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Abstrat:This paper is a survey on impliit variational inequalities arising in the studyof unilateral ontat problems with frition. Reent works on mathematial andnumerial approahes of quasistati problems are presented. The oupling ofunilateral ontat, frition, and adhesion is onsidered and previous results aregeneralized to this ase.1.1 INTRODUCTIONIt an be said that the bases of the mathematial formulation of unilateraland fritional ontat have been set by a Frenh-Italian shool. On the ba-sis of Signorini's formulation (Signorini, 1959), the unilateral ontat prob-lems have been studied by variational methods and by an intensive develop-ment of the theory of variational inequalities by (Fihera, 1964; 1972), (Lionsand Stampahia, 1967; Duvaut and Lions, 1972; Moso, 1975), et.. Theintrodution of frition has ompliated the mathematial problems, even inthe stati ase, sine the problems are then related to impliit variational in-equalities or to quasi variational inequalities (in a dual formulation). The ad-vanes during the last twenty years are due to several groups: in Austin (Oden,Kikuhi), for stati and dynami formulations, in Link�oping (Klarbring, Ander-sson), for modelling, mathematial programming and analysis, in Montpellier(Moreau, Jean), for onvex analysis and dynami problems, in Prague (Jarusek,Haslinger, Hlava�ek, Ne�as), for mathematial and numerial analysis, and inThessaloniki (Panagiotopoulos), for extensions to nonsmooth mehanis. Thenames of Curnier (Lausanne), Marques, Martins and Pires (Lisbon), Mr�oz andTelega (Warsaw), Pfei�er and Gloker (Munih), Wriggers (Darmstadt) havealso to be mentionned. In this paper, we are onerned with a mathematialanalysis of quasistati unilateral ontat problems with nonloal frition law.A generalization to the oupling with adhesion is also onsidered and variousnumerial treatments are given.1.2 QUASISTATIC CONTACT PROBLEMS WITH FRICTIONIn this setion we present the mathematial and numerial results whih havebeen reently obtained for quasistati unilateral problems with a nonloal fri-tion law (Cou et al., 1996). Unilateral onditions are stritly imposed, we useneither penalization nor normal ompliane. Existene results for quasistatifritional ontat problems with a normal ompliane law have been proved by(Andersson, 1991; 1995) and, in the presene of a time regularization, by (Klar-bring et al., 1991). We onsider a variational formulation of these problems,ombining an inequality desribing the frition and an inequality representingthe unilateral ontat onditions. A time disretization is adopted and if the



frition oeÆient is suÆiently small then the inremental formulation thatan be derived from this disretization has a unique solution. By using appro-priate estimates for the inremental solutions, we are able to prove the existeneof a quasistati solution.1.2.1 The lassial formulation of unilateral ontat problems with fritionConsider a linear elasti body oupying a domain 
 of Rd; d = 2; 3, withsuÆiently regular boundary � = ��u [ ��� [ �� . We assume that on �u(with mes(�u) > 0) the displaement vetor equals zero. On �� a surfaefore density � is presribed and on 
 a volume fore density f is applied.The solid is initially in ontat with a rigid �xed support along � and thedisplaements on this part of the boundary satisfy the unilateral onstraints ofnon penetration into the support (Signorini's onditions) and are submitted tononloal frition when ontat ours. We suppose that we may neglet theinertial terms. We denote by u = (ui) the displaement vetor, � = (�ij) thestress tensor, � = (�ij) the strain tensor and by A = (Aijkl) the elastiity tensor.We make the lassial deomposition into normal and tangential omponentsfor the ontat fores and the displaement vetor on � :u = uN n+ uT ; � n = �N n+ �T with uN = u:n ; �N = (� n):n ;where n is the outward unit normal vetor to �. The lassial formulation ofthis problem is as follows.P1 : Find a displaement �eld u = u(t; x) whih satis�es, for all t 2 [0; T ℄,the following equations and onditions:div �(u) + f = 0 in 
 ; (1.1)�(u) = A : �(u) in 
 ; (1.2)u = 0 on �u ; (1.3)�(u)n = � on �� ; (1.4)uN � 0; �N (u) � 0 and �N (u):uN = 0 on � ; (1.5)j�T (u)j � � j��N (u)j andj�T (u)j < � j��N (u)j ) _uT = 0 ;j�T (u)j = � j��N (u)j )9� � 0 _uT = ���T (u) on � ; (1.6)where � is the frition oeÆient and ��N is a regularization of the normalontat fore (Duvaut, 1980; Demkowiz and Oden, 1982; Oden and Pires,1983; Cou et al., 1996).



1.2.2 Variational formulationWe de�ne the spae V = nv 2 �H1(
�d ; v = 0 a.e. on �uo and we set K =fv 2 V ; vN � 0 a.e. on �g : The norm on V is given by jj:jj and h:; :i shalldenote the duality pairing on H 12 (�) � H� 12 (�). We suppose that f 2W 1;2(0; T ; �L2(
)�d); � 2 W 1;2(0; T ; �L2(��)�d) ; so that we have F 2W 1;2(0; T ;V ),where (F; v) = Z 
f:vdx + Z ���:vds 8 v 2 V:We shall adopt the following notations :� a : V � V �! IR;a(u; v) = Z 
Aijkl�ij(u)�kl(v)dx 8u; v 2 V; where Aijkl 2 L1(
);1 � i; j; k; l � d ; with the usual properties of elliptiity and symmetry:� j : V � V �! IR ;j(u; v) = Z ��j��N (Pu)jjvT jds ; whereP is the projetion of W 1;2(0; T ;V ) on V0 withV0 = ( w 2W 1;2(0; T ;V ) ; Z T0 a(w; ) dt = Z T0 (f;  )[L2(
)℄d dt+Z T0 (�;  )[L2(��)℄d dt;8 2 L2(0; T ;V );  = 0 a.e. on ��℄0; T [ ) ;� 2 L1(�) and � � 0 a.e. on � ;( : )� : H� 12 (�)! L2(�) is a linear and ompat mapping :Then the problem (1.1)-(1.4), (1.5), (1.6) admits the following variational for-mulation (Cou et al., 1996).P2 : Find u 2 W 1;2(0; T ;V ) suh that u(0) = u0 and for almost allt 2 [0; T ℄ u(t) 2 K anda(u; v � _u) + j(u; v)� j(u; _u) � (F; v � _u) + h�N (u); vN � _uN i 8v 2 V; (1.7)h�N (u); zN � uNi � 0 8 z 2 K; (1.8)where the initial displaement u0 belongs to K and satis�es the following om-patibility ondition :a(u0; w � u0) + j(u0; w � u0) � (F (0); w � u0) 8w 2 K:A similar variational formulation was proposed in (Telega, 1991) . The follow-ing well known property of the mapping j involved in the problem P2 holdswith �� = j�jL1(�) :9C > 0 8 t 2 [0; T ℄ and 8u; �u; v; �v 2 V0jj(u; v)� j(u; �v)� j(�u; v) + j(�u; �v)j � ��Cjju� �ujj jjv � �vjj :



1.2.3 Inremental formulationsInremental formulations an be obtained by operating a time disretization ofproblem P2 , taking n 2 IN� and setting �t = T=n; ti = i�t and F i = F (ti)for i = 0; :::; n . Using an impliit sheme we onsider the following sequeneof problems Pn;i2 ; i = 0; :::; n� 1 , de�ned for u0 = u0 :Pn;i2 : Find ui+1 2 K suh that :a(ui+1; v � ui+1 � ui�t ) + j(ui+1; v)� j(ui+1; ui+1 � ui�t ) �(F i+1; v � ui+1 � ui�t ) + h�N (ui+1); vN � ui+1N � uiN�t i 8 v 2 V ; (1.9)h�N (ui+1); zN � ui+1N i � 0 8 z 2 K : (1.10)ProblemsPn;i2 ; i = 0; :::; n�1 , are equivalent to the following sequene Sn;i2 ; i =0; :::; n� 1 ;where Sn;i2 : Find ui+1 2 K suh thata(ui+1; w � ui+1) + j(ui+1; w � ui)� j(ui+1; ui+1 � ui) �(F i+1; w � ui+1) 8w 2 K : (1.11)1.2.4 Existene resultsInequalities suh as Sn;i2 are ellipti quasi variational inequalities so that have aunique solution if the frition oeÆient is suÆiently small ( �� < m=C , wherem is the oeriveness onstant of the bilinear form a) (Cou, 1984; Capatinaand Cou, 1991). We suppose from now that � satis�es this ondition. In orderto pass to the limit in the inremental formulations, the following bounds forthe inremental solution ui and also for the di�erene �ui = ui+1 � ui anbe obtained (Cou et al., 1996) :jjuijj � C1 jjF ijj 8i = 0; :::; n and jj�uijj � C1 jj�F ijj 8i = 0; :::; n� 1 :We de�ne the sequenes (un)n ; (~un)n , suh that un 2 L2(0; T ;V ) ; ~un 2W 1;2(0; T ;V ) 8n 2 IN� , given by un(0) = ~un(0) = u0 andun(t) = ui+1 8t 2℄ti; ti+1℄ ;~un(t) = ui + (t� ti)�t (ui+1 � ui) 8t 2℄ti; ti+1℄ ;where uk is the solution of Sn;k2 . Then the following existene and approxima-tion result holds (Cou et al., 1996).



Theorem 1 There exists a subsequene (~unp)p of (~un)n that onverges weaklyin W 1;2(0; T ;V ) to an element u; suh that 8t 2 [0; T ℄ (unp(t))p onvergesweakly to u(t) in V . Every suh weak limit u is a solution of P2 .1.3 EXTENSION TO A MODEL COUPLING ADHESION ANDFRICTIONThis setion is onerned with a model where unilateral ontat onditions,adhesion and frition between two elasti bodies are strongly oupled. Theinterfae is onsidered as a material surfae and the derivation of this modelfollows from the priniple of virtual power and the priniples of thermodynamis(Cang�emi, 1997), (Raous et al., 1998; 1997). Adhesion is haraterized by anew variable, the intensity of adhesion � introdued by (Fr�emond, 1987). Wepropose a variational formulation whih generalizes the one already given forthe quasistati frition problems in Setion 2. The use of an impliit shemeleads us to inremental formulations for whih an existene and uniquenessresult is given if the frition oeÆient is suÆiently small. Algorithms foromputing the inremental solutions are presented.1.3.1 The lassial formulation of quasistati adhesion problemsLet 
1 and 
2 be two disjoint domains of Rd; d = 2; 3 , oupied by two linearelasti bodies with suÆiently regular boundaries �� = ���u [ ���� [ ��; � =1; 2, where � is the ontat boundary. Suppose that on 
1 [ 
2 and on �1�,�2� the volume fore densities f1, f2 and the surfae fore densities �1, �2are respetively applied. On �1u and �2u (with mes(��u) > 0; � = 1; 2) thedisplaements equal zero. We denote by [u℄ = u1�u2 the relative displaementon � and by n� the outward unit normal vetor to �� ; � = 1; 2 .The equilibrium equations an be dedued from the priniple of virtual powerto the whole system 
1 [
2 [� . The onstitutive laws are obtained from thestate laws , the omplementary laws for the bodies and the ontat boundary� whih will be onsidered in what follows as a material boundary with aspei� thermodynami behaviour (Fr�emond, 1987; Klarbring, 1990). The statevariables are : the in�nitesimal strain tensor � = (�ij), the jump [u℄ on � andthe intensity of adhesion � (� = 1 means that the adhesion is total, � = 0means that there is no adhesion and 0 < � < 1 is the ase of partial adhesion) .For the interfae, we hoose the following free energy :	([uN ℄; [uT ℄; �) = CN2 [uN ℄2�2 + CT2 [uT ℄2�2 � w � ++I ~K([u℄) + IP (�) ;



with I ~K ; IP the indiator funtions of ~K = fv ; vN � 0g and P = f ; 0 � � 1g . We introdue also a pseudo-potential of dissipation � , having thefollowing form (Cou et al., 1998; Raous et al., 1998) :��[ _uT ℄; _�;�N� = � ����N + CN [uN ℄�2�� j[ _uT ℄j+ b2 _�2 + IC�( _�);where �N = (�N ; [uN ℄; �) , � is the frition oeÆient, ��N is a regularizationof the normal ontat fore �N and C� = f ;  � 0g. The adhesion is gov-erned here by a ompliane law, where CN and CT are material harateristioeÆients. As shown in (Cou et al., 1998; Raous et al., 1998; 1997) , the statelaws and the omplementary laws give the following onstitutive laws for theinterfae, oupling unilateral ontat, frition and adhesion :- unilateral ontat onditions�N + CN [uN ℄�2 � 0 ; [uN ℄ � 0 and ��N + CN [uN ℄�2� [uN ℄ = 0 ; (1.12)- adhesion and frition law���T + CT [uT ℄�2�� � � ����N + CN [uN ℄�2�� ;���T + CT [uT ℄�2�� < � ����N + CN [uN ℄�2�� ) [ _uT ℄ = 0 ;���T + CT [uT ℄�2�� = � ����N + CN [uN ℄�2�� )9� � 0 �T + CT [uT ℄�2 = �� [ _uT ℄ ; (1.13)- damage evolution equationb _� = � �w � (CN [uN ℄2 + CT [uT ℄2)� �� : (1.14)The onditions (1.12) represent a ontat law where no interpenetration be-tween the two bodies ours. The frition-adhesion law (1.13) expresses theoupling between a (regularized) Coulomb fore and an extra ompliane forein the tangential diretion. When total deohesion ours (� = 0), the relations(1.12), (1.13) are the lassial unilateral ontat (or Signorini's) onditions andfrition onditions for the two elasti bodies.1.3.2 Variational and inremental formulations of adhesion problemsWe denote by V �; � = 1; 2 ; the spaesV � = nv� 2 �H1(
�)�d ; v� = 0 a.e. on ��uo and we set



V = V 1 � V 2; K = �v = (v1; v2) 2 V; [vN ℄ � 0 a.e. on �	 ; H = L1(�) :The norm on V is given by jjvjj = jjv1jjV 1 + jjv2jjV 2 for all v 2 V :We suppose that :(f1; f2) 2W 1;2(0; T ; �L2(
1)�d � �L2(
2)�d);(�1; �2) 2 W 1;2(0; T ; hL2(�1�)id � hL2(�2�)id);whih imply F 2W 1;2(0; T ;V) , where(F; v) = P�=1;2"Z 
�f�:v�dx+ Z �����:v�ds# 8 v = (v1; v2) 2 V:We shall adopt the following notations :� a : V �V �! IR;a(u; v) = a1(u1; v1) + a2(u2; v2) 8u = (u1; u2); v = (v1; v2) 2 V;where a�(u�; v�) = Z 
�A�ijkl�ij(u�)�kl(v�)dx; � = 1; 2;� j : H �V �V �! IR ;j(�; u; v) = Z ��j��N (P 1u1) + CN�2[uN ℄jj[vT ℄jds; whereP 1 is the projetion of V 1 on V 10 withV 10 = (w1 2 W 1;2(0; T ;V 1) ; Z T0 a1(w1;  1) dt = Z T0 (f1;  1)[L2(
1)℄d dt+Z T0 (�1;  1)[L2(�1�)℄d dt;8 1 2 L2(0; T ;V 1);  1 = 0 a.e. on ��℄0; T [) ;� 2 L1(�) and � � 0 a.e. on � ;( : )� : H� 12 (�)! L2(�) is a linear and ompat mapping ,� bN ; bT : H �V �V �! IR ;bN(�; u; v) = Z �CN�2[uN ℄[vN ℄ds and bT (�; u; v) = Z �CT�2[uT ℄[vT ℄ds;� g(�; u) = �1b �w � (CN [uN ℄2 + CT [uT ℄2)� �� :Then the loal problem (1.12)-(1.14) admits the following variational formu-lation .P3 : Find (u; �) 2W 1;2(0; T ;V)�W 1;2(0; T ;H) suh that u(0) = u0 ; �(0) =�0 and for almost all t 2 [0; T ℄ ; u(t) 2 K anda(u; v � _u) + j(�; u; v)� j(�; u; _u) + bT (�; u; v � _u) �(F; v � _u) + h�N (u1); [vN ℄� [ _uN ℄i 8 v 2 V ; (1.15)



h�N (u1); [zN ℄� [uN ℄i+ bN (�; u; z � u) � 0 8 z 2 K ; (1.16)_� = g(�; u) a.e. on � ; (1.17)where the initial onditions u0 2 K ; �0 2 H with �0 2 [0; 1[ a.e. on � , satisfythe following ompatibility ondition : for all w 2 Ka(u0; w � u0) + j(�0; u0; w � u0) + b(�0; u0; w � u0) � (F(0); w � u0) ;where b = bN + bT . The mapping j(:; :; :) satis�es the following property :9 �C > 0 8� 2 H with � 2 [0; 1[ a.e. on �; 8u; �u; v; �v 2 V10jj(�; u; v)� j(�; u; �v)� j(�; �u; v) + j(�; �u; �v)j � �� �Cjju� �ujj jjv � �vjj :In the same way as in Setion 2 , the following sequene of inremental problemsPn;i3 ; i = 0; :::; n� 1 , an be obtained .Pn;i3 : Find (ui+1; �i+1) 2 K�H suh thata(ui+1; v � ui+1) + j(�i+1; ui+1; v � ui)� j(�i+1; ui+1; ui+1 � ui)+b(�i+1; ui+1; v � ui+1) � (Fi+1; v � ui+1) 8 v 2 K ; (1.18)�i+1 � �i = �t g(�i+1; ui+1) a.e. on � : (1.19)1.3.3 Mathematial resultsWe may solve the inremental problem Pn;i3 without additional regularity on-ditions by a �xed point method (Cang�emi, 1997; Cou et al., 1998). For every�u 2 K let us denote by s(�u) = � the solution of� = �t g(�; �u) + �i (1.20)and for every � 2 H we denote by u = u(�) 2 K the solution ofa(u; v � u) + j(�; u; v � ui)� j(�; u; u� ui)+b(�; u; v � u) � (Fi+1; v � u) 8 v 2 K : (1.21)The existene of the solution s(�u) for the problem (1.20) is lear, while in-equalities suh as (1.21) have a unique solution u(�) if the frition oeÆientis suÆiently small i.e. �� < �m= �C , where �m is the oeriveness onstant of thebilinear form a (Cou, 1984; Capatina and Cou, 1991) . In the following weshall suppose that � satis�es this ondition .We de�ne the mapping T : K �! K by : 8 �u 2 K T(�u) = u(s(�u)) : By astraightforward omputation, we an establish that 9 k1 > 0 suh that for all�u1; �u2 2 Kjs(�u1)� s(�u2)j � k1�t jj�u1j+ j�u2jj j[�u1 � �u2℄j a.e. on � : (1.22)



Let us now set u1 = u(s(�u1)) ; u2 = u(s(�u2)) . Adding the inequalities (1.21)with u = u1 ; v = u2 and u = u2 ; v = u1 ; and using the properties of a ; jand b ; one an show that 9 k2 > 0 suh that for all �u1; �u2 2 Kjju1 � u2jj2 � k2 Z� j[u2℄j j[u1 � u2℄j js(�u1)� s(�u2)jds : (1.23)From the inequalities (1.22), (1.23) and the relation jjujj � k3 (with k3 inde-pendant of �u), satis�ed by u(s(�u)), it follows that T is a ontration mappingfor suÆiently small �t. In this way the following existene and uniquenessresult holds.Theorem 2 For a suÆiently small �t the mapping T has a unique �xedpoint u and (u; s(u)) is the solution of the inremental problem Pn;i3 .1.4 NUMERICAL METHODSFor dealing with unilateral ontat with frition for evolution problems, eitherquasistati or dynami, the key point is to solve a "stati" problem. Thiswill be present in the subsetion 4.1 . By using the inremental formulations,algorithms adapted to quasistati problems and to the oupling with adhesionare given in subsetions 4.2 and 4.3 . An extension to dynami problems isonsidered in subsetion 4.4 .1.4.1 Various solvers for the stati problemThe stati ontat problem has been widely studied (Fihera, 1964; 1972; Du-vaut and Lions, 1972; Duvaut, 1980; Demkowiz and Oden, 1982; Glowinskiet al., 1976 ; et.) and leads to variational or impliit variational inequalities.For a unilateral ontat with Coulomb's frition law, the following problem isobtained.P4 : Find u 2 K suh thata(u; v � u) + j(u; v)� j(u; u) � (F; v � u) 8 v 2 K : (1.24)We fous in the present paper on methods treating stritly the unilateral andthe frition onditions without using a regularization of the unilateral ondi-tion. Penalty and augmented lagrangian methods, whih are widely used inlarge �nite element odes, are approximations of the ontat onditions andneed the hoie of some omputational parameters. When preise analysis isonduted, suh as the analysis of instabilities due to frition, see (Martinset al., 1998), or the oupling with adhesion (Raous et al., 1998; 1997), the on-tat solution has to be independent of omputational parameters. Among the



various numerial methods whih an be used, we an distinguish two lasses :projetion tehniques assoiated to optimization and mathematial program-ming. By introduing a �xed point on the sliding limit, the problem (1.24)an be written as a sequene of lassial variational inequalities : �nd ~p , �xedpoint of the appliation p �! S(p) with S(p) = � j�N (up)j , where up is thesolution of the following Tresa frition problem (i.e. when the sliding limit isgiven) .P5 : Find up 2 K suh thata(up; v � up) + Z �p(jvT j � juTpj)ds � (F; v � up) 8 v 2 K : (1.25)Elimination of the impliit harater gives the onvexity of the problem (1.25) .The following minimization problem under onstraints is equivalent to P5 .P6 : Find up 2 K suh that G(u) � G(v) 8 v 2 K ; whereG(v) = 12 a(v; v)� (F; v) + Z �pjvT jds 8 v 2 K :The �nite element approximation an be easily written and the disrete problemonsists in solving a minimization problem under onstraints (v 2 K) for afuntional inluding a non di�erentiable term due to frition . As presentedin (Liht et al., 1991), an extra projetion on the �nite element basis of thefrition term gives a simple disrete form (for the absolute value). Then variousalgorithms have been implemented to solve problem P6 , see (Raous et al., 1988;Lebon and Raous, 1992; Raous and Barbarin, 1992) or in (Panagiotopoulos etal., 1998) :- Over-relaxation with projetion (very easy to implement, simple treatment ofthe absolute value and of the unilateral ondition),- Gauss Seidel algorithm with Aitken aeleration (the onvergene is equivalentto the previous method but no optimal relaxation parameter is needed),- Projeted onjugate gradient with preonditioning (a regularization of theabsolute value is needed and a onvenient projetion is used to preserve theonjugay property) .Convergene of the �xed point method is fast (a diagonal proess is usedto save the CPU time) . The two algorithms based on Gauss Seidel methodsare robust as they still work for large frition oeÆients. A preliminary on-densation of the problem to the only ontat variables redues the number ofiterations (this is eÆient when several loading ases are treated with the sameelastiity matrix) .An alternative to these methods is given by mathematial programmingtehniques applied to the problem written as a linear omplementarity problem.



By introduing an extra variable (right and left slidings are treated separately),see (Klarbring, 1986) , it has been shown that the problem an be written asfollows after ondensation: w �A�u = fu � 0w � 0u:w = 0 ;where A� is a non symmetri matrix beause of the frition.Various algorithms an be implemented, see (Cottle et al., 1979). OurLemke's algorithm implementation an be found in (Raous et al., 1988; Chabrandet al., 1998) and in (Panagiotopoulos et al., 1998) . This diret method (pivot-ing tehnique) is very fast but needs more programming work. Generalizationto 3D problems is possible by using a Coulomb's one with faets, see (Klar-bring, 1986) . All these solvers have been implemented in our �nite elementode GYPTIS. Some extensions for �nite deformations and plastiity problemshave been implemented in SIMEM 3 .1.4.2 The quasistati problemIt has been shown in Setion 2 that the inremental formulation of a qua-sistati ontat problem with frition an be written under the form of theimpliit variational inequality (1.11) . At eah time step, by using the same�xed point proess on the sliding limit, as presented in subsetion 4.1 , thefollowing problem has to be solved.P7 : Find ui+1 2 K suh that J(ui+1) � J(v) 8 v 2 K ; whereJ(v) = 12 a(v; v) � (F i+1; v) + Z �pjvT � uiT jds :This problem is very similar to problem P6 . The extra term in the part relatedto the frition haraterizes the memory due to the veloity formulation of thefrition. Algorithms of subsetion 4.1 an be used. An alternative solving basedon the inrements of displaements is given in (Cou et al., 1996) .1.4.3 Coupling of adhesion and fritionOne the problems has been written under the inremental form Pn;i3 , it iseasy to show that, by using the �xed point argument, we have to solve for eahsubiteration the following problem.P8 : Find (ui+1; �i+1) 2 K�H suh thatJ(ui+1; �i+1) � J(v; �i+1) 8 v 2 K ; (1.26)



�i+1 � �i = �t g(�i+1; ui+1) a.e. on � with (1.27)J(v; �i+1) = 12 a(v; v) � (Fi+1; v) + Z �pjvT � uiT jds + 12 b(�i+1; v; v) ;where p is now the �xed point of the appliation p �! �S(p) and �S(p) =�j��N (up) + CN�2[uNp℄j . Problem P8 is very similar to problem P7 ; thesti�ness matrix will be modi�ed by the extra term b(�i+1; v; v) related tothe sti�ness of the ontat. The integration of the di�erential equation on �is here presented with an impliit Euler method, but a �-method have beenimplemented. The impliit harater of the integration needs a few loops on�i+1 beause of the nonlinearity. So, for eah time ti+1 and for eah value of�i+1 , the problem is solved by one of the algorithms presented in subsetion4.1 . Numerial results and appliation to a �ber/matrix interfae an be foundin (Raous et al., 1998) . Simulation of a miro-indentation experiment is arriedout and an exellent agreement between numerial and experimental results hasbeen observed.1.4.4 An extension to dynami problemsThe LCP algorithms an be extended to the treatment of dynami problems.LCP formulation of fritional and unilateral ontat for a visoelasti dynamiproblem has been given in (Vola et al., 1998) . The di�erential equation iswritten in terms of di�erential measures and the integration is onduted byombining two variants of �-methods. A orret modelling of shoks and im-pats is obtained.ReferenesAndersson, L. E. (1991). A quasistati fritional problem with normal ompli-ane. Nonlinear Analysis, Theory, Methods and Appliations, 16:347{369.Andersson, L. E. (1995). A global existene result for a quasistati ontatproblem with frition. Advanes in Mathematial Sienes and Appliations,5:249{286.Cang�emi, L. (1997). Frottement et adh�erene: mod�ele, traitement num�erique etappliation �a l'interfae �bre/matrie. Th�ese, Universit�e d'Aix-Marseille II ,Marseille.Capatina, A., and Cou, M. (1991). Internal approximation of quasi-variationalinequalities. Numer. Math., 59:385{398.Chabrand, P., Dubois, F., and Raous, M. (1998). Various numerial methodsfor solving unilateral ontat problems with frition.Mathematial and Com-puter Modelling, 28:97{108.



Cou, M. (1984). Existene of solutions of Signorini problems with frition. Int.J. Engrg. Si., 22:567{575.Cou, M., Cang�emi, L., and Raous, M. (1999). Approximation results for alass of quasistati ontat problems inluding adhesion and frition. InProeedings of the IUTAM Symposium on the Variations of Domains andFree-Boundary Problems in Solid Mehanis-1997, pages 211-218. KluwerAademi Publishers.Cou, M., Pratt, E., and Raous, M. (1996). Formulation and approximation ofquasistati fritional ontat. Int. J. Engrg. Si., 34:783{798.Cottle, R.W., Giannessi, F., and Lions, J.L., editors (1979). Variational In-equalities and Complementarity Problems in Mathematial Physis and Eo-nomis. John Wiley, New York.Demkowiz, L., and Oden, J. T. (1982). On some existene and uniqueness re-sults in ontat problems with nonloal frition. Nonlinear Analysis, Theory,Methods and Appliations, 6:1075{1093.Duvaut, G. (1980). Equilibre d'un solide �elastique ave ontat unilat�eral etfrottement de Coulomb. C. R. Aad. Si. Paris s�erie A, 290:263{265.Duvaut, G., and Lions, J. L. (1972). Les in�equations en m�eanique et en physique.Dunod, Paris.Fihera, G. (1964). Problemi elastostatii on vinoli unilaterali: il problema diSignorini on ambigue ondizioni al ontorno. Mem. Aad. Naz. Linei Ser.VIII, 7:91{140.Fihera, G. (1972). Boundary value problems of elastiity with unilateral on-straints. In Fl�ugge, S., editor, Enylopedia of Physis, Vol. VI a/2, pages391{424. Springer, Berlin.Fr�emond, M. (1987). Adh�erene des solides. J. M�e. Th�eor. et Appl., 6:383{407.Glowinski, R., Lions, J.L., and Tr�emoli�eres, R. (1976). Analyse num�erique desin�equations variationnelles. Dunod, Paris.Klarbring, A. (1986). A mathematial programming approah to three dimen-sional ontat problems with frition. Comp. Meth. Appl. Meh. Engrg.,58:175{200.Klarbring, A. (1990). Derivation and analysis of rate boundary problems offritional ontat. European Journal of Mehanis A/Solids, 9:53{85.Klarbring, A., Mikeli�, A., and Shillor, M. (1991). A global existene result forthe quasistati fritional ontat problem with normal ompliane. In Inter-national Series of Numerial Mathematis, 101:85{111. Birkh�auser Verlag,Basel.Lebon, F., and Raous, M. (1992). Multibody ontat problems inluding fritionin struture assembly. Computers and Strutures, 42:925{934.



Liht, C., Pratt, E., and Raous, M. (1991). Remarks on a numerial methodfor unilateral ontat inluding frition. In International Series of NumerialMathematis, 101:129{144. Birkh�auser Verlag, Basel.Lions, J.L., and Stampahia, G. (1967). Variational inequalities. Comm. PureAppl. Math., 20:493{519.Martins, J.A.C., Barbarin, S., Raous, M.,and Pinto da Costa, A. (1999). Dy-nami stability of �nite dimensional linearly elasti systems with unilateralontat and Coulomb frition. Comp. Meth. Appl. Meh. Engrg., 177:289{328.Moso, U. (1975). Impliit variational problems and quasi variational inequal-ities. In Leture Notes in Mathematis 543: Nonlinear Operators and theCalulus of Variations, Bruxelles, pages 83{156. Springer, Berlin.Oden, J. T., and Pires, E. B. (1983). Nonloal and nonlinear frition laws andvariational priniples for ontat problems in elastiity. ASME Journal ofApplied Mehanis, 50:67{76.Panagiotopoulos, P., Wriggers, P., Fr�emond, M., Curnier, A., Klarbring, A., andRaous, M. (1998). Contat problems : theory, methods, appliations, CISMCourse. Springer, Wien. to appear.Raous, M., and Barbarin, S. (1992). Preonditioned onjugate gradient methodfor a unilateral problem with frition. In Curnier, A., editor, Contat Me-hanis, pages 423{432. Presses Polytehniques et Universitaires Romandes,Lausanne.Raous, M., Chabrand, P., and Lebon, F. (1997). Numerial methods for fri-tional ontat problems and appliations. Journal de M�eanique Th�eoriqueet Appliqu�ee, speial issue, supplement nÆ1 to 7:111{128.Raous, M., Cou, M., and Cang�emi, L. (1997). Un mod�ele ouplant adh�ereneet frottement pour le ontat entre deux solides d�eformables. C. R. Aad.Si. Paris, S�erie II b325:503{509.Raous, M., Cou, M., and Cang�emi, L. (1999). A onsistent model ouplingadhesion, frition, and unilateral ontat. Comp. Meth. Appl. Meh. Engng.,177:383{399.Signorini, A. (1959). Questioni di elastiit�a nonlinearizzata et semilinearizzata.Rend. di Matem. e delle sue appl., 18:1{45.Telega, J.J. (1991). Quasi-stati Signorini's ontat problem with frition andduality. In International Series of Numerial Mathematis, 101:199{214.Birkh�auser Verlag, Basel.Vola, D., Pratt, E., Jean, M., and Raous, M. (1998). Consistent time disretiza-tion for a dynamial fritional ontat problem and omplementarity teh-niques. Revue Europ�eenne des El�ements Finis, 7:149{162.


