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Abstract:

This paper is a survey on implicit variational inequalities arising in the study
of unilateral contact problems with friction. Recent works on mathematical and
numerical approaches of quasistatic problems are presented. The coupling of
unilateral contact, friction, and adhesion is considered and previous results are
generalized to this case.

1.1 INTRODUCTION

It can be said that the bases of the mathematical formulation of unilateral
and frictional contact have been set by a French-Italian school. On the ba-
sis of Signorini’s formulation (Signorini, 1959), the unilateral contact prob-
lems have been studied by variational methods and by an intensive develop-
ment of the theory of variational inequalities by (Fichera, 1964; 1972), (Lions
and Stampacchia, 1967; Duvaut and Lions, 1972; Mosco, 1975), etc.. The
introduction of friction has complicated the mathematical problems, even in
the static case, since the problems are then related to implicit variational in-
equalities or to quasi variational inequalities (in a dual formulation). The ad-
vances during the last twenty years are due to several groups: in Austin (Oden,
Kikuchi), for static and dynamic formulations, in Linkoping (Klarbring, Ander-
sson), for modelling, mathematical programming and analysis, in Montpellier
(Moreau, Jean), for convex analysis and dynamic problems, in Prague (Jarusek,
Haslinger, Hlavacek, Necas), for mathematical and numerical analysis, and in
Thessaloniki (Panagiotopoulos), for extensions to nonsmooth mechanics. The
names of Curnier (Lausanne), Marques, Martins and Pires (Lisbon), Mréz and
Telega (Warsaw), Pfeiffer and Glocker (Munich), Wriggers (Darmstadt) have
also to be mentionned. In this paper, we are concerned with a mathematical
analysis of quasistatic unilateral contact problems with nonlocal friction law.
A generalization to the coupling with adhesion is also considered and various
numerical treatments are given.

1.2 QUASISTATIC CONTACT PROBLEMS WITH FRICTION

In this section we present the mathematical and numerical results which have
been recently obtained for quasistatic unilateral problems with a nonlocal fric-
tion law (Cocu et al., 1996). Unilateral conditions are strictly imposed, we use
neither penalization nor normal compliance. Existence results for quasistatic
frictional contact problems with a normal compliance law have been proved by
(Andersson, 1991; 1995) and, in the presence of a time regularization, by (Klar-
bring et al., 1991). We consider a variational formulation of these problems,
combining an inequality describing the friction and an inequality representing
the unilateral contact conditions. A time discretization is adopted and if the



friction coefficient is sufficiently small then the incremental formulation that
can be derived from this discretization has a unique solution. By using appro-
priate estimates for the incremental solutions, we are able to prove the existence
of a quasistatic solution.

1.2.1 The classical formulation of unilateral contact problems with friction

Consider a linear elastic body occupying a domain Q of R, d = 2,3, with
sufficiently regular boundary I' = T, UT, UT, . We assume that on T,
(with mes(I',) > 0) the displacement vector equals zero. On T'y a surface
force density ¢ is prescribed and on Q a volume force density f is applied.
The solid is initially in contact with a rigid fixed support along I', and the
displacements on this part of the boundary satisfy the unilateral constraints of
non penetration into the support (Signorini’s conditions) and are submitted to
nonlocal friction when contact occurs. We suppose that we may neglect the
inertial terms. We denote by u = (u;) the displacement vector, o = (oy;) the
stress tensor, € = (¢;;) the strain tensor and by A = (A;;x) the elasticity tensor.
We make the classical decomposition into normal and tangential components
for the contact forces and the displacement vector on I'.:
u=unn-+ur,on=onn+or with uy =un, oy = (on).n,

where n is the outward unit normal vector to I'. The classical formulation of
this problem is as follows.

P, : Find a displacement field u = u(t,z) which satisfies, for all ¢ € [0,T],
the following equations and conditions:

divo(u)+ f=0 in Q, (1.1)
olu)= A:e(u) in Q, (1.2)
u=0 on T, (1.3)
olun= ¢ on Ty, (1.4)
uny <0, on(u) <0 and on(u).uy =0 on T, (1.5)
o7 (W) < 0% ()] and
o7 (u)| < ploy(u)| = ir =0,
x (1.6)
lor(u)] = ploy(w)| =
IA>0 ur=—-Xor(u) on T,

where p is the friction coefficient and o} is a regularization of the normal
contact force (Duvaut, 1980; Demkowicz and Oden, 1982; Oden and Pires,
1983; Cocu et al., 1996).



1.2.2 Variational formulation

We define the space V = {v € [Hl(Q]d;v =0 a.e. on Fu} and we set K =
{veV;uony <0ae. onT.}. The norm on V is given by ||.|| and (.,.) shall
denote the duality pairing on H2(I'.) x H=*(T,). We suppose that f €
W20, T; [L2(Q)]), ¢ € W'2(0,T; [L2(T4)]?) , so that we have F € W'2(0,T; V),
where
(F,v) = / fodr + p.vds YveV.
Q Ty

We shall adopt the following notations :
ea:V xV — R,
a(u,v) = / Ajimeij(u)eg (v)de Yu,v € V, where A;jp € L(Q),
1<i,4,k, lQ§ d, with the usual properties of ellipticity and symmetry.
0o VxV —R,
Jlu,v) :/ wlon (Pu)||vr|ds , where
Pis theF[;rojection of W12(0,T;V) on Vy with

T T
Vo = { w € W2(0,T;V); / a(w, ) dt = /0 (fs )2y dt

0

T
-I-/ (&, V)2, e dt, VY € L*(0,T;V), ¥ =0 a.e. on I'.x]0,T] } ,
0
ue L>*(,.)and u >0 ae. onl,,

(.)*: H 3(T,) — L2(T';) is a linear and compact mapping.
Then the problem (1.1)-(1.4), (1.5), (1.6) admits the following variational for-
mulation (Cocu et al., 1996).
Py: Find uw € W'2(0,T;V) such that wu(0) = up and for almost all

t€[0,T] u(t) € K and
a(u,v —u) + j(u,v) — jlu,a) > (F,o—4) + (on(u), oy —un) Yo eV, (1.7)
<UN(U)52N_UN>ZO szKa (18)

where the initial displacement ug belongs to K and satisfies the following com-
patibility condition :
a(ug,w — ug) + j(ug, w —ug) > (F(0),w —up) Vwé€ K.
A similar variational formulation was proposed in (Telega, 1991). The follow-
ing well known property of the mapping j involved in the problem P, holds
with fi = |p[r=(r.) :
iC >0 Vtel]0,T] and Vu,u,

u,v,0 € Vg
\j(u,v) _j(u:f)) —j(ﬂ,’l))-l—j(’lj,’lj)‘

< pCllu —all [lv — vl| .



1.2.3 Incremental formulations

Incremental formulations can be obtained by operating a time discretization of
problem P, , taking n € IN* and setting At = T/n, t; = i At and F' = F(t;)
for i = 0,...,n . Using an implicit scheme we consider the following sequence
of problems P3**, i = 0,...,n — 1, defined for u® = uy .

P} : Find u*! € K such that

il i ' ' il
a(UH_laU - %) +j(UZ+1aU) —j(UH—la %) >
(1.9)
' RIS , Wit oy
(Ftl o — ———— )+ (on(ut),on — X Ny Yo eV,
At At
(on(ut!), 2y —uF'Y >0 Vze K. (1.10)

Problems P;L’i, i =0,...,n—1, are equivalent to the following sequence Sg’i 1=
0,..,n —1,where S;*': Find u’*! € K such that

a(uiJrl,w _ ui+1) + j(u”l,w _ ’U/Z) _ j(u”l,uiﬂ _ ui) 2

(Fi+lw—u™tl)  VYw e K. (1.11)

1.2.4 Existence results

Inequalities such as Sg’i are elliptic quasi variational inequalities so that have a
unique solution if the friction coefficient is sufficiently small ( 7 < m/C, where
m is the coerciveness constant of the bilinear form a) (Cocu, 1984; Capatina
and Cocu, 1991). We suppose from now that u satisfies this condition. In order
to pass to the limit in the incremental formulations, the following bounds for
the incremental solution u’ and also for the difference Au’ = u'*! —u’ can
be obtained (Cocu et al., 1996) :

|ul]| < Cy[|Fi|| Yi=0,...n and [|Aui|| < Cy||AF|| Vi=0,.,n—1.

We define the sequences (uy)yn, (4n)n, such that u, € L*(0,T;V), @, €
W12(0,T;V) VYn € IN*, given by uy,(0) = ,(0) = ug and

un(t) = uitt Vi €)t; tin1],
(t—t:)

At (u“‘l — Uz) Vit E]ti,ti+1] s

n(t) =u' +

where u* is the solution of S;’k . Then the following existence and approxima-
tion result holds (Cocu et al., 1996).



Theorem 1 There exists a subsequence (i, ), of (i), that converges weakly
in WH2(0,T;V) to an element u, such that Vt € [0,T] (un,(t)), converges
weakly to u(t) in V. Every such weak limit u is a solution of Py .

1.3 EXTENSION TO A MODEL COUPLING ADHESION AND
FRICTION

This section is concerned with a model where unilateral contact conditions,
adhesion and friction between two elastic bodies are strongly coupled. The
interface is considered as a material surface and the derivation of this model
follows from the principle of virtual power and the principles of thermodynamics
(Cangémi, 1997), (Raous et al., 1998; 1997). Adhesion is characterized by a
new variable, the intensity of adhesion 8 introduced by (Frémond, 1987). We
propose a variational formulation which generalizes the one already given for
the quasistatic friction problems in Section 2. The use of an implicit scheme
leads us to incremental formulations for which an existence and uniqueness
result is given if the friction coefficient is sufficiently small. Algorithms for
computing the incremental solutions are presented.

1.3.1 The classical formulation of quasistatic adhesion problems

Let Q' and Q2 be two disjoint domains of R?, d = 2,3 , occupied by two linear
elastic bodies with sufficiently regular boundaries T* = I'® U f‘g Url., a =
1,2, where T, is the contact boundary. Suppose that on Q' U Q* and on T'},
% the volume force densities f', f* and the surface force densities ¢', ¢
are respectively applied. On T} and I'? (with mes(T'2) > 0, a = 1,2) the
displacements equal zero. We denote by [u] = u! —u? the relative displacement
on I', and by n® the outward unit normal vector to I'*, a =1, 2.

The equilibrium equations can be deduced from the principle of virtual power
to the whole system Q' UQ2UT .. The constitutive laws are obtained from the
state laws , the complementary laws for the bodies and the contact boundary
I'. which will be considered in what follows as a material boundary with a
specific thermodynamic behaviour (Frémond, 1987; Klarbring, 1990). The state
variables are: the infinitesimal strain tensor € = (¢;;), the jump [u] on I', and
the intensity of adhesion 8 (8 = 1 means that the adhesion is total, 8 = 0
means that there is no adhesion and 0 < 8 < 1 is the case of partial adhesion) .
For the interface, we choose the following free energy :

@(fun, fur], ) = D un]?? + L (ur?87 —w B+ +Ig([u]) + In(8).



with I ,Ip the indicator functions of K = {v;oy <0} and P = {7;0 <
v < 1}. We introduce also a pseudo-potential of dissipation &, having the
following form (Cocu et al., 1998; Raous et al., 1998):

® (lir). B xn ) = ok + On x| fir]l + 557 + To- (),

where xn = (on, [un], ) , pis the friction coefficient, % is a regularization
of the normal contact force on and C~ = {v;+ < 0}. The adhesion is gov-
erned here by a compliance law, where Cy and Cp are material characteristic
coefficients. As shown in (Cocu et al., 1998; Raous et al., 1998; 1997), the state
laws and the complementary laws give the following constitutive laws for the
interface, coupling unilateral contact, friction and adhesion:

- unilateral contact conditions
on + Cn [uN]ﬂQ <0, [uN] <0 and (O'N—l—CN [uN]BQ) [UN]ZO, (1.12)

- adhesion and friction law

o7 + Cr [ur]B?| <

U]*V +Cyn [uN]BQ

)

o + Cr [ur)8?] < ploy + Cn [un]f?| = [ar] =0,

(1.13)
lor + Cr [ur]8?| = p|oy + Cn [un]f?| =
IN>0 or+Cr[ur]f? = —Alig],
- damage evolution equation
b3 =—[w— (Cn [un]* + Cr [ur]*)B] . (1.14)

The conditions (1.12) represent a contact law where no interpenetration be-
tween the two bodies occurs. The friction-adhesion law (1.13) expresses the
coupling between a (regularized) Coulomb force and an extra compliance force
in the tangential direction. When total decohesion occurs (8 = 0), the relations
(1.12), (1.13) are the classical unilateral contact (or Signorini’s) conditions and
friction conditions for the two elastic bodies.

1.3.2 Variational and incremental formulations of adhesion problems

We denote by V¢, a = 1,2, the spaces
Ve = {vo‘ € [Hl(Qa)]d;vo‘ =0 a.e. on Ffj} and we set



V=V'xV? K={v= @ v?)eV;uy]<0ae onl.}, H=L*T,).
The norm on V is given by |[v|| = |[v*|[y: + [[v?]]y2 forall v e V.
We suppose that :
(', 1% e W20, T; [L2(@)]" x [L2(@2)]),
(6.6 e wr2(0.1: [12(ry)] " x [r2w)] ),
which imply F € W12(0,T; V), where

d

(F,o) = > feo%dx + ¢*v¥ds| Vo= (v',v?) € V.
a=1,2 |/ Q- rs
We shall adopt the following notations :

ea:VxV — R,
a(u,v) = a'(u',v') +a®(w?,v?) Vu=(u',u?),v=v"0?) €V,

where  a®(u®,v%) :/ Afpeij(u®)er (v®)dz, a = 1,2,
QQ

i HxVxV—R,
$(B,u,v) = / ulo (Prul) + Cn Blun]||[vr]/ds, where

r.
P! is the projection of V! on V' with

T T
Vo = {w1 € W1=2(0,T;V1);/ al(wl,zpl)dt:/ (F1 ") 2y dt
0

0

T
+/ (qsl,zpl)[wrl)]d dt, VYo' e L*(0,T; V'), ¥' =0 a.e. on ch]O,T[} ,
0 s
uw€ L) and p >0 a.e. onT,,

(.)*: H 3([,) = L2(T.) is a linear and compact mapping,,

e bn,br :HXV XV — R,
b (8,1, v) = / CnPlunlfon]ds and br(B,u,v) = / Cor B2 [ur][or]ds,
T. .

«g(8,u) =~ [w— (Cx lun]? + Crlur]?)5]

Then the local problem (1.12)-(1.14) admits the following variational formu-

lation.
P;3: Find (u,3) € W12(0,T; V)xW'2(0,T; H) such that u(0) = uy, 3(0) =

Bo and for almost all ¢ € [0,T], u(t) € K and

a(“:” —U) +j([3,u,v) _j(ﬂauau) +bT(67uaU —U) >

(F,v— ) + (o ('), [on] — [in]) Voev, (19



(on(u'), [2n] = [un]) + N (B,u, 2 —u) >0 VzeK, (1.16)

B =g(8,u) ae on T, (1.17)

where the initial conditions ug € K, Sy € H with 8y € [0,1] a.e. on T';, satisfy
the following compatibility condition: for all w € K

a(uo, w — ug) + j(Bo, uo, w — ug) + b(Bo, uo,w — ug) > (F(0), w — ug),
where b = by + by . The mapping j(.,.,.) satisfies the following property :

3C >0 VBe Hwithfe[0,1[ae onT,, VYu,a,v,v€ V]
308, u,v) = §(B,u,v) = §(B,u,v) + (B, ,0)] < pCllu —ull[[v — |

In the same way as in Section 2, the following sequence of incremental problems
P i=0,..,n—1, can be obtained .
P;": Find (u'*!, 1) € K x H such that

a(uit! v — utl) £ j(BH it v - uf) = (B, ut uit - )
(A ut v — ) > (FH e —ut) Vo € K,
Bt — Bt = At g(pt,u't!) ae. onT, . (1.19)

(1.18)

1.3.3 Mathematical results

We may solve the incremental problem Pg’i without additional regularity con-
ditions by a fixed point method (Cangémi, 1997; Cocu et al., 1998). For every
@ € K let us denote by s(uz) = 8 the solution of

B =Atg(B,u) + f' (1.20)
and for every 8 € H we denote by u = u(3) € K the solution of

a(u,v —u) +j(B,u,v —u?) — j(B,u,u — ut)
+b(B,u,v —u) > (Fitl v —u) VveK. (1.21)

The existence of the solution s(#) for the problem (1.20) is clear, while in-
equalities such as (1.21) have a unique solution u(8) if the friction coefficient
is sufficiently small i.e. i < m/C, where m is the coerciveness constant of the
bilinear form a (Cocu, 1984; Capatina and Cocu, 1991) . In the following we
shall suppose that p satisfies this condition .

We define the mapping T: K — K by: Vae K T(a) = u(s(a)). By a
straightforward computation, we can establish that 3k; > 0 such that for all
i1,y € K

I5(y) — s(@i2)| < ki At ||y + |as)| |[@ — @2]| ae. on ..  (1.22)



Let us now set u; = u(s(@1)), us = u(s(d2)). Adding the inequalities (1.21)
with v = uy, v = us and w = us2, v = uy, and using the properties of a, j
and b, one can show that 3 ks > 0 such that for all uy,us € K

|y —us|[* < k2/r |[u2]| [ur — ua]| [s(@1) — s(ti2)|ds . (1.23)

From the inequalities (1.22), (1.23) and the relation ||u|| < k3 (with k3 inde-
pendant of u), satisfied by u(s(@)), it follows that T is a contraction mapping
for sufficiently small A¢. In this way the following existence and uniqueness
result holds.

Theorem 2 For a sufficiently small At the mapping T has a unique fized
point u and (u,s(u)) is the solution of the incremental problem P3" .

1.4 NUMERICAL METHODS

For dealing with unilateral contact with friction for evolution problems, either
quasistatic or dynamic, the key point is to solve a ”static” problem. This
will be present in the subsection 4.1. By using the incremental formulations,
algorithms adapted to quasistatic problems and to the coupling with adhesion
are given in subsections 4.2 and 4.3. An extension to dynamic problems is
considered in subsection 4.4 .

1.4.1 Various solvers for the static problem

The static contact problem has been widely studied (Fichera, 1964; 1972; Du-
vaut and Lions, 1972; Duvaut, 1980; Demkowicz and Oden, 1982; Glowinski
et al., 1976 ; etc.) and leads to variational or implicit variational inequalities.
For a unilateral contact with Coulomb’s friction law, the following problem is
obtained.

P4: Find u € K such that

a(u,v —u) + j(u,v) — j(u,u) > (F,o —u) VveK. (1.24)

We focus in the present paper on methods treating strictly the unilateral and
the friction conditions without using a regularization of the unilateral condi-
tion. Penalty and augmented lagrangian methods, which are widely used in
large finite element codes, are approximations of the contact conditions and
need the choice of some computational parameters. When precise analysis is
conducted, such as the analysis of instabilities due to friction, see (Martins
et al., 1998), or the coupling with adhesion (Raous et al., 1998; 1997), the con-
tact solution has to be independent of computational parameters. Among the



various numerical methods which can be used, we can distinguish two classes:
projection techniques associated to optimization and mathematical program-
ming. By introducing a fixed point on the sliding limit, the problem (1.24)
can be written as a sequence of classical variational inequalities: find p, fixed
point of the application p — S(p) with S(p) = p|on(up)|, where u, is the
solution of the following Tresca friction problem (i.e. when the sliding limit is
given).
Ps: Find u, € K such that

a(tp, v — up) -I-/ p(lvr| = Jury|)ds > (F,v —u,) Yve K. (1.25)

T

Elimination of the implicit character gives the convexity of the problem (1.25) .
The following minimization problem under constraints is equivalent to Ps .
Pg: Find u, € K such that G(u) < G(v) Vv € K, where

1
Gv) = 50(%7)) - (F,v) + /r plurlds Vv e K.

The finite element approximation can be easily written and the discrete problem
consists in solving a minimization problem under constraints (v € K) for a
functional including a non differentiable term due to friction. As presented
in (Licht et al., 1991), an extra projection on the finite element basis of the
friction term gives a simple discrete form (for the absolute value). Then various
algorithms have been implemented to solve problem Pg , see (Raous et al., 1988;
Lebon and Raous, 1992; Raous and Barbarin, 1992) or in (Panagiotopoulos et
al., 1998):

- Over-relaxation with projection (very easy to implement, simple treatment of
the absolute value and of the unilateral condition),

- Gauss Seidel algorithm with Aitken acceleration (the convergence is equivalent
to the previous method but no optimal relaxation parameter is needed),

- Projected conjugate gradient with preconditioning (a regularization of the
absolute value is needed and a convenient projection is used to preserve the
conjugacy property) .

Convergence of the fixed point method is fast (a diagonal process is used
to save the CPU time) . The two algorithms based on Gauss Seidel methods
are robust as they still work for large friction coefficients. A preliminary con-
densation of the problem to the only contact variables reduces the number of
iterations (this is efficient when several loading cases are treated with the same
elasticity matrix).

An alternative to these methods is given by mathematical programming
techniques applied to the problem written as a linear complementarity problem.



By introducing an extra variable (right and left slidings are treated separately),
see (Klarbring, 1986), it has been shown that the problem can be written as
follows after condensation:

w—A'u=7f
u >0
w >0
uw = 0,

where A* is a non symmetric matrix because of the friction.

Various algorithms can be implemented, see (Cottle et al., 1979). Our
Lemke’s algorithm implementation can be found in (Raous et al., 1988; Chabrand
et al., 1998) and in (Panagiotopoulos et al., 1998) . This direct method (pivot-
ing technique) is very fast but needs more programming work. Generalization
to 3D problems is possible by using a Coulomb’s cone with facets, see (Klar-
bring, 1986). All these solvers have been implemented in our finite element
code GYPTIS. Some extensions for finite deformations and plasticity problems
have been implemented in SIMEM 3.

1.4.2 The quasistatic problem

It has been shown in Section 2 that the incremental formulation of a qua-
sistatic contact problem with friction can be written under the form of the
implicit variational inequality (1.11). At each time step, by using the same
fixed point process on the sliding limit, as presented in subsection 4.1, the
following problem has to be solved.

P;: Find u'*! € K such that J(ui*t!) < J(v) Vv € K, where

1 ) )
Jw) = ia(v,v) — (F™1 v) -I-/ plvr — uplds.

c

This problem is very similar to problem Pg. The extra term in the part related
to the friction characterizes the memory due to the velocity formulation of the
friction. Algorithms of subsection 4.1 can be used. An alternative solving based
on the increments of displacements is given in (Cocu et al., 1996) .

1.4.3 Coupling of adhesion and friction

Once the problems has been written under the incremental form P53’ it is
easy to show that, by using the fixed point argument, we have to solve for each

subiteration the following problem.
Pg: Find (u*!, gi*!) € K x H such that

I, 64) < I(v,6) VveK, (1.26)



Bl — Bt = Atg(BL,utt) ae. onT, with (1.27)

, 1 . : 1 ,
J(vaﬁlJrl) = 5 a(’l),’l)) - (F2+1,’U) +/ p|’UT - ’U’ZT‘dS + 5 b(,82+1,’l),’l)) )

c

where p is now the fixed point of the application p — S(p) and S(p) =
plo (up) + CnB?luny]|. Problem Pg is very similar to problem Py ; the
stiffness matrix will be modified by the extra term b(Bi*!, v,v) related to
the stiffness of the contact. The integration of the differential equation on S
is here presented with an implicit Euler method, but a #-method have been
implemented. The implicit character of the integration needs a few loops on
B+ because of the nonlinearity. So, for each time #*! and for each value of
B! the problem is solved by one of the algorithms presented in subsection
4.1. Numerical results and application to a fiber/matrix interface can be found
in (Raous et al., 1998) . Simulation of a micro-indentation experiment is carried
out and an excellent agreement between numerical and experimental results has
been observed.

1.4.4 An extension to dynamic problems

The LCP algorithms can be extended to the treatment of dynamic problems.
LCP formulation of frictional and unilateral contact for a viscoelastic dynamic
problem has been given in (Vola et al., 1998). The differential equation is
written in terms of differential measures and the integration is conducted by
combining two variants of #-methods. A correct modelling of shocks and im-
pacts is obtained.
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