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MULTI-POPULATION MINIMAL-TIME MEAN FIELD GAMES

SAEED SADEGHI ARJMAND AND GUILHERME MAZANTI

Abstract. In this paper, we consider a mean field game model inspired by crowd motion
in which several interacting populations evolving in Rd aim at reaching given target
sets in minimal time. The movement of each agent is described by a control system
depending on their position, the distribution of other agents in the same population,
and the distribution of agents on other populations. Thus, interactions between agents
occur through their dynamics. We consider in this paper the existence of Lagrangian
equilibria to this mean field game, their asymptotic behavior, and their characterization
as solutions of a mean field game system, under few regularity assumptions on agents’
dynamics. In particular, the mean field game system is established without relying on
semiconcavity properties of the value function.
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1. Introduction

Mean field games (MFGs for short) are differential games with a continuum of agents
assumed to be rational, indistinguishable, and influenced only by an averaged behavior
of other agents through a mean-field type interaction. Following previous works in the
economics literature on games with infinitely many agents [5, 6, 40], the theory of mean
field games has been introduced in 2006 by the simultaneous works of Jean-Michel Lasry
and Pierre-Louis Lions [42–44], and of Peter E. Caines, Minyi Huang, and Roland P. Mal-
hamé [37–39], motivated by problems in economics and engineering and with the goal
of approximating Nash equilibria of games with a large number of symmetric agents.
Since their introduction, mean field games have been extensively studied in the litera-
ture and several research topics have been addressed, both from theoretical and applied
perspectives. The main goal is typically to study equilibria of such games, which are
usually characterized as solutions of a system of PDEs, called MFG system. We refer
to [18,20,24,25,31] for more details and further references on mean field games.
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In this paper, we consider a mean field game model inspired by crowd motion in which
a multi-population crowd wishes to arrive at given target sets in minimal time. Motivated
by modeling, control, and optimization objectives, the mathematical analysis of crowd
motion is the subject of a very large number of works from diverse perspectives [27, 30,
34–36, 45, 48, 49, 51]. Among other points of view commonly adopted in the literature,
the macroscopic modeling of crowds consists in approximating the location of the finitely
many agents in the crowd by a continuous distribution, which is usually assumed to evolve
according to some conservation law, and is the natural framework for a mean field game
model of crowd motion.

Some previous works on mean field games, such as [1, 2, 8, 12, 21, 23, 28, 29, 41, 46, 47],
have considered mean field games for, or related to, crowd motion. For instance, [41]
proposes a MFG model for a two-population crowd with trajectories perturbed by additive
Brownian motion and considers both their stationary distributions and their evolution on
a prescribed time interval. Other works also considered multi-population MFGs, such
as [1, 23], which study in particular a two-population MFG model motivated by urban
settlements. The work [12] considers the fast exit of a crowd, whose agents are perturbed
by additive Brownian motion, and proposes a mean field game model, which is studied
numerically. Even though [21] is not originally motivated by the modeling of crowd motion,
the MFG model studied in that reference presents a density constraint, preventing high
concentration of agents, which is a natural assumption in some crowd motion models.
We refer to [47] for second-order mean field games with density constraints. Numerical
simulations for some variational mean field games related to crowd motion are presented
in [8].

The present work is more closely related to [28, 29, 46], which present some particular
characteristics with respect to most of the MFG literature. Firstly, contrarily to a large
part of the MFG literature but similarly to [12] and some other works with motivation
unrelated to crowd motion, such as [32], references [28,29,46] consider mean field games in
which agents do not necessarily stop all at the same time, but may instead have different
stopping times, which are actually the main part of the optimization criterion. Secondly,
most of MFG models consider that agents are free to choose their speed, with high speeds
penalized in the optimization criterion of each agent, but [28, 29, 46] assume instead that
agents may move only up to a certain maximal speed, which depends on the average
distribution of agents around their position. As detailed in [46], this assumption is intended
to model crowd motion situations in which an agent may not be able to move faster by
simply paying some additional cost, since the congestion provoked by other agents may
work as a physical barrier for the agent to increase their speed. We refer to [28, 29, 46]
for more details on the motivation of the model and its relation to other crowd motion
models.

Similarly to [28, 29, 46], the MFG studied in this work assumes that agents want to
minimize their time to reach a certain target set, their optimal control problem being thus
with a free final time, and that their maximal speed is bounded in terms of the density
of agents around their position. Several novelties are considered in the MFG from the
present paper. Firstly, we assume that the agents taking part in the game are not all
identical, but are instead subdivided in N populations. Each population i ∈ {1, . . . , N}
may present different dynamics and different target sets. This additional assumption
brings no major difficulty in the analysis of the MFG but allows for the representation of
more realistic situations, such as two populations in a corridor starting at opposite sides,
each one wanting to reach the other side in minimal time. We also allow for the interaction
of an agent with other agents of the same population to be different than their interaction
with agents of other populations, in order to model the fact that it may be easier to move
with other agents that want to reach the same target, and hence move in the same general
direction, than to move in a crowd of people going on different directions.



MULTI-POPULATION MINIMAL-TIME MEAN FIELD GAMES 3

Another novelty from the present paper with respect to [28, 29, 46] is to consider that
agents move on Rd, instead of on a compact subset of Rd. Lack of compactness of the
state space brings additional difficulties in the analysis of the MFG, in particular since
we are interested in situations in which the initial distribution of agents is not necessarily
compactly supported, but these difficulties can be overcome by exploiting suitable proper-
ties of optimal trajectories. In particular, the time for an agent to reach their target set is
no longer uniformly bounded, but we are able to provide sharp bounds on the convergence
rate of the distribution of agents towards their limit distribution concentrated in the target
set. We also remark that, contrarily to [28, 29, 46], the target sets are not assumed to be
the boundary of a compact domain, but can be arbitrary nonempty closed subsets of Rd.

Finally, we also relax the regularity assumptions on the dynamics of agents from [29,46],
requiring only continuity with respect to the distributions of other agents and Lipschitz
continuity with respect to the space variable. In those references, similar assumptions
were used to prove existence of Lagrangian equilibria, but additional regularity assump-
tions were required to characterize such equilibria as solutions of a MFG system. These
additional assumptions were used in [29,46] to obtain semiconcavity of the value function
of the optimal control problem solved by each agent, which is a key step to obtain dif-
ferentiability of the value function along optimal trajectories and hence deduce that the
velocity field in the continuity equation of the MFG system is well-defined and continuous
on the support of the distribution of agents. By not requiring these additional regular-
ity assumptions, the present paper uses instead different techniques to study the velocity
field appearing in the continuity equation, based on a detailed study of some properties
of optimal trajectories, which allows us to obtain the MFG system without relying on
the semiconcavity of the value function. This is probably one of the main contributions
of the present paper and brings several interesting perspectives, in particular since these
techniques might be adapted to other MFG models in which semiconcavity of the value
function is known not to hold, such as in some MFGs with state constraints. We also refer
the interested reader to [13–15] for other approaches for dealing with MFGs with state
constraints.

The notion of MFG equilibrium is formulated in this paper in a Lagrangian setting,
which describes the motion of agents by a measure on the set of all possible trajectories,
instead of the more classical approach consisting in describing the evolution of agents
through a time-dependent measure on the space state. The Lagrangian approach is classi-
cal in optimal transport problems (see, e.g., [4,9,11,22,52,53]) and has also recently been
used in several works on mean field games [8, 13,19,21,29,46].

This paper is organized as follows. Section 2 settles the main notations used in the
paper, while Section 3 describes the mean field game model considered here together with
its associated optimal control problem solved by each agent, and presents the main tools
used in the sequel. Section 4 presents the important results on the optimal control problem
needed for the sequel of the paper. The main results on our MFG model are provided in
Section 5, which proves the existence of an equilibrium, studies its asymptotic behavior
at large times, and shows that the distribution of the agents and the value function of
the optimal control problem solved by each agent can be characterized by the system of
partial differential equations known as MFG system.

2. Notation and preliminary definitions

In this paper, N and d are fixed positive integers. The set of nonnegative real numbers
is denoted by R+. We denote the usual Euclidean norm in Rd by |·| and the unit sphere
in Rd by Sd−1. Given x ∈ Rd and R ≥ 0, we write B(x,R) for the closed ball centered
at x and of radius R. When x = 0, this ball is denoted simply by BR. We use P(Rd) to
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denote the set of all Borel probability measures on Rd, which is assumed to be endowed
with the topology of weak convergence of measures.

Given two sets A,B, a set-valued map F : A ⇒ B is a map that, to each a ∈ A,
associates a (possibly empty) set F (a) ⊂ B.

Recall that, for two metric spaces X and Y endowed with their Borel σ-algebras and a
Borel map f : X → Y , the pushforward of a measure µ on X through f is the measure
f#µ on Y defined by

f#µ(B) = µ(f−1(B))
for every Borel subset B of Y . We extend the pushforward notation componentwise to
vectors of measures: if µµµ = (µ1, . . . , µN ) with µi a measure on X for every i ∈ {1, . . . , N},
then we set f#µµµ = (f#µ1, . . . , f#µN ).

We define, for p ∈ [1,+∞), the set

Pp(Rd) =
{
µ ∈ P(Rd)

∣∣∣ w
Rd

|x|p dµ(x) < +∞
}
.

We endow Pp(Rd) with the usual Wasserstein distance Wp, defined by

(1) Wp(µ, ν) = inf
{w
Rd×Rd

|x− y|p dλ(x, y)
∣∣∣∣ λ ∈ Π(µ, ν)

}1/p
,

where Π(µ, ν) =
{
λ ∈ P(Rd ×Rd)

∣∣∣ π1#λ = µ, π2#λ = ν
}

and π1, π2 : Rd × Rd → Rd

denote the canonical projections onto the first and second factors of the product Rd×Rd,
respectively.

Given two metric spaces X and Y and M > 0, C(X;Y ), Lip(X;Y ), and LipM (X;Y )
denote, respectively, the set of all continuous functions from X to Y , the set of all Lipschitz
continuous functions from X to Y , and the subset of Lip(X;Y ) containing only those
functions whose Lipschitz constant is at most M .

For t ∈ R+, we denote by et : C(R+;Rd) → Rd the evaluation map at time t, defined
by et(γ) = γ(t) for every γ ∈ C(R+;Rd). We remark that C(R+;Rd), endowed with the
topology of uniform convergence on compact sets, is a Polish space, which is complete
when endowed, for instance, with the metric d given by

(2) d(γ1, γ2) =
∑
n>0

1
2n

supt∈[0,n]|γ1(t) − γ2(t)|
1 + supt∈[0,n]|γ1(t) − γ2(t)|

for γ1, γ2 ∈ C(R+;Rd). Whenever needed, we assume in the sequel that C(R+;Rd) is
endowed with this metric.

3. The MFG model

For i ∈ {1, . . . , N}, let Γi ⊂ Rd be a closed nonempty set, Ki : P(Rd) × P(Rd)N−1 ×
Rd → R+, mi

0 ∈ P(Rd), and denote for simplicity Γ = (Γ1, . . . ,ΓN ), K = (K1, . . . ,KN ),
and m0 = (m1

0, . . . ,m
N
0 ). We consider in this paper the following mean field game, denoted

by MFG(Γ,K,m0): N populations evolve in the space Rd and, for i ∈ {1, . . . , N}, the
distribution of the i-th population at time t ≥ 0 is described by a probability measure
mi
t ∈ P(Rd). The aim of each agent of population i is to minimize their time to reach their

target set Γi and, in order to model congestion, we assume that the speed of an agent of
population i at a position x in time t is bounded by Ki(mi

t, m̂
i
t, x), where m̂i

t ∈ P(Rd)N−1

describes the distribution of agents in the other populations and is defined by
(3) m̂i

t = (m1
t , . . . ,m

i−1
t ,mi+1

t , . . . ,mN
t ).

More precisely, we assume that the movement of a representative agent of population i is
described by the control system
(4) γ̇(t) = Ki(mi

t, m̂
i
t, γ(t))u(t), u(t) ∈ B1,
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where γ(t) ∈ Rd is the state of the agent and u(t) is their control at time t, the control
being constrained to remain in the closed unit ball B1.

In order to properly model congestion through the functions K1, . . . ,KN , a reasonable
assumption is that Ki(µi, µ̂i, x) is small when the measures µ1, . . . , µN are large around x,
and that larger values of µj , j ̸= i, are more penalized than larger values of µi, to model
the fact that an agent moving with their own population is less penalized than if this same
agent moves in the middle of another population going potentially in another direction.
A possible form for each Ki is

Ki(µi, µ̂i, x) = g

w
Rd
χ(x− y) dµi(y) +

N∑
j=1
j ̸=i

λj
w
Rd
χ(x− y) dµj(y)

 ,
where g : R+ → R∗

+ is decreasing, χ : Rd → R+ is a smooth convolution kernel, and
λj > 1 is a constant for j ∈ {1, . . . , N} \ {i}. Let us point out that we do not assume this
specific form of Ki in the sequel but, under suitable regularity assumptions on g and χ,
such a Ki satisfies assumptions (H2) and (H3) stated below as well as assumption (H8)
from Section 5.3 (see, e.g., [46, Proposition 3.1] for a similar result).

The trajectory γ of an agent in population i depends on the distribution of agents of
population i and also on that of agents of other populations, since the speed of γ should not
exceed Ki(mi

t, m̂
i
t, γ(t)). On the other hand, the distributions mi

t depend on how agents
choose their trajectories. We are interested here in equilibrium situations, i.e., situations
in which, starting from time evolutions of the distributions of agents mi : R+ → P(Rd),
the trajectories chosen by agents induce evolutions of the initial distribution of agents mi

0
that are precisely given by mi

t.
To provide a more precise description of MFG(Γ,K,m0), we now introduce an auxiliary

optimal control problem. Given Γ ⊂ Rd nonempty and closed and k : R+ ×Rd → R+,
we consider the optimal control problem OCP(Γ, k) in which an agent evolving in Rd

wants to reach Γ in minimal time, their speed at position x and time t being bounded
by k(t, x). For this optimal control problem, k does not depend on the density of the
agents and is considered as a given function. The relation between the optimal control
problem OCP(Γ, k) and the mean field game MFG(Γ,K,m0) is that, for every population
i ∈ {1, . . . , N}, an agent of population i solves OCP(Γi, ki), where ki is defined by ki(t, x) =
Ki(mi

t, m̂
i
t, x) for t ≥ 0 and x ∈ Rd.

Definition 3.1. Let Γ ⊂ Rd be nonempty and closed and k : R+ ×Rd → R+.
(a) A curve γ ∈ Lip(R+;Rd) is said to be admissible for OCP(Γ, k) if it satisfies |γ̇(t)| ≤
k(t, γ(t)) for almost every t ∈ R+. The set of all admissible curves is denoted by Adm(k).
(b) Let t0 ∈ R+. The first exit time after t0 of a curve γ ∈ Lip(R+;Rd) is the number
τΓ(t0, γ) ∈ [0,+∞] defined by

τΓ(t0, γ) = inf{t ≥ 0 | γ(t+ t0) ∈ Γ}.

(c) Let t0 ∈ R+ and x0 ∈ Rd. A curve γ ∈ Lip(R+;Rd) is said to be an optimal
trajectory for (Γ, k, t0, x0) if γ ∈ Adm(k), γ(t) = x0 for every t ∈ [0, t0], τΓ(t0, γ) < +∞,
γ(t) = γ(t0 + τΓ(t0, γ)) ∈ Γ for every t ∈ [t0 + τΓ(t0, γ),+∞), and
(5) τΓ(t0, γ) = inf

β∈Adm(k)
β(t0)=x0

τΓ(t0, β).

The set of all optimal trajectories for (Γ, k, t0, x0) is denoted by Opt(Γ, k, t0, x0).

Note that admissible curves γ for OCP(Γ, k) are trajectories of the control system
(6) γ̇(t) = k(t, γ(t))u(t),
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where the measurable function u : R+ → B1 is the control associated with γ. The control
system (6) is nonautonomous, since k explicitly depends on t.

We now provide the definition of Lagrangian equilibrium (which we refer to simply as
equilibrium in this paper for simplicity) of MFG(Γ,K,m0).

Definition 3.2. Let m0 = (m1
0, . . . ,m

N
0 ) ∈ P(Rd)N , Γ = (Γ1, . . . ,ΓN ), and K =

(K1, . . . ,KN ) with Γi ⊂ Rd nonempty and closed and Ki : P(Rd)×P(Rd)N−1 ×Rd → R+
for every i ∈ {1, . . . , N}. A vector of measures Q = (Q1, . . . , QN ) ∈ P(C(R+;Rd))N
is called a (Lagrangian) equilibrium for MFG(Γ,K,m0) if e0#Q = m0 and, for every
i ∈ {1, . . . , N}, Qi-almost every γ is optimal for (Γi, ki, 0, γ(0)), where ki : R+ ×Rd → R+
is defined for (t, x) ∈ R+ ×Rd by ki(t, x) = Ki(mi

t, m̂
i
t, x), mi

t = et#Qi, and m̂i
t is given

by (3).

Let us now state the base assumptions on the data of MFG(Γ,K,m0) and OCP(Γ, k)
used throughout this paper. Concerning MFG(Γ,K,m0), we shall always assume the
following hypotheses to be satisfied.
(H1) For i ∈ {1, . . . , N}, Γi is a nonempty closed subset of Rd.
(H2) There exist positive constants Kmin, Kmax such that, for every i ∈ {1, . . . , N}, Ki :

P(Rd) × P(Rd)N−1 × Rd → R+ is continuous and Ki(µ, ν, x) ∈ [Kmin,Kmax] for
every (µ, ν, x) ∈ P(Rd) × P(Rd)N−1 ×Rd.

(H3) The functions Ki are Lipschitz continuous with respect to their third variable, uni-
formly with respect to the first two variables, i.e., there exists L > 0 such that, for
every i ∈ {1, . . . , N}, µ ∈ P(Rd), ν ∈ P(Rd)N−1, and x1, x2 ∈ Rd, we have

|Ki(µ, ν, x1) −Ki(µ, ν, x2)| ≤ L|x1 − x2|.

As for OCP(Γ, k), we always assume the following hypotheses to be satisfied.
(H4) The set Γ is a nonempty closed subset of Rd.
(H5) There exist positive constants Kmin, Kmax such that k : R+×Rd → R+ is continuous

and k(t, x) ∈ [Kmin,Kmax] for every (t, x) ∈ R+ ×Rd.
(H6) The function k is locally Lipschitz continuous with respect to its second variable,

uniformly with respect to the first variable, i.e., for every R > 0, there exists L > 0
such that, for every t ∈ R+ and x1, x2 ∈ BR, we have

|k(t, x1) − k(t, x2)| ≤ L|x1 − x2|.

In the sequel of the paper, we always use the following notation.

Notation 3.3. Given m1
0, . . . ,m

N
0 ∈ P(Rd), we denote by ϕ : R+ → R+ the function

defined for R ≥ 0 by ϕ(R) = mini∈{1,...,N}m
i
0(BR).

Notice that ϕ is nondecreasing and satisfies limR→+∞ ϕ(R) = 1 and mi
0(BR) ≥ ϕ(R)

for every i ∈ {1, . . . , N} and R ≥ 0.

Remark 3.4. Even though this paper considers multi-population mean field games, our
techniques also apply to single-population mean field games, in which the function Ki in
(4) is replaced by a function K depending on the distribution mt of the single population
at time t and on the position γ(t) of an agent. We chose to consider the multi-population
setting due to the fact that it is closer to applications, since, in most crowd motion
situations in practice, different parts of crowd may wish to reach different target sets,
such as people taking different exists in a metro station. Moreover, several works such
as [29, 46] already consider single-population minimal-time mean field games, although
with more restrictive assumption than here, and there is not much additional difficulty
when considering directly the multi-population case.
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4. Preliminary results on the optimal control problem

In this section, we collect the main properties of the optimal control problem OCP(Γ, k)
that will be of use in the sequel of the paper. Note that OCP(Γ, k) is a minimal-time
optimal control problem, which is a classic subject in the optimal control literature (see,
e.g., [7, 17, 26, 50]), but the assumptions (H4)–(H6) on OCP(Γ, k) allow for less smooth
Γ and k than those typically considered in the literature. Minimal-time optimal control
problems have also been studied in connection with mean field games, for instance in
[29, 46], the main difference with respect to the present paper being that those references
consider optimal control problems in a compact state space, whereas the state space in
the present paper is Rd.

The first property of OCP(Γ, k) that we consider is the existence of optimal trajectories,
stated in the proposition below. Its proof can be carried out by standard techniques
based on minimizing sequences and using the relative compactness of bounded subsets of
LipKmax(R+;Rd) in the topology of C(R+;Rd) and is omitted here for simplicity (see,
e.g., [17, Theorem 8.1.4] for a similar proof in the case of a more general optimal exit time
problem for an autonomous control system).
Proposition 4.1. Consider the optimal control problem OCP(Γ, k) and assume that (H4)
and (H5) are satisfied. Then, for every t0 ∈ R+ and x0 ∈ Rd, there exists an optimal
trajectory γ for (Γ, k, t0, x0).

Another property of OCP(Γ, k) than can be obtained by a straightforward argument is
the following, which states that restrictions of optimal trajectories are still optimal.
Proposition 4.2. Consider the optimal control problem OCP(Γ, k) and let (t0, x0) ∈
R+ ×Rd and γ0 ∈ Opt(Γ, k, t0, x0). Then, for every t1 ∈ [t0,+∞), denoting x1 = γ0(t1),
the function γ1 : R+ → Rd defined by γ1(t) = x1 for t ≤ t1 and γ1(t) = γ0(t) for t ≥ t1
satisfies γ1 ∈ Opt(Γ, k, t1, x1).
4.1. The value function. We consider in this section properties of the value function
corresponding to the optimal control problem OCP(Γ, k), whose definition is given next.
Definition 4.3. Let Γ ⊂ Rd be a nonempty closed set and k : R+ ×Rd → R+. The value
function of the optimal control problem OCP(Γ, k) is the function φ : R+ × Rd → R+
defined for (t0, x0) ∈ R+ ×Rd by
(7) φ(t0, x0) = inf

γ∈Adm(k)
γ(t0)=x0

τΓ(t0, γ).

Our next preliminary result provides local bounds on the value function and on the
norm of optimal trajectories.
Proposition 4.4. Consider the optimal control problem OCP(Γ, k) and its value function
φ and assume that (H4) and (H5) are satisfied. Then there exist two nondecreasing maps
with linear growth ψ, T : R+ → R+ depending only on Γ, Kmin, and Kmax such that,
for every R > 0, t0 ∈ R+, x0 ∈ BR, we have φ(t0, x0) ≤ T (R) and, for every γ ∈
Opt(Γ, k, t0, x0), we have γ(t) ∈ Bψ(R) for every t ≥ 0.

The bound T (R) on the value function can be obtained, for instance, by remarking
that a particular admissible trajectory is the one that moves with speed Kmin along the
segment from x0 to 0 and then along the segment from 0 to the closest point of Γ from
0. Since any optimal trajectory γ is Kmax-Lipschitz and arrives at the target set in time
at most T (R), one can easily bound |γ(t)| by |x0| + KmaxT (R), yielding the bound on
optimal trajectories.

In the next result we recall the dynamic programming principle, which can be proved
by standard techniques in optimal control (see, e.g., [7, Proposition 2.1] and [17, (8.4)] for
the corresponding result in the autonomous case).
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Proposition 4.5. Consider the optimal control problem OCP(Γ, k) and its value function
φ and assume that (H4) and (H5) are satisfied. Then, for every (t0, x0) ∈ R+ ×Rd and
γ ∈ Adm(k) with γ(t0) = x0, we have

(8) φ(t0 + h, γ(t0 + h)) + h ≥ φ(t0, x0), for every h ≥ 0,

with equality for every h ∈ [0, τΓ(t0, γ)] if γ ∈ Opt(Γ, k, t0, x0). Moreover, if γ is constant
on [0, t0] and on [t0 +τΓ(t0, γ),+∞) and if equality holds in (8) for every h ∈ [0, τΓ(t0, γ)],
then γ ∈ Opt(Γ, k, t0, x0).

Our next preliminary result on OCP(Γ, k) deals with the Lipschitz continuity of the
value function. Lipschitz continuity of the value function is a classical result in optimal
exit time problems (see, e.g., [17, Theorem 8.2.5]), but most of the literature deals only
with autonomous control systems, in which case the value function is a function of the
space variable x only. A classical state augmentation technique of (6) would be sufficient
to obtain Lipschitz continuity of φ on both time and space, but this would require the
assumption that k is locally Lipschitz continuous in the pair (t, x), which is stronger than
(H6). In order to highlight the fact that such an assumption is not necessary, we provide
below a detailed proof of the Lipschitz continuity of φ, based on that of [17, Theorem 8.2.5]
but containing some simplifications due to the particular structure of the problem at hand.
We start with a preliminary result stating Lipschitz continuity of x 7→ φ(t, x) for fixed
t ∈ R+.

Lemma 4.6. Consider the optimal control problem OCP(Γ, k) and its value function φ
and assume that (H4)–(H6) are satisfied. Then, for every R > 0, there exists CR > 0 such
that, for every t0 ∈ R+ and x0, x1 ∈ BR, we have

|φ(t0, x0) − φ(t0, x1)| ≤ CR|x0 − x1|.

Proof. Let T : R+ → R+ be as in the statement of Proposition 4.4, R > 0, t0 ∈ R+,
and x0, x1 ∈ BR. Let γ0 ∈ Opt(Γ, k, t0, x0) and denote by u0 the corresponding optimal
control, i.e., γ̇0(t) = k(t, γ0(t))u0(t) for a.e. t ∈ R+. Let t∗0 = t0 + φ(t0, x0) be the time at
which γ0 arrives at the target set Γ and x∗

0 = γ0(t∗0) ∈ Γ be the arrival position of γ0 at
Γ. We define γ1 : R+ → Rd as follows: for t ∈ [0, t0], we set γ1(t) = x1; for t ∈ [t0, t∗0],
γ1 is the unique solution of the differential equation γ̇1(t) = k(t, γ1(t))u0(t) with initial
condition γ1(t0) = x1; for t ∈ (t∗0, t∗1], we set γ1(t) =

(
1 − t−t∗0

t∗1−t∗0

)
x∗

1 + t−t∗0
t∗1−t∗0

x∗
0, where

x∗
1 = γ1(t∗0) and t∗1 = t∗0 + |x∗

1−x∗
0|

Kmin
; and, for t > t∗1, we set γ1(t) = γ1(t∗1) = x∗

0 ∈ Γ. In
other words, γ1 remains at x1 until time t0, then it is defined as the solution of the control
system (6) with control u0 until time t∗0, and finally γ1 moves from its position x∗

1 at time
t∗0 to the final position x∗

0 of γ0 along the segment connecting these two points and with
constant speed Kmin, remaining at x∗

0 afterward. By construction, we have γ1 ∈ Adm(k)
and τΓ(t0, γ1) ≤ t∗1 − t0 = φ(t0, x0) + |x∗

1−x∗
0|

Kmin
, and hence

(9) φ(t0, x1) ≤ φ(t0, x0) + |x∗
1 − x∗

0|
Kmin

.

Let us estimate |x∗
1 −x∗

0|. Notice first that, since γ0 and γ1 are Kmax-Lipschitz, we have,
for every t ∈ [t0, t∗0] and i ∈ {0, 1},

|γi(t)| ≤ |xi| +Kmax(t∗0 − t0) ≤ R+KmaxT (R).

Let L > 0 be the Lipschitz constant of k with respect to its second variable on R+ ×
BR+KmaxT (R). We then have, for every t ∈ [t0, t∗0],

γ1(t) − γ0(t) = x1 − x0 +
w t

t0
[k(s, γ1(s)) − k(s, γ0(s))]u0(s) ds,
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and thus
|γ1(t) − γ0(t)| ≤ |x1 − x0| + L

w t

t0
|γ1(s) − γ0(s)| ds.

Hence, by Grönwall’s inequality, we deduce that
|x∗

1 − x∗
0| ≤ eLT (R)|x1 − x0|.

Combining with (9), we obtain that

φ(t0, x1) ≤ φ(t0, x0) + eLT (R)

Kmin
|x1 − x0|.

The conclusion follows with CR = eLT (R)

Kmin
by exchanging the role of x0 and x1 in the above

argument. □

We can now deduce Lipschitz continuity of φ by using Lemma 4.6 and the dynamic
programming principle from Proposition 4.5.

Proposition 4.7. Consider the optimal control problem OCP(Γ, k) and its value function
φ and assume that (H4)–(H6) are satisfied. Then, for every R > 0, there exists MR > 0
such that, for every (t0, x0), (t1, x1) ∈ R+ ×BR, we have

|φ(t0, x0) − φ(t1, x1)| ≤ MR (|t0 − t1| + |x0 − x1|) .

Proof. Let ψ : R+ → R+ be as in the statement of Proposition 4.4, R > 0, and
(t0, x0), (t1, x1) ∈ R+ × BR and assume, with no loss of generality, that t0 < t1. Let
γ0 ∈ Opt(Γ, k, t0, x0) and x∗

0 = γ0(t1). By Proposition 4.4, we have |x∗
0| ≤ ψ(R) and, by

Lemma 4.6, we have
(10) |φ(t1, x∗

0) − φ(t1, x1)| ≤ Cψ(R)|x∗
0 − x1|,

where Cψ(R) denotes the Lipschitz constant of x 7→ φ(t, x) on Bψ(R) for all t ≥ 0.
If t1 ≤ t0 + φ(t0, x0), then, by Proposition 4.5, since γ0 ∈ Opt(Γ, k, t0, x0), we have

φ(t1, x∗
0) = φ(t0, x0) − (t1 − t0), and thus

(11) |φ(t0, x0) − φ(t1, x1)| ≤ |t1 − t0| + Cψ(R)|x∗
0 − x1|.

Otherwise, we have t1 > t0 + φ(t0, x0), in which case x∗
0 = γ0(t1) = γ0(t0 + φ(t0, x0)) ∈ Γ

and thus φ(t1, x∗
0) = 0. Combining this with (10) and the fact that φ(t0, x0) < t1 − t0, we

deduce that (11) also holds in this case.
Since γ0 is Kmax-Lipschitz, we have |x0 − x∗

0| ≤ Kmax|t1 − t0|. Hence, combining with
(11), we deduce that

|φ(t0, x0) − φ(t1, x1)| ≤ (Cψ(R)Kmax + 1)|t1 − t0| + Cψ(R)|x0 − x1|,
yielding the conclusion. □

A classical consequence of the dynamic programming principle is that the value function
φ satisfies a Hamilton–Jacobi equation in the viscosity sense, which is the topic of the next
proposition, whose proof is omitted here since it can be obtained by adapting classical
arguments (see, e.g., [7, Chapter IV, Proposition 2.3] and [17, Theorem 8.1.8]) to our
non-autonomous setting.

Proposition 4.8. Consider the optimal control problem OCP(Γ, k) and its value function
φ and assume that (H4)–(H6) are satisfied. Consider the Hamilton–Jacobi equation
(12) − ∂tφ(t, x) + k(t, x)|∇φ(t, x)| − 1 = 0.
Then φ is a viscosity solution of (12) on R+ × (Rd \ Γ) and satisfies φ(t, x) = 0 for
(t, x) ∈ R+ × Γ.

We next provide the following property of φ, whose proof can be found in [29, Propo-
sition 3.9 and Corollary 3.11].
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Proposition 4.9. Consider the optimal control problem OCP(Γ, k) and its value function
φ and assume that (H4)–(H6) are satisfied. Then, for every R > 0, there exists c > 0 such
that, for every t0, t1 ∈ R+ with t0 ̸= t1 and x ∈ BR, we have

φ(t1, x) − φ(t0, x)
t1 − t0

≥ c− 1.

In particular, if φ is differentiable at (t0, x), then ∂tφ(t0, x) ≥ c−1 and |∇φ(t0, x)| ≥ c
Kmax

.

4.2. Characterization of optimal controls. Now that we have established elementary
properties of the value function in Section 4.1, we turn to the problem of characterizing the
optimal control u : R+ → B1 associated with an optimal trajectory γ ∈ Opt(Γ, k, t0, x0).
Formally, by differentiating with respect to h the equality of the dynamic programming
principle in Proposition 4.5 for optimal trajectories and using the Hamilton–Jacobi equa-
tion (12), one obtains that the optimal control u should satisfy u(t) = − ∇φ(t,γ(t))

|∇φ(t,γ(t))| , an
argument that can be made precise when φ is differentiable at (t, γ(t)) (see, e.g., [46, Corol-
lary 4.1]).

If φ was semiconcave, one could deduce by standard arguments (see, e.g., [17, Sec-
tion 7.3] and [29, Section 3.4]) that it is differentiable along optimal trajectories and hence
obtain the above characterization of optimal controls. In particular (see, e.g., [17, The-
orem 7.3.16]), φ can be shown to be semiconcave under the additional assumption that
k ∈ C1,1(R+ × Rd;R) (i.e., k is C1 and its differential is locally Lipschitz continuous).
On the other hand, under our standing assumptions (H4)–(H6), neither semiconcavity nor
differentiability of φ along optimal trajectories are guaranteed, and, up to the authors’
knowledge, it is an open question if these properties hold or not.

The goal of this section is to provide an alternative characterization of u when k is
not necessarily more regular than locally Lipschitz continuous. This is done mainly for
two reasons. Firstly, regularity assumptions on k for OCP(Γ, k) correspond to regularity
assumptions on Ki, i ∈ {1, . . . , N}, for MFG(Γ,K,m0), and hence avoiding additional
regularity assumptions on k allow to obtain more general results for mean field games.
Secondly, even when k is smooth, the value function φ may fail to be semiconcave in some
situations, such as in the presence of state constraints (see, e.g., [16, Example 4.4]), and
semiconcavity of φ is a key step in proving its differentiability along optimal trajectories
and hence in characterizing u as above. This motivates the search for techniques for
characterizing optimal controls without relying on the semiconcavity of φ.

We shall need in this section the following additional assumption on k.
(H7) The function k : R+ × Rd → R+ is Lipschitz continuous with respect to both

variables and locally in the second variable, i.e., for every R > 0, there exists L > 0
such that, for every (t1, x1), (t2, x2) ∈ R+ ×BR, we have

|k(t1, x1) − k(t2, x2)| ≤ L (|t1 − t2| + |x1 − x2|) .
The first result we present is the following, which provides additional regularity as-

sumptions on the optimal control u. It can be obtained by applying Pontryagin Maximum
Principle to OCP(Γ, k) and using the maximization condition to deduce a relation between
the optimal control u and the costate variable in Pontryagin Maximum Principle. We refer
the reader to [46, Proposition 4.6 and Corollary 4.2] for the details of the proof.

Proposition 4.10. Consider the optimal control problem OCP(Γ, k) and assume that
(H4), (H5), and (H7) hold. Let (t0, x0) ∈ R+ × Rd, γ ∈ Opt(Γ, k, t0, x0), and u be the
optimal control corresponding to γ. Then u ∈ Lip([t0, t0 + φ(t0, x0)];Sd−1). Moreover, its
Lipschitz constant is bounded by the Lipschitz constant of k on the set [t0, t0 +φ(t0, x0)] ×
BR, where R > 0 is such that γ(t) ∈ BR for every t ≥ 0.

We now introduce the two main objects that we will use to characterize optimal controls.



MULTI-POPULATION MINIMAL-TIME MEAN FIELD GAMES 11

Definition 4.11. Consider the optimal control problem OCP(Γ, k) and its value function
φ and assume that (H4), (H5), and (H7) hold. Let (t0, x0) ∈ R+ ×Rd.
(a) We define the set U(t0, x0) of optimal directions at (t0, x0) as the set of all u0 ∈ Sd−1

for which there exists γ ∈ Opt(Γ, k, t0, x0) such that the corresponding optimal control u
satisfies u(t0) = u0.
(b) We define the set W(t0, x0) of directions of maximal descent of φ at (t0, x0) as the set
of all u0 ∈ Sd−1 such that

(13) lim
h→0+

φ(t0 + h, x0 + hk(t0, x0)u0) − φ(t0, x0)
h

= −1.

Thanks to Proposition 4.10, optimal controls are continuous and take values in Sd−1,
and in particular the pointwise value u(t0) is well-defined. Together with Proposition 4.1,
we immediately deduce that U(t0, x0) ̸= ∅ for every (t0, x0) ∈ R+ × (Rd \ Γ). On the
other hand, for (t0, x0) ∈ Rd× Γ, one observes that U(t0, x0) = ∅, since, when x0 ∈ Γ, the
only optimal control is the control constantly equal to 0, but, by definition, the members
of U(t0, x0) must belong to the unit sphere Sd−1.

Note also that, if u0 ∈ Sd−1 and γ ∈ Adm(k) is the trajectory obtained by taking a
constant control u(t) = u0 in (6), then, by Proposition 4.5, φ(t0 +h, γ(t0 +h))−φ(t0, x0) ≥
−h, yielding, using also Proposition 4.7, that, as h → 0+,

φ(t0 + h, x0 + hk(t0, x0)u0) − φ(t0, x0)
h

≥ −1 + o(1).

Hence, an element u0 ∈ W(t0, x0) can be interpreted as a direction in which the above
ratio attains its infinitesimal lower bound −1 at the limit h → 0+, and corresponds thus
to directions in which φ decreases with maximal rate.

Before turning to the main result of this section, Theorem 4.14, asserting the equal-
ity between U(t0, x0) and W(t0, x0), let us first present some elementary properties of
these set-valued maps. The first one is that, along an optimal trajectory γ, U(t, γ(t))
is singleton, except possibly at its initial and final points. Its proof is the same as that
of [46, Proposition 4.7] and is thus omitted here.

Proposition 4.12. Consider the optimal control problem OCP(Γ, k) and its value func-
tion φ and assume that (H4), (H5), and (H7) hold. Let (t0, x0) ∈ R+ × Rd and γ ∈
Opt(Γ, k, t0, x0). Then, for every t ∈ (t0, t0 + φ(t0, x0)), U(t, γ(t)) contains exactly one
element.

Our next result shows, on the other hand, that, at the points (t0, x0) where φ is dif-
ferentiable, W(t0, x0) contains a unique direction of maximal descent which, as one might
expect, is equal to − ∇φ(t0,x0)

|∇φ(t0,x0)| , as |∇φ(t0, x0)| ≠ 0 is guaranteed by Proposition 4.9.

Proposition 4.13. Consider the optimal control problem OCP(Γ, k) and its value function
φ and assume that (H4), (H5), and (H7) hold. Let (t0, x0) ∈ R+ × (Rd \ Γ) be such that
φ is differentiable at (t0, x0). Then

W(t0, x0) =
{

− ∇φ(t0, x0)
|∇φ(t0, x0)|

}
.

Proof. Since φ is differentiable at (t0, x0) and using Proposition 4.8, we have, for every
u0 ∈ Sd−1,

lim
h→0+

φ(t0 + h, x0 + hk(t0, x0)u0) − φ(t0, x0)
h

= ∂tφ(t0, x0) + k(t0, x0)∇φ(t0, x0) · u0 = −1 + k(t0, x0)[∇φ(t0, x0) · u0 + |∇φ(t0, x0)|].
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Hence (13) holds if and only if ∇φ(t0, x0) · u0 = −|∇φ(t0, x0)| and, since ∇φ(t0, x0) ̸= 0
by Proposition 4.9, it follows that (13) holds if and only if u0 = − ∇φ(t0,x0)

|∇φ(t0,x0)| , yielding the
conclusion. □

The main result of this section is the following.

Theorem 4.14. Consider the optimal control problem OCP(Γ, k) and its value function
φ and assume that (H4), (H5), and (H7) hold. Then, for every (t0, x0) ∈ R+ × Rd, we
have U(t0, x0) = W(t0, x0).

Proof. We first remark that, if x0 ∈ Γ, then U(t0, x0) = W(t0, x0) = ∅, and so we are only
left to consider the case x0 ∈ Rd \ Γ.

The inclusion U(t0, x0) ⊂ W(t0, x0) follows from the fact that, if γ ∈ Opt(Γ, k, t0, x0)
and u is the corresponding optimal control, then, by Proposition 4.5, we have, for every
h ∈ (0, φ(t0, x0)], that

φ(t0 + h, γ(t0 + h)) − φ(t0, x0)
h

= −1

and, using the facts that γ(t0 + h) = x0 + hk(t0, x0)u(t0) + o(h) and that φ is locally
Lipschitz continuous (Proposition 4.7), we deduce, letting h → 0+, that u(t0) ∈ W(t0, x0).

Let us now show that W(t0, x0) ⊂ U(t0, x0). Let u0 ∈ W(t0, x0) and h > 0, which is
implicitly always assumed to be small enough. Then, as h → 0+,
(14) φ(t0 + h, x0 + hk(t0, x0)u0) = φ(t0, x0) − h+ o(h).
Define γ0 : [t0, t0 + h] → Rd by

(15)
{
γ̇0(t) = k(t, γ0(t))u0,

γ0(t0) = x0.

Let xh1 = γ0(t0 + h) and th1 = t0 + h. Since Rd \ Γ is open, one has xh1 ∈ Rd \ Γ for h > 0
small enough. Let γh1 ∈ Opt(Γ, k, th1 , xh1) and uh1 be the optimal control associated with
γh1 . Set ūh1 = uh1(th1) ∈ Sd−1 and define γ̄h1 : [th1 , th1 + h] → Rd by

(16)
{ ˙̄γh1 (t) = k(t, γ̄h1 (t))ūh1
γ̄h1 (th1) = xh1 .

Let us also set th2 = th1 + h, xh2 = γh1 (th2) and x̄h2 = γ̄h1 (th2). We split the sequel of the proof
in two cases.
Case 1. We assume in this case that limh→0+ ūh1 = u0. Let ûh1 ∈ Lip(R+;Sd−1) be
defined by ûh1(t) = ūh1 for t ∈ [0, th1 ], ûh1(t) = uh1(t) for t ∈ [th1 , th1 + φ(th1 , xh1)], and
ûh1(t) = uh1(th1 + φ(th1 , xh1)) for t ≥ th1 + φ(th1 , xh1). Since γh1 and ûh1 are Lipschitz con-
tinuous and their Lipschitz constants do not depend on h (see Proposition 4.10), one
deduces from Arzelà–Ascoli Theorem that there exist a positive sequence (hn)n∈N con-
verging to 0 as n → +∞ and elements γ∗ ∈ LipKmax(R+;Rd) and u∗ ∈ Lip(R+;Sd−1)
such that γhn

1 → γ∗ and ûhn
1 → u∗ as n → +∞, uniformly on compact time intervals.

Since γh1 ∈ Opt(Γ, k, th1 , xh1) for h > 0 and th1 → t0 and xh1 → x0 as h → 0+, one can easily
show, using the continuity of φ, that γ∗ ∈ Opt(Γ, k, t0, x0) and the restriction of u∗ to
[t0, t0 + φ(t0, x0)] is its corresponding optimal control. On the other hand, we have

u∗(t0) = lim
n→+∞

ûhn
1 (thn

1 ) = lim
n→+∞

ūhn
1 = u0,

which implies that u0 ∈ U(t0, x0), as required.
Case 2. We now consider the case where (ūh1)h>0 does not converge to u0 as h → 0+,
and we prove that this case is not possible. Let ϵ > 0 and (hn)n∈N be a positive sequence
such that hn → 0 as n → +∞ and |ūhn

1 − u0| ≥ ϵ for every n ∈ N. For simplicity, we
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set thn
1 = tn1 , xhn

1 = xn1 , and similarly for all other variables whose upper index is hn. In
order to clarify the constructions used in this case, we illustrate them in Figure 4.1, which
represents points and curves already constructed as well as those which will be defined in
the sequel of the proof.

γ0
γn2

γn1

γ̄n1

γn3

x0

xn1 x̄n2

xn2

xn3

Figure 4.1. Illustration of the constructions used in the proof of Theorem 4.14.

Integrating (15) on [t0, tn1 ], we get

xn1 − x0 =
w tn1

t0
k(s, γ0(s)) ds u0,

and, proceeding similarly for (16), we get

x̄n2 − xn1 =
w tn2

tn1
k(s, γ̄n1 (s)) ds ūn1 .

Denote the integrals in the right-hand side of the above equalities by In0 and In1 , respec-
tively. We have

|x̄n2 − x0|2 = (In0 u0 + In1 ū
n
1 ) · (In0 u0 + In1 ū

n
1 )

= (In0 )2 + (In1 )2 + 2In0 In1 u0 · ūn1
= |xn1 − x0|2 + |x̄n2 − xn1 |2 + 2In0 In1 u0 · ūn1 .

We know that |ūn1 − u0| ≥ ϵ, which leads us to observe that there exists α ∈ (0, 1) such
that u0 · ūn1 < α for every n ∈ N. Thus

|x̄n2 − x0|2 < |xn1 − x0|2 + |x̄n2 − xn1 |2 + 2αIn0 In1 .
Define

ρ :=
√

1 − (1 − α) K
2
min

2K2
max

,

then obviously ρ < 1 and
|x̄n2 − x0|2 < (|xn1 − x0| + |x̄n2 − xn1 |)2 − 2(1 − α)In0 In1

=
(

1 − (1 − α) 2In0 In1
(In0 + In1 )2

)
(|xn1 − x0| + |x̄n2 − xn1 |)2

≤ ρ2 (|xn1 − x0| + |x̄n2 − xn1 |)2 ,(17)

where we use that Ini ∈ [hKmin, hKmax] for i ∈ {1, 2}. Let un2 = x̄n
2 −x0

|x̄n
2 −x0| (with the

convention un2 = 0 if x̄n2 = x0) and define γn2 : [t0, t0 + τn] → Rd by

(18)
{
γ̇n2 (t) = k(t, γn2 (t))un2
γn2 (t0) = x0,

where τn ≥ 0 is chosen so that γn2 (t0 + τn) = x̄n2 .
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Claim. As n → +∞, we have τn ≤ 2ρhn +O(h2
n).

Proof. Note that we have nothing to prove in the case x̄n2 = x0, and hence we assume
x̄n2 ̸= x0 in the sequel. If |x̄n2 −x0| ≤ ρ|xn1 −x0|, we let xn3 = x̄n2 , otherwise we choose xn3 as
the unique point in the segment (x0, x̄

n
2 ) such that |xn3 − x0| = ρ|xn1 − x0|. In both cases,

we have |xn3 − x0| = ρ̄|xn1 − x0| for some ρ̄ ≤ ρ. Let τn1 be the time that γn2 takes to reach
the point xn3 , i.e., γn2 (t0 +τn1 ) = xn3 . (Note that τn1 = τn in the case |x̄n2 −x0| ≤ ρ|xn1 −x0|.)
We show that τn1 ≤ ρhn+O(h2

n). To obtain that, we observe, by integrating (15) and (18)
and doing a change of variables, that
w t0+τn

1

t0
k(s, γn2 (s)) ds = |xn3 − x0| = ρ̄|xn1 − x0| = ρ̄

w t0+hn

t0
k(s, γ0(s)) ds

=
w t0+ρ̄hn

t0
k

(
t0 + s− t0

ρ̄
, γ0

(
t0 + s− t0

ρ̄

))
ds

=
w t0+ρ̄hn

t0
k(s, γn2 (s)) ds

+
w t0+ρ̄hn

t0

[
k

(
t0 + s− t0

ρ̄
, γ0

(
t0 + s− t0

ρ̄

))
− k(s, γn2 (s))

]
ds

=
w t0+ρ̄hn

t0
k(s, γn2 (s)) ds+O(h2

n),(19)

in which the last equality follows from the Lipschitz continuity of k and the fact that∣∣∣∣γ0

(
t0 + s− t0

ρ̄

)
− γn2 (s)

∣∣∣∣ ≤
∣∣∣∣γ0

(
t0 + s− t0

ρ̄

)
− x0

∣∣∣∣+ |x0 − γn2 (s)|

≤ Kmax

[
s− t0
ρ̄

+ (s− t0)
]
.

Define F : [0, τn] → R+ by F (t) =
r t0+t
t0

k(s, γn2 (s)) ds, then obviously F is increasing,
which implies that F−1 is well-defined on the range of F . Since F ′(t) = k(t, γn2 (t)), F is
Kmax-Lipschitz continuous and, since (F−1)′(t) = 1

F ′(F−1(t)) , we also deduce that F−1 is
1

Kmin
-Lipschitz continuous. Therefore, by (19), we deduce that

τn1 = F−1(F (ρ̄hn) +O(h2
n)) = ρ̄hn +O(h2

n) ≤ ρhn +O(h2
n).

This concludes the proof of the claim in the case |x̄n2 − x0| ≤ ρ|xn1 − x0|, since τn1 = τn in
that case.

Otherwise, we have ρ̄ = ρ and |xn3 − x0| = ρ|xn1 − x0|, and thus, from (17), we get
|x̄n2 − x0| < ρ(|xn1 − x0| + |x̄n2 − xn1 |) = |xn3 − x0| + ρ|x̄n2 − xn1 |.

On the other hand, since xn3 belongs to the segment (x0, x̄
n
2 ), we have |x̄n2 − x0| = |x̄n2 − xn3 |

+ |xn3 − x0|, hence the inequality |x̄n2 − xn3 | ≤ ρ|x̄n2 − xn1 | holds. Suppose τn2 is the time
the trajectory γn2 takes to go from xn3 to x̄n2 , i.e., γn2 (t0 + τn1 + τn2 ) = x̄n2 , and note that
τn = τn1 + τn2 . As before, we compare the times between |x̄n2 − xn3 | and |x̄n2 − xn1 |. Let
β ≤ ρ be such that |x̄n2 − xn3 | = β|x̄n2 − xn1 |. Proceeding similarly to (19), we get
w τn

2

0
k(s+ t0 + τn1 , γ

n
2 (s+ t0 + τn1 )) ds = |x̄n2 − xn3 | = β|x̄n2 − xn1 | = β

w tn2

tn1
k(s, γ̄n1 (s)) ds

=
w βhn

0
k

(
s

β
+ t0 + hn, γ̄

n
1

(
s

β
+ t0 + hn

))
ds

=
w βhn

0
k(s+ t0 + τn1 , γ

n
2 (s+ t0 + τn1 )) ds

+
w βhn

0

[
k

(
s

β
+ t0 + hn, γ̄

n
1

(
s

β
+ t0 + hn

))
− k(s+ t0 + τn1 , γ

n
2 (s+ t0 + τn1 ))

]
ds

=
w βhn

0
k(s+ t0 + τn1 , γ

n
2 (s+ t0 + τn1 )) ds+O(h2

n),
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in which the last equality follows from the Lipschitz continuity of k and the facts that
τn1 = O(hn) and∣∣∣∣γ̄n1 ( sβ + t0 + hn

)
− γn2 (s+ t0 + τn1 ))

∣∣∣∣
≤
∣∣∣∣γ̄n1 ( sβ + t0 + hn

)
− xn1

∣∣∣∣+ |xn1 − x0| + |x0 − γn2 (s+ t0 + τn1 ))|

≤ Kmax

[
s

β
+ hn + s+ τn1

]
.

Arguing similarly to above, we deduce that τn2 = βhn +O(h2
n). Therefore the time τn to

reach x̄n2 from x0 satisfies

τn = (ρ+ β)hn +O(h2
n) ≤ 2ρhn +O(h2

n). □

Let us now compare the trajectories γ̄n1 and γn1 on [tn1 , tn2 ]. Let δn1 (t) = γn1 (t) − γ̄n1 (t).
Hence, from the ODEs satisfied by the trajectories γ̄n1 and γn1 , we have

δn1 (t) =
w t

tn1

[
k(s, γn1 (s))un1 (s) − k(s, γ̄n1 (s))ūn1

]
ds

=
w t

tn1

[
k(s, γn1 (s)) − k(s, γ̄n1 (s))

]
un1 (s) ds+

w t

tn1
k(s, γ̄n1 (s))(un1 (s) − ūn1 ) ds.

Since un1 is the optimal control, by Proposition 4.10, it is Lipschitz continuous. Therefore,
denoting by L > 0 the Lipschitz constant of k on a bounded set containing the trajectories
γn1 and γ̄n1 for every n, we have

|δn1 (t)| ≤ L
w t

tn1
|δn1 (s)| ds+Kmax

w t

tn1
L|s− tn1 | ds,

and hence, by using Grönwall’s inequality,

|δn1 (t)| ≤ LKmax
(t− tn1 )2

2 eL(t−tn1 ).

In particular, if we set t = tn1 + hn, then

|xn2 − x̄n2 | ≤ LKmax
h2
n

2 eLhn = O(h2
n).

Let un3 = xn
2 −x̄n

2
|xn

2 −x̄n
2 | (with the convention xn3 = 0 if xn2 = x̄n2 ) and γn3 be the solution of

(20)
{

γ̇n3 (t) = k(t, γn3 (t))un3
γn3 (t0 + τn) = x̄n2 .

Using the lower bound Kmin on k and the fact that |xn2 − x̄n2 | = O(h2
n), one can easily

deduce that the time σn from x̄n2 to xn2 along γn3 (i.e., γn3 (t0 + τn + σn) = xn2 ) satisfies
σn = O(h2

n).
We have thus constructed two ways to go from x0 to xn2 . The first one is to choose the

path containing x0, xn1 , and xn2 , which corresponds to the concatenation of the trajectories
γ0 on [t0, tn1 ] and γn1 on [tn1 , tn2 ], and the second one is the path containing x0, x̄n2 , and xn2 ,
which corresponds to the concatenation of the trajectories γn2 on [t0, t0 + τn] and γn3 on
[t0 + τn, t0 + τn + σn]. Letting Tn1 and Tn2 be the times for going from x0 to xn2 along
these two paths, respectively, we have, by construction and the claim, that Tn1 = 2hn and
Tn2 = τn + σn ≤ 2ρhn + O(h2

n). Hence, since ρ < 1, we have, for n large enough, that
Tn2 < Tn1 .

From (14), we deduce that
φ(t0, x0) = φ(tn1 , xn1 ) + hn + o(hn) = φ(tn2 , xn2 ) + Tn1 + o(hn),
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where the last equality comes from Proposition 4.5 and the fact that γn1 ∈ Opt(Γ, k, tn1 , xn1 ).
On the other hand, since the path from x0 to xn2 going through x̄n2 is an admissible
trajectory for k, we have, by Proposition 4.5, that φ(t0, x0) ≤ Tn2 +φ(t0 + Tn2 , x

n
2 ). Hence

(21) φ(tn2 , xn2 ) + Tn1 + o(hn) ≤ Tn2 + φ(t0 + Tn2 , x
n
2 ).

We also know that t0+Tn2 < t0+Tn1 = tn2 for n large enough. Therefore, by Proposition 4.9,
there exists a constant c > 0 such that
φ(tn2 , xn2 ) > φ(t0 + Tn2 , x

n
2 ) + (c− 1)(tn2 − t0 − Tn2 ) = φ(t0 + Tn2 , x

n
2 ) + (c− 1)(Tn1 − Tn2 ),

and, using (21), we get (c− 1)(Tn1 − Tn2 ) + Tn1 + o(hn) ≤ Tn2 , which leads to
2hn + o(hn) = Tn1 + o(hn) ≤ Tn2 ≤ 2ρhn +O(h2

n).
Divide above inequality by hn to observe that

2 + o(1) ≤ 2ρ+O(hn).
Finally by letting n → +∞, we conclude that ρ ≥ 1, which is a contradiction. Therefore
Case 2 will never happen and this ends the proof. □

Motivated by Proposition 4.13, we introduce the following definition.

Definition 4.15. Consider the optimal control problem OCP(Γ, k) and its value function
φ under the assumptions (H4), (H5), and (H7) and let W be as in Definition 4.11. If
(t0, x0) ∈ R+ × Rd is such that W(t0, x0) contains exactly one element −ω0, then ω0 is
called the normalized gradient of φ at (t0, x0) and denoted by ω0 = ∇̂φ(t0, x0).

As an immediate consequence of Proposition 4.12 and Theorem 4.14, we obtain the
following characterization of optimal controls.

Corollary 4.16. Consider the optimal control problem OCP(Γ, k) and its value function φ
under the assumptions (H4), (H5), and (H7). Let (t0, x0) ∈ R+×Rd, γ ∈ Opt(Γ, k, t0, x0),
and u be the optimal control associated with γ. Then, for every t ∈ (t0, t0 + φ(t0, x0)), φ
admits a normalized gradient at (t, γ(t)) and u(t) = −∇̂φ(t, γ(t)), i.e.,

(22) γ̇(t) = −k(t, γ(t))∇̂φ(t, γ(t)).

Combining Proposition 4.10 and Corollary 4.16, for every optimal trajectory γ, we
obtain that t 7→ ∇̂φ(t, γ(t)) is Lipschitz continuous for t between the initial and exit times
of γ. However, this provides no information on the regularity of (t, x) 7→ ∇̂φ(t, x), which
is the topic of our next result.

Proposition 4.17. Consider the optimal control problem OCP(Γ, k) and its value function
φ under the assumptions (H4), (H5), and (H7). Then ∇̂φ is continuous on its domain of
definition.

Proof. Let U be as in Definition 4.11 and D ⊂ R+ × (Rd \ Γ) be the domain of definition
of ∇̂φ, i.e., D = {(t0, x0) ∈ R+ × (Rd \ Γ) | U(t0, x0) is a singleton}. Let (tn, xn)n∈N be
a sequence in D converging as n → +∞ to some (t0, x0) ∈ D and let ūn = −∇̂φ(tn, xn).
We want to show that ūn → −∇̂φ(t0, x0) as n → +∞ and, since (ūn)n∈N is a sequence in
the compact set Sd−1, it suffices to show that −∇̂φ(t0, x0) is the unique adherent point of
(ūn)n∈N. Let ū0 be an adherent point of (ūn)n∈N and consider a subsequence of (ūn)n∈N
converging to ū0, which we still denote by (ūn)n∈N for simplicity.

Since ūn ∈ U(tn, xn), there exists a sequence of optimal trajectories (γn)n∈N, γn ∈
Opt(Γ, k, tn, xn), and a corresponding sequence of optimal controls (un)n∈N such that
un(tn) = ūn. From Proposition 4.10 and Arzelà–Ascoli Theorem, there exist elements
γ∗ and u∗ such that, up to extracting a subsequence, γn → γ∗ and un → u∗ uniformly
on compact time intervals. One immediately verifies that u∗(t0) = ū0, γ∗(t0) = x0, and
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that γ∗ ∈ Opt(Γ, k, t0, x0) and u∗ is its associated optimal control, which shows that
ū0 ∈ U(t0, x0) = {−∇̂φ(t0, x0)}, as required. □

5. Minimal-time mean field games

After having collected in Section 4 several preliminary results on the optimal control
problem OCP(Γ, k), we now turn to the study of the main problem considered in the
paper, the multi-population minimal-time mean field game MFG(Γ,K,m0). We address
existence of equilibria in Section 5.1, study their asymptotic behavior for large time in
Section 5.2, and characterize equilibria as solutions of a system of PDEs in Section 5.3.

Recall that, according to the presentation provided in Section 3, equilibria of MFG(Γ,K,
m0) are described in terms of vectors of measures Q = (Q1, . . . , QN ) ∈ P(C(R+;Rd))N .
Given such a vector of measures, we shall consider the N optimal control problems
OCP(Γi, kQ,i), with kQ,i given by kQ,i(t, x) = Ki(mi

t, m̂
i
t, x) for (t, x) ∈ R+×Rd and where

mi
t = et#Qi and m̂i

t is defined in (3). We will denote the value function of OCP(Γi, kQ,i) by
φQ,i, and we omit Q from the notation of both kQ,i and φQ,i when it is clear from the con-
text. For simplicity of notation, we also write Admi(Q) for Adm(ki) and Opti(Γ,Q, t0, x0)
for Opt(Γi, ki, t0, x0).

5.1. Existence of equilibria. The goal of this part is to establish existence of equilibria
for MFG(Γ,K,m0), which is done by recasting the existence of an equilibrium in terms of
the existence of a fixed point of a certain set-valued map and applying a suitable fixed-point
theorem. This section follows closely [46, Section 5] but, due to the facts that assumptions
(H1)–(H3) are weaker than those from [46] and that we work here with mean field games
in the non-compact state space Rd, several proofs must be adapted in a nontrivial way to
the present setting. The main result to be proved in this section is the following.

Theorem 5.1. Consider the mean field game MFG(Γ,K,m0) under assumptions (H1)–
(H3). Then there exists an equilibrium Q ∈ P(C(R+;Rd))N for MFG(Γ,K,m0).

Let us start by showing an additional continuity property of the value function.

Lemma 5.2. Consider the mean field game MFG(Γ,K,m0) under the assumptions (H1)–
(H3). Then, for every i ∈ {1, . . . , N}, (t, x,Q) 7→ φQ,i(t, x) is continuous on R+ ×Rd ×
P(C(R+;Rd))N .

Proof. Fix i ∈ {1, . . . , N} and let (tn, xn,Qn)n∈N be a sequence taking values inR+×Rd×
P(C(R+;Rd))N converging to some (t∗, x∗,Q∗), and denote Qn = (Q1,n, . . . , QN,n) and
Q∗ = (Q1,∗, . . . , QN,∗). For n ∈ N and (t, x) ∈ R+ ×Rd, define kn(t, x) = K(mi

n,t, m̂
i
n,t, x)

and k∗(t, x) = K(mi
∗,t, m̂

i
∗,t, x), where mi

n,t = et#Qn,i, mi
∗,t = et#Q∗,i, and m̂i

n,t and m̂i
∗,t

are defined as in (3). Note that, by continuity of Q 7→ et#Q, we have that kn(t, x) →
k∗(t, x) for every (t, x) ∈ R+ × Rd. For simplicity of notation, we write φn and φ∗ for
φQn,i and φQ∗,i, respectively.

By Proposition 4.4, (φn(tn, xn))n∈N is a bounded sequence and thus, to prove that it
converges to φ∗(t∗, x∗), it suffices to show that φ∗(t∗, x∗) is the unique adherent point of
(φn(tn, xn))n∈N. Let κ∗ be an adherent point of (φn(tn, xn))n∈N and consider the subse-
quence of (φn(tn, xn))n∈N which converges to κ∗, which we still denote by (φn(tn, xn))n∈N
for simplicity.

For n ∈ N, let γn ∈ Opti(Γ,Qn, tn, xn). Since (γn)n∈N is an equibounded and equi-
Lipschitz sequence, by Arzelà–Ascoli Theorem, up to extracting a subsequence, which
we still denote by (γn)n∈N, there exists γ∗ ∈ LipKmax(R+;Rd) such that γn → γ∗ as
n → +∞ (uniformly on compact time intervals). For every t1, t2 ∈ R+ with t1 < t2,
we have

∣∣∣γn(t2)−γn(t1)
t2−t1

∣∣∣ ≤ 1
t2−t1

r t2
t1
kn(s, γn(s)) ds and, using (H3) and letting n → +∞,
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we deduce that
∣∣∣γ∗(t2)−γ∗(t1)

t2−t1

∣∣∣ ≤ 1
t2−t1

r t2
t1
k∗(s, γ∗(s)) ds, yielding that γ∗ ∈ Admi(Q∗).

Moreover, since γn(tn) = xn, γn is constant on [0, tn] and [tn + φn(tn, xn),+∞), and
γn(tn + φn(tn, xn)) ∈ Γ for every n ∈ N, we easily deduce that γ∗(t∗) = x∗, γ∗ is constant
on [0, t∗] and [t∗ +κ∗,+∞), and γ∗(t∗ +κ∗) ∈ Γ, yielding in particular that φ∗(t∗, x∗) ≤ κ∗.

Let us assume, to obtain a contradiction, that φ∗(t∗, x∗) < κ∗. For simplicity, let
ςn = tn + φ∗(t∗, x∗), ς∗ = t∗ + φ∗(t∗, x∗), ξn = γn(ςn), and ξ∗ = γ∗(ς∗) ∈ Γ. Note that,
since φ∗(t∗, x∗) < κ∗, we have ξn /∈ Γ for n large enough. Let γ̃n ∈ C(R+;Rd) be defined
by

γ̃n(t) =



γn(t) if 0 ≤ t ≤ ςn,

ξn + ξ∗ − ξn
|ξ∗ − ξn|

Kmin(t− ςn) if ςn ≤ t ≤ ςn + |ξ∗ − ξn|
Kmin

,

ξ∗ if t ≥ ςn + |ξ∗ − ξn|
Kmin

.

Clearly, γ̃n ∈ Admi(Q) and τΓ(tn, γ̃n) ≤ φ∗(t∗, x∗)+ |ξ∗−ξn|
Kmin

. Since φ∗(t∗, x∗) < κ∗, we have
τΓ(tn, γ̃n) < φ∗(t∗,x∗)+κ∗

2 < κ∗ for n large enough, implying that φn(tn, xn) < φ∗(t∗,x∗)+κ∗
2 <

κ∗ for n large enough and contradicting thus the fact that φn(tn, xn) → κ∗ as n → +∞.
Hence, one has necessarily φn(tn, xn) → φ∗(t∗, x∗) as n → +∞, as required. □

The next result, which is an immediate consequence of Proposition 4.4, states an a
priori property of equilibria.

Lemma 5.3. Consider the mean field game MFG(Γ,K,m0), assume that (H1) and (H2)
are satisfied, and let ϕ be the function from Notation 3.3. Then there exists a nonde-
creasing function ψ : R+ → R+ such that, for every equilibrium Q = (Q1, . . . , QN ) ∈
P(C(R+;Rd))N of MFG(Γ,K,m0), t ≥ 0, i ∈ {1, . . . , N}, and R > 0, we have

Qi
(
LipKmax(R+;Bψ(R))

)
≥ ϕ(R).

In particular, denoting mi
t = et#Qi, we have mi

t(Bψ(R)) ≥ ϕ(R).

Lemma 5.3 shows that it suffices to look for equilibria of MFG(Γ,K,m0) in the set

(23) Q =
{

Q = (Q1, . . . , QN ) ∈ P(C(R+;Rd))N
∣∣∣ e0#Q = m0 and

∀i ∈ {1, . . . , N}, ∀R > 0, Qi
(
LipKmax(R+;Bψ(R))

)
≥ ϕ(R)

}
,

where ϕ and ψ are as in the statement of Lemma 5.3. We next provide elementary
properties of Q.

Lemma 5.4. Consider the mean field game MFG(Γ,K,m0), assume that (H1) and (H2)
are satisfied, and let Q be the set defined in (23). Then Q is nonempty, convex, and
compact with respect to the topology of weak convergence of measures.

Proof. The set Q is clearly convex and, to see that it is nonempty, define b : Rd →
C(R+;Rd) as the function which associates with each x ∈ Rd the function b(x) given by
b(x)(t) = x for every t ∈ R+. It is immediate to check that b#m0 ∈ Q, and hence Q is
nonempty.

To prove that Q is compact, notice first that Q = QN
1 ∩ Q2, where

Q1 =
{
Q ∈ P(C(R+;Rd))

∣∣∣ ∀R > 0, Q
(
LipKmax(R+;Bψ(R))

)
≥ ϕ(R)

}
and Q2 = {Q ∈ P(C(R+;Rd))N | e0#Q = m0}. Since Q 7→ e0#Q is continuous, Q2 is
closed, and hence it suffices to show that Q1 is compact. By Prokhorov Theorem (see,
e.g., [4, Theorem 5.1.3]), it suffices to show that Q1 is tight and closed. Tightness of Q1
follows immediately from the facts that ϕ(R) → 1 as R → +∞ and that, by Arzelà–Ascoli
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Theorem, for every R > 0, LipKmax(R+;Bψ(R)) is compact in the topology of uniform
convergence on compact sets.

To see that Q1 is closed, let (Qn)n∈N be a sequence in Q1 converging to some Q ∈
P(C(R+;Rd)). For every R > 0, LipKmax(R+;Bψ(R)) is closed and thus, by using [10,
Theorem 2.1], one obtains

Q(LipKmax(R+;Bψ(R))) ≥ lim sup
n→∞

Qn(LipKmax(R+;Bψ(R))) ≥ ϕ(R),

which proves that Q ∈ Q1. Hence Q1 is closed. □

We now recast the definition of equilibrium of MFG(Γ,K,m0) in terms of fixed points
of a set-valued map defined on Q. Let F : Q ⇒ Q associate with each Q ∈ Q the subset
F (Q) of Q defined by

(24) F (Q) =
{

Q̃ = (Q̃1, . . . , Q̃N ) ∈ Q
∣∣∣

∀i ∈ {1, . . . , N}, Q̃i-almost every γ satisfies γ ∈ Opti(Γ,Q, 0, γ(0))
}
.

Clearly, Q ∈ Q is an equilibrium of MFG(Γ,K,m0) if and only if it is a fixed point of
F , i.e., Q ∈ F (Q). For every i ∈ {1, . . . , N}, we consider the set Opti(Q) ⊂ C(R+;Rd)
containing all optimal trajectories of the i-th population for Q and starting at time 0, i.e.,

(25) Opti(Q) =
⋃

x0∈Rd

Opti(Γ,Q, 0, x0).

The set F (Q) can be rewritten in terms of Opti(Q) as

(26) F (Q) =
{

Q̃ = (Q̃1, . . . , Q̃N ) ∈ Q
∣∣∣ ∀i ∈ {1, . . . , N}, Q̃i(Opti(Q)) = 1

}
.

Lemma 5.5. Consider the mean field game MFG(Γ,K,m0) under the assumptions (H1)–
(H3) and let Q and Opti, i ∈ {1, . . . , N}, be defined as in (23) and (25). For every R > 0
and i ∈ {1, . . . , N}, define Ôpti,R : Q ⇒ C(R+;Rd) by

Ôpti,R(Q) = Opti(Q) ∩ LipKmax(R+;Bψ(R)).

Then Ôpti,R is upper semicontinuous.

The proof of Lemma 5.5 is based on the continuity of the value function from Lemma 5.2
and follows the same lines as that of [46, Lemma 5.4], being thus omitted here.

Lemma 5.6. Consider the mean field game MFG(Γ,K,m0) under the assumptions (H1)–
(H3) and let Q and F be defined as in (23) and (24), respectively. Then F is upper
semicontinuous and, for every Q ∈ Q, F (Q) is nonempty, convex, and compact.

Proof. Given Q ∈ Q, it follows immediately from (26) that F (Q) is convex, and one can
easily prove that it is nonempty and compact by adapting the arguments of [46, Lemma 5.3]
(see also [29, Lemma 4.7(a)]).

Since Q is compact and F has closed values, to prove that F is upper semicontinuous it
is sufficient to show that its graph is closed. Let (Qn)n∈N be a sequence in Q with Qn → Q
for some Q ∈ Q and (Q̃n)n∈N be a sequence in Q with Q̃n ∈ F (Qn) for every n ∈ N and
Q̃n → Q̃ for some Q̃ ∈ Q. We denote Qn = (Qn,1, . . . , Qn,N ) and Q̃n = (Q̃n,1, . . . , Q̃n,N ).

For each n ∈ N, since Q̃n ∈ F (Qn), we have Q̃n,i(Opti(Qn)) = 1 for every i ∈
{1, . . . , N} and, since Q̃n ∈ Q, we also have that Q̃n,i(LipKmax(R+;Bψ(R))) ≥ ϕ(R) for
every i ∈ {1, . . . , N} and R > 0, where ϕ is the function from Notation 3.3. Hence
Q̃n,i(Ôpti,R(Qn)) ≥ ϕ(R) for every n ∈ N, i ∈ {1, . . . , N}, and R > 0.

For every ϵ ∈ (0, 1) and i ∈ {1, . . . , N}, let V i
ϵ = {γ ∈ C(R+;Rd) | d(γ,Opti(Q)) ≤ ϵ},

where d is given by (2), and note that V i
ϵ is a neighborhood of Ôpti,R(Q) for every
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R > 0. Let R0 > 0 be such that ϕ(R0) ≥ 1 − ϵ. Since Ôpti,R0 is upper semicontinuous
by Lemma 5.5, there exists a neighborhood Wϵ of Q in Q such that Ôpti,R0(Q̂) ⊂ V i

ϵ for
every i ∈ {1, . . . , N} and Q̂ ∈ Wϵ. From the convergence Qn → Q, one concludes that
there exists Nϵ such that, for every n ≥ Nϵ, one has Qn ∈ Wϵ, and thus Ôpti,R0(Qn) ⊂ V i

ϵ .
Since Q̃n,i(Ôpti,R0(Qn)) ≥ ϕ(R0) ≥ 1 − ϵ, one obtains that Q̃n,i(V i

ϵ ) ≥ 1 − ϵ for ev-
ery n ≥ Nϵ and i ∈ {1, . . . , N}. Since Q̃n → Q̃ and V i

ϵ is closed, we have Q̃i(V i
ϵ ) ≥

lim supn→∞ Q̃n,i(V i
ϵ ) ≥ 1−ϵ. On the other hand, since Opti(Q) is closed and (V i

ϵ )ϵ∈(0,1) is a
nondecreasing family of sets with

⋂
ϵ∈(0,1) V

i
ϵ = Opti(Q), we conclude that Q̃i(Opti(Q)) =

limϵ→0 Q̃i(V i
ϵ ) = 1. Hence Q̃ ∈ F (Q), which concludes the proof that the graph of F is

closed. □

Let us now conclude the proof of Theorem 5.1.

Proof of Theorem 5.1. By Lemmas 5.4 and 5.6 and Kakutani fixed point theorem (see,
e.g., [33, § 7, Theorem 8.6]), F admits a fixed point, i.e., there exists Q ∈ Q such that
Q ∈ F (Q), which means Q is an equilibrium for MFG(Γ,K,m0). □

Remark 5.7. Theorem 5.1 asserts the existence of an equilibrium for MFG(Γ,K,m0),
but uniqueness does not necessarily hold. An example of this fact in the single-population
case is presented in [46, Remark 7.1] under the assumption K1 ≡ 1, in which there is no
interaction between agents.

Let us provide a heuristic example illustrating why uniqueness is not expected in the
multi-population case even when agents interact. Consider the case d = N = 2, m1

0 is the
uniform measure on B((−1, 0), R), m2

0 is the uniform measure on B((1, 0), R), 0 < R < 1,
Γ1 = B((1, 0), R), and Γ2 = B((−1, 0), R), and assume that K1 and K2 are such that
agents are more penalized by the other population than by their own population, i.e.,
Ki(µ, ν, x) < Ki(ν, µ, x) if ν is larger than µ in a neighbourhood of x, for i = 1, 2. In
this case, we may expect heuristically the phenomenon of lane formation, in which the
populations will group in separate lanes, so that each population gets to its target set while
avoiding interaction with the other population (see, for instance, [27,30] for more details on
lane formation in other kinds of models for crowd motion and in experiments). If the lanes
at an equilibrium are asymmetric (which is expected if our model reproduces the behaviour
usually observed in experiments), then we obtain another different equilibrium with the
same initial conditions by performing the symmetry transformation (x1, x2) 7→ (x1,−x2),
and hence we do not expect uniqueness of equilibrium in this case.

5.2. Asymptotic behavior. In this part, we characterize the behavior of mi
t as t → +∞,

wheremi
t = et#Qi and Q = (Q1, . . . , QN ) is an equilibrium of MFG(Γ,K,m0). Intuitively,

one expects mi
t to converge to a measure concentrated on the target set Γi and, in addition

to proving this result in the general case, we also provide convergence rates when the initial
measure mi

0 has finite p moments for some p ∈ [1,+∞) and prove finite-time convergence
when the initial measure has bounded support.

In order to characterize the limit of mi
t as t → +∞, let us introduce some notation.

Let Clim(R+;Rd) = {γ ∈ C(R+;Rd) | limt→+∞ γ(t) exists and is finite}, which is a Borel
subset of C(R+;Rd), and define e∞ : Clim(R+;Rd) → Rd by e∞(γ) = limt→+∞ γ(t),
which is a Borel-measurable function. By definition of optimal trajectories, Opti(Q) ⊂
Clim(R+;Rd) for every Q ∈ P(C(R+;Rd))N , and thus e∞#Q ∈ P(Rd)N is well-defined
for every equilibrium Q of a mean field game MFG(Γ,K,m0).

We are now in position to state and prove the main result of this section.

Theorem 5.8. Consider the mean field game MFG(Γ,K,m0) under assumptions (H1)
and (H2). Let Q = (Q1, . . . , QN ) ∈ P(C(R+;Rd))N be an equilibrium of MFG(Γ,K,m0),
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mt = (m1
t , . . . ,m

N
t ) be defined by mt = et#Q for t ∈ [0,+∞], and ψ be the function whose

existence is asserted in Proposition 4.4.
(a) For every i ∈ {1, . . . , N}, we have mi

t → mi
∞ as t → +∞.

(b) Let p ∈ [1,+∞), i ∈ {1, . . . , N}, and assume that mi
0 ∈ Pp(Rd). Then, for every

t ∈ [0,+∞], we have mi
t ∈ Pp(Rd). Moreover, there exist constants α > 0 and t0 ≥ 0 such

that
(27) Wp(mi

t,m
i
∞)p ≤ 2p

w
Rd\Bα(t−t0)

ψ(|x|)p dmi
0(x), ∀t ≥ t0.

(c) Let i ∈ {1, . . . , N} and assume that mi
0 is compactly supported. Then, for every

t ∈ [0,+∞], mi
t is compactly supported and there exists τ ≥ 0 such that

mi
t = mi

∞, ∀t ≥ τ.

Remark 5.9. Note that, by Proposition 4.4, ψ has linear growth and thus, together with
the assumption that mi

0 ∈ Pp(Rd)N , one immediately obtains that the right-hand side of
(27) tends to 0 as t → +∞. When more information on the distribution of mi

0 is available,
the right-hand side of (27) allows one to obtain estimates on the convergence rate of mi

t

as t → +∞ in the Wasserstein distance.

Proof of Theorem 5.8. To show (a), let f : Rd → R be continuous and bounded and fix
i ∈ {1, . . . , N}. We then have, using the continuity and boundedness of f and Lebesgue’s
dominated convergence theorem, that

w
Rd
f(x) dmi

t(x) =
w

Clim(R+;Rd)
f(γ(t)) dQi(γ)

−−−−→
t→+∞

w
Clim(R+;Rd)

f
(

lim
t→+∞

γ(t)
)

dQi(γ) =
w
Rd
f(x) dmi

∞(x),

yielding the required convergence.
Let us now prove (b). For t ∈ [0,+∞], we have, using Proposition 4.4, that
w
Rd

|x|p dmi
t(x) =

w
Opti(Q)

|γ(t)|p dQi(γ)

≤
w

Opti(Q)
ψ(|γ(0)|)p dQi(γ) =

w
Rd
ψ(|x|)p dmi

0(x),

where γ(∞) is defined as limt→+∞ γ(t). Since ψ has linear growth, it follows that mi
t ∈

Pp(Rd) for every t ∈ [0,+∞].
Let T be the function whose existence is asserted in Proposition 4.4 and α > 0, t0 ≥ 0

be such that T (R) ≤ R
α + t0 for every R > 0. Let t ∈ [t0,+∞). Note that, using the

notations introduced in Section 2, we have (et, e∞)#Qi ∈ Π(mi
t,m

i
∞) and thus, by (1), we

have
Wp(mi

t,m
i
∞)p ≤

w
Rd×Rd

|x− y|p d(et, e∞)#Qi(x, y) =
w

Opti(Q)
|et(γ) − e∞(γ)|p dQi(γ).

If γ ∈ Opti(Q) is such that |γ(0)| ≤ α(t − t0), then, since T (|γ(0)|) ≤ t, we have, as a
consequence of Proposition 4.4, that γ(t) ∈ Γi and γ is constant on [t,+∞), yielding that
et(γ) = e∞(γ). Thus

Wp(mi
t,m

i
∞)p ≤

w
Opti(Q)∩{γ|γ(0)/∈Bα(t−t0)}

|et(γ) − e∞(γ)|p dQi(γ).

By using the fact from Proposition 4.4 that et(γ) ∈ Bψ(|γ(0)|) for all t ∈ [0,+∞] and
γ ∈ Opti(Q), one has |et(γ)| ≤ ψ(|γ(0)|) and thus

Wp(mi
t,m

i
∞)p ≤

w
Opti(Q)∩{γ|γ(0)/∈Bα(t−t0)}

2pψ(|γ(0)|)p dQi(γ)

= 2p
w
Rd\Bα(t−t0)

ψ(|x|)p dmi
0(x),
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as required.
Finally, to prove (c), let R0 > 0 be such that the support of mi

0 is included in BR and
notice that, as a consequence of Proposition 4.4, the support of mi

t is included in Bψ(R0)
for every t ∈ [0,+∞]. Letting T be as in the statement of Proposition 4.4 and τ = T (R0),
we deduce that, for every t ≥ τ and γ ∈ Opti(Q) with |γ(0)| ≤ R0, we have et(γ) = e∞(γ),
which concludes the proof since Qi is supported in Opti(Q) ∩ {γ | |γ(0)| ≤ R0}. □

5.3. The MFG system. As a final step in the study of MFG(Γ,K,m0), we characterize
its equilibria as solutions of a system of partial differential equations, called the MFG
system. Given an equilibrium Q = (Q1, . . . , QN ), by Proposition 4.8, the value functions
φQ,i, i ∈ {1, . . . , N}, corresponding to each population are already known to satisfy a
Hamilton–Jacobi equation, and we are thus left to prove that the measures mi

t = et#Qi
are also solutions of suitable partial differential equations. Since Qi is concentrated on
optimal trajectories, which satisfy (22) thanks to Corollary 4.16, one expects t 7→ mi

t to
be a solution to a continuity equation with velocity field −∇̂φQ,i.

In order for the above reasoning to be made precise, one must verify that the as-
sumptions of Corollary 4.16 are satisfied. Since (H7) requires k to be locally Lipschitz
continuous both in time and space, we shall make here the following stronger assumption
on MFG(Γ,K,m0).
(H8) There exists p ≥ 1 such that m0 ∈ Pp(Rd)N and, for every i ∈ {1, . . . , N}, Ki :

Pp(Rd)×Pp(Rd)×Rd → R+ is Lipschitz continuous with respect to all its variables
(using the Wasserstein distance Wp in Pp(Rd)) and locally in the last variable, i.e.,
for every R > 0, there exists L > 0 such that, for every (µ1, ν1, x1), (µ2, ν2, x2) ∈
Pp(Rd) × Pp(Rd)N−1 ×BR, we have

|Ki(µ1, ν1, x1) −Ki(µ2, ν2, x2)| ≤ L (Wp(µ1, µ2) + Wp(ν1, ν2) + |x1 − x2|) .

Remark 5.10. If Q = (Q1, . . . , QN ) ∈ P(C(R+;Rd))N is such that Qi(Lipc(R+;Rd)) =
1 for some c > 0 and every i ∈ {1, . . . , N}, and if et#Qi ∈ Pp(Rd) for some p ≥ 1
and every t ≥ 0 and i ∈ {1, . . . , N}, then one immediately verifies, by considering the
coupling measure (et, es)#Qi ∈ Π(mi

t,m
i
s) in (1), that t 7→ et#Qi is Lipschitz continuous

with respect to the distance Wp in Pp(Rd). Hence, if MFG(Γ,K,m0) satisfies (H8)
and Q is an equilibrium of MFG(Γ,K,m0), the corresponding optimal control problems
OCP(Γi, kQ,i), i ∈ {1, . . . , N}, satisfy (H7).

Theorem 5.11. Consider the mean field game MFG(Γ,K,m0) under assumptions (H1),
(H2), and (H8) and assume that Q = (Q1, . . . , QN ) ∈ P(C(R+;Rd))N is an equilibrium of
MFG(Γ,K,m0). Consider the value functions φi = φQ,i and the time-dependent measures
mi(t, ·) = mi

t = et#Qi for i ∈ {1, . . . , N}. Then (m1, . . . ,mN , φ1, . . . , φN ) solves the MFG
system

(28)



∂tmi(t, x) − div
(
mi(t, x)Ki(mi

t, m̂
i
t, x)∇̂φi(t, x)

)
= 0, (t, x) ∈ R∗

+ × (Rd \ Γi),

− ∂tφi(t, x) + |∇φi(t, x)|Ki(mi
t, m̂

i
t, x) − 1 = 0, (t, x) ∈ R+ × (Rd \ Γi),

mi(0, ·) = mi
0,

φi(t, x) = 0, (t, x) ∈ R+ × Γi,
for all i ∈ {1, . . . , N}, where the first and second equations are satisfied, respectively, in
the sense of distributions and in the viscosity sense.

Note that the Hamilton–Jacobi equations on φi and the corresponding boundary con-
ditions follow immediately from Proposition 4.8, and the continuity equations on mi can
be established using (22) and the fact that, from Proposition 4.12, Theorem 4.14, Def-
inition 4.15, and Proposition 4.17, ∇̂φi is continuous on the support of mi

t. We refer
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to [46, Theorem 6.1] and [29, Theorem 4.12] for more details on the proof in the case of a
single population, but we stress the fact, contrarily to those references, we establish here
(22), and hence the continuity equations on mi, under weaker assumptions on Ki and
without relying on semiconcavity properties of φi. Notice also that the coupling between
the different populations occur through the terms m̂i

t, which are defined in (3).
Theorem 5.11 shows that any equilibrium Q of a mean field game MFG(Γ,K,m0)

satisfies the MFG system (28). To prove that (28) actually characterizes equilibria of
MFG(Γ,K,m0), we also need a converse statement, namely that solutions of (28) yield
equilibria of MFG(Γ,K,m0). Such a converse statement has been sketched in [46, Re-
mark 6.1] for single-population minimal-time mean field games. We now provide a more
detailed argument in our present setting.

Theorem 5.12. Consider the mean field game MFG(Γ,K,m0) under assumptions (H1),
(H2), and (H8), and assume in addition that m0 = (m1

0, . . . ,m
N
0 ) is such that mi

0 is com-
pactly supported for every i ∈ {1, . . . , N}. For i ∈ {1, . . . , N}, let φi : R+ × Rd →
R+ and t 7→ mi(t, ·) ∈ P(Rd) be continuous functions. Assume that, for every i ∈
{1, . . . , N} and t > 0, ∇̂φi(t, ·) exists and is continuous in the support of mi(t, ·), and
that (m1, . . . ,mN , φ1, . . . , φN ) satisfies (28), where the first equation is satisfied in the
sense of distributions and the second equation is satisfied in the viscosity sense. Then
there exists an equilibrium Q = (Q1, . . . , QN ) ∈ P(C(R+;Rd))N of MFG(Γ,K,m0) such
that, for every i ∈ {1, . . . , N}, mi

t = mi(t, ·) = et#Qi for every t ≥ 0 and φi is the value
function of OCP(Γi, kQ,i).

Proof. Let ki : R+ ×Rd → R+ be defined for (t, x) ∈ R+ ×Rd by ki(t, x) = Ki(mi
t, m̂

i
t, x),

where m̂i
t is defined as in (3), and consider the optimal control problem OCP(Γi, ki). Since

φi is lower bounded by 0, satisfies the second equation of (28) in the viscosity sense, and
also satisfies the fourth equation of (28), we deduce from [7, Chapter IV, Corollary 4.3]
that φi is the value function of OCP(Γi, ki). Note that [7, Chapter IV, Corollary 4.3]
is stated for autonomous control systems, but it can be applied to the non-autonomous
control system γ̇(t) = ki(t, γ(t))u(t) by considering the augmented state x̃(t) = (t, γ(t)).
Moreover, [7, Chapter IV, Corollary 4.3] assumes that the target set has compact boundary,
but we get the conclusion in our framework by reasoning locally and using Proposition 4.4.

For i ∈ {1, . . . , N}, since mi satisfies the continuity equation in (28) in the sense of
distributions and the corresponding velocity field is bounded by Kmax, it follows from the
Superposition Principle for continuity equations (see [3, Theorem 3.2]) that there exists
Qi ∈ P(C(R+;Rd)) such that mi

t = et#Qi for every t ≥ 0. Let Q = (Q1, . . . , QN ). Note
that, since mi

0 is compactly supported and the velocity field in the continuity equation is
bounded, mi

t is also compactly supported, and thus Q ∈ Q. We will show that Q is an
equilibrium of MFG(Γ,K,m0) by showing that Q ∈ F (Q), i.e., that Qi is supported on
Opti(Q).

To see that, notice that, from the proof of [3, Theorem 3.2], it also follows that Qi is con-
centrated on the solutions of γ̇(t) = −ki(t, γ(t))∇̂φi(t, γ(t)), which are clearly admissible
trajectories for OCP(Γi, ki) since |∇̂φi(t, γ(t))| = 1. We prove that such trajectories are
optimal by showing that they satisfy the equality in the dynamic programming principle
(8). Let γ be such a trajectory and notice that it is Kmax Lipschitz continuous. From the
definition of normalized gradient, we have

lim
h→0+

φi
(
t+ h, γ(t) − hki(t, γ(t))∇̂φi(t, γ(t))

)
− φi(t, γ(t))

h
= −1.

Using the facts that γ(t+h) = γ(t) +hγ̇(t) + o(h) and that φi is Lipschitz continuous, we
deduce that

lim
h→0+

φi(t+ h, γ(t+ h)) − φi(t, γ(t))
h

= −1.
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Since t 7→ φi(t, γ(t)) is Lipschitz continuous, and hence differentiable almost everywhere,
we deduce that d

dtφi(t, γ(t)) = −1 a.e., and thus, integrating the above expression from t
to t+h, we get that φi(t+h, γ(t+h))−φi(t, γ(t)) = −h, and therefore, by Proposition 4.5,
γ is optimal for OCP(Γi, ki). Hence Qi is concentrated on Opti(Q), concluding the proof
that Q is an equilibrium. □
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