & and the dependence on the loading history appears with the extra term R’ in
the loading which represents the contact forces at the previous time step ¢,.
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5.2 Numerical example

In this paper a very simple example is given to illustrate the dependence of the solution on
the loading history. However, a few industrial applications can be found in the following
papers: assembly of a pressure vessel with a sequential loading in Ref. [18], as well as various
examples such as the punch problem with loading and unloading, structure assembly and a
cracked viscoplastic solid under alternative loading in Ref. [16].

The following example is a simple benchmark example that was proposed by a group in
charge of wvalidating computer codes in the GRECO *“Grandes déformations et
Endommagement”,

A long bar is squeezed onto a plane rigid obstacle by applying a vertical force f and a
symmetrical horizontal force F at each side of the bar. We give in Figs 1 and 2 the contact
forces on one side of the contact edge (because of the symmetry) obtained for Fig. 1 by
applying the vertical force f first and then applying F, and for Fig. 2 we start by applying the
horizontal force F before applying f. The sliding part of the contact edge is characterized by the
superposition of the plots of Fy, and F/u (Coulomb criterion). Only two time steps were
carried out. The mesh contained 230 nodes, of which 32 were contact nodes. Figure 3 shows
that loading by sequence 1 gives, as one may expect, a very different solution from the one
obtained by the sequence 2 loading, although the loading at the final time step is the same. The
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state of the contact forces at the final step shows that part of the contact zone is sliding for
sequence 1 (the Coulomb criterion is met on the left part of the zone) whereas all the contact
zone is blocked for sequence 2 (the criterion is never met).

[
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