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Introduction

Stochastic volatility models whose trajectories are continuous but less regular than Brownian motion, also known as rough volatility models, seem well adapted to capture stylized features of the time series of realized volatility and of the implied volatility surface. Indeed, recent statistical studies in [START_REF] Gatheral | Volatility is rough[END_REF][START_REF] Fukasawa | Is volatility rough?[END_REF][START_REF] Bennedsen | Decoupling the Short-and Long-Term Behavior of Stochastic Volatility[END_REF] demonstrate that-under multiple time scales and across many markets-the time series of realized volatility oscillates more rapidly than Brownian motion. In addition, the observed implied volatility smile for short maturities is steeper than the one obtained with classical low-dimensional diffusion models. As maturity decreases, the slope at the money of the implied volatility smile obeys a power law that explodes at zero. This power law can be reproduced by rough volatility models with power kernels in the spirit of fractional Brownian motion; cf. [START_REF] Alòs | On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility[END_REF][START_REF] Bayer | Pricing under rough volatility[END_REF][START_REF] Fukasawa | Short-time at-the-money skew and rough fractional volatility[END_REF]. Furthermore, these empirical discoveries are supported by microstructural considerations because, as explained, for instance, in [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes[END_REF][START_REF] Euch | The microstructural foundations of leverage effect and rough volatility[END_REF], rough volatility models appear naturally as scaling limits of microstructural pricing models with self-exciting features driven by Hawkes processes.

The aforementioned findings have motivated the study of various rough volatility models in the literature. Among these are the rough fractional stochastic volatility model [START_REF] Gatheral | Volatility is rough[END_REF], the rough Bergomi model [START_REF] Bayer | Pricing under rough volatility[END_REF], and the fractional and rough Heston models [START_REF] Comte | Affine fractional stochastic volatility models[END_REF][START_REF] Guennoun | Asymptotic behavior of the fractional Heston model[END_REF][START_REF] Euch | The characteristic function of rough Heston models[END_REF]. In these models, due to the absence of the semimartingale and Markov properties, even simple tasks such as pricing European options have proven challenging. Consequently, the theory of stochastic control for rough volatility models is at an early stage. Under the rough volatility paradigm, classical control problems such as linear quadratic and optimal investment problems have only been analyzed recently, for example, in [START_REF] Jaber | Linear-Quadratic control for a class of stochastic Volterra equations: solvability and approximation[END_REF] and [START_REF] Fouque | Optimal portfolio under fractional stochastic environment[END_REF][START_REF] Han | Mean-variance portfolio selection under Volterra Heston model[END_REF][START_REF] Jaber | Markowitz portfolio selection for multivariate affine and quadratic Volterra models[END_REF][START_REF] Han | Merton's portfolio problem under Volterra Heston model[END_REF], respectively.

In this paper we tackle an optimal stopping problem, namely the problem of pricing American options in the Volterra Heston model introduced in [START_REF] Jaber | Markovian structure of the Volterra Heston model[END_REF][START_REF] Jaber | Affine Volterra processes[END_REF] 1 . This path-dependent problem is difficult because it requires a good understanding of the conditional laws in a model where, in general, the semimartingale and Markov properties do not hold. Even though we could extend parts of the analysis to more general frameworks, we concentrate on the Volterra Heston model because in this setup-as we will explain below-we can prove the necessary convergence results.

The Volterra Heston model is a generalization of the widely known Heston model [START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF]. The dynamics of the spot variance in the Volterra Heston model are described by a stochastic Volterra equation of convolution type. More specifically, the spot variance process is a Volterra square root or CIR process. When the kernel appearing in the convolution is of power-type, one obtains the now well-known rough Heston model [START_REF] Euch | Perfect hedging in rough Heston models[END_REF][START_REF] Euch | The characteristic function of rough Heston models[END_REF]. The L 2regularity of the kernel in the Volterra Heston model controls the Hölder regularity of the trajectories and the steepness of the implied volatility smile for short maturities. Tractability in the Volterra Heston model is a result of a semiexplicit formula for the Fourier-Laplace transform, which resembles the formula in the classical Heston model. More precisely, the Fourier-Laplace transform can be expressed in terms of the solution to a deterministic system of convolution equations of Riccati-type. This phenomenon is a particular instance of a more general law governing the structure of the Fourier-Laplace transform of what is known as Affine Volterra Processes [START_REF] Keller-Ressel | Affine rough models[END_REF][START_REF] Jaber | Affine Volterra processes[END_REF][START_REF] Gatheral | Affine forward variance models[END_REF][START_REF] Cuchiero | Generalized Feller processes and Markovian lifts of stochastic Volterra processes: the affine case[END_REF]. The knowledge of the Fourier-Laplace transform in the Volterra Heston model facilitates the application of Fourier-based methods in order to price European options. This circumvents the difficulties encountered in the implementation of other popular rough volatility models, such as the rough Bergomi model, where Monte-Carlo techniques [START_REF] Bayer | Pricing under rough volatility[END_REF][START_REF] Bennedsen | Hybrid scheme for Brownian semistationary processes[END_REF][START_REF] Bayer | Hierarchical adaptive sparse grids and quasi-Monte Carlo for option pricing under the rough Bergomi model[END_REF] or Donsker-type theorems [START_REF] Horvath | Functional central limit theorems for rough volatility[END_REF] are employed to compute prices of European options.

The numerical resolution of the Riccati convolution equations appearing in the expression of the Fourier-Laplace transform in the Volterra Heston model is, however, cumbersome due to the possibly exploding character of the associated kernel. In order to alleviate these numerical difficulties, the authors in [START_REF] Callegaro | Fast hybrid schemes for fractional Riccati equations (rough is not so tough)[END_REF] developed a fast hybrid scheme using power series expansions around zero combined with a Richardson-Romberg extrapolation method beyond the convergence interval of the power series. Alternatively, for the rough Heston model, the author in [START_REF] Jaber | Lifting the Heston model[END_REF] proposed a kernel-based approximation with a diffusion-high dimensional but parsimonious-model, named the Lifted Heston model. Despite being a semimartingale model, the Lifted Heston model is able to mimic the rough character of the trajectories and to reproduce steep volatility smiles for short maturities. The approximation of the rough Heston model with the Lifted Heston model is an example of a more general approximation technique of Volterra processes via an approximation of the kernel in [START_REF] Jaber | Multifactor approximation of rough volatility models[END_REF] originally inspired by [START_REF] Coutin | Fractional Brownian motion and the Markov property[END_REF][START_REF] Carmona | Approximation of some Gaussian processes[END_REF][START_REF] Harms | Affine representations of fractional processes with applications in mathematical finance[END_REF]. The convergence of the approximating processes and the prices of European-type options is guaranteed by stability results proven in [START_REF] Jaber | Multifactor approximation of rough volatility models[END_REF] and in a more general framework in [START_REF] Jaber | A weak solution theory for stochastic Volterra equations of convolution type[END_REF].

To price American options, and inspired by the approach in [START_REF] Jaber | Lifting the Heston model[END_REF][START_REF] Jaber | Multifactor approximation of rough volatility models[END_REF], we draw upon kernelbased approximations of the Volterra Heston model. In the context of the rough Heston model where the kernel is of power-type, and for the approximation scheme in [START_REF] Jaber | Lifting the Heston model[END_REF], the approximating models are high dimensional-diffusion models where classical simulationbased techniques, such as the Longstaff Schwartz algorithm [START_REF] Longstaff | Valuing American options by simulation: a simple least-squares approach[END_REF], can be implemented. Within this framework, we can conduct an empirical study of the convergence and behavior of Bermudan put option prices in the approximated sequence of models. The results of our numerical experiments are summarized in Section 5.

Our main theoretical result is Theorem 2.7. In the first part of the theorem, we show convergence of prices of Bermudan options in the approximating sequence of models towards the prices in the original Volterra Heston model. This result is not a direct consequence of previous stability results in [START_REF] Jaber | Multifactor approximation of rough volatility models[END_REF][START_REF] Jaber | A weak solution theory for stochastic Volterra equations of convolution type[END_REF] because of the path-dependent structure of the option. It is at this stage, and for purely theoretical reasons, that we exploit the affine structure of the model. More precisely, in order to prove the desired convergence results we first need to establish the convergence of the conditional Fourier-Laplace transforms. Once the convergence of the Bermudan option prices is established-and using classical arguments-we can prove, in the second part of Theorem 2.7, the convergence of American option prices by approximating them with Bermudan option prices.

It is important to mention at this point that there exist other studies of optimal stopping and American option pricing in rough or fractional models; see, for instance, [START_REF] Horvath | Functional central limit theorems for rough volatility[END_REF][START_REF] Becker | Deep optimal stopping[END_REF][START_REF] Bayer | Pricing American options by exercise rate optimization[END_REF][START_REF] Goudenège | Machine learning for pricing American options in high-dimensional markovian and non-markovian models[END_REF]. To understand the novelty of our work it is crucial to point out that, in general, there are two levels of approximation in the resolution of an optimal stopping problem using a probabilistic approach:

(i) First, the model has to be approximated with simpler models where the trajectories can be simulated or where prices of American options can be computed more easily. For classical diffusion models this could correspond to a classical Euler scheme for simulation or a tree-based discrete approximation. Under rough volatility, simulation is cumbersome due to the non-Markovianity of the model. There is not a unified theory about how this approximation and simulation have to be performed. For instance, in the rough Bergomi model in order to simulate the volatility process one could use hybrid schemes [START_REF] Bennedsen | Hybrid scheme for Brownian semistationary processes[END_REF]. These schemes correspond to an approximation of the power kernel by concentrating on its behavior around zero and performing a stepwise approximation away from zero. But we could also imagine schemes relying on an approximation of the fractional kernel in terms of a sum of exponentials as in [START_REF] Carmona | Approximation of some Gaussian processes[END_REF][START_REF] Harms | Affine representations of fractional processes with applications in mathematical finance[END_REF]. Other recent studies in this direction are [START_REF] Bayer | Weak error rates for option pricing under the rough Bergomi model[END_REF][START_REF] Alfonsi | Approximation of Stochastic Volterra Equations with kernels of completely monotone type[END_REF][START_REF] Bayer | Makovian approximations of stochastic Volterra equations with the fractional kernel[END_REF][START_REF] Rømer | Hybrid multifactor scheme for stochastic Volterra equations[END_REF]. In this work, for our numerical illustrations, we use the approximation scheme of [START_REF] Jaber | Lifting the Heston model[END_REF][START_REF] Jaber | Multifactor approximation of rough volatility models[END_REF], based on an approximation of the kernel using a sum of exponentials. Regarding the approximation via discrete-type models, in [START_REF] Horvath | Functional central limit theorems for rough volatility[END_REF] the authors prove a Donsker-type theorem for certain rough volatility models and apply it to perform tree-like approximations. These approximations allow them to develop tree-based algorithms, as opposed to simulation-based techniques, to price American options. The convergence of the American option prices computed on the approximating trees towards prices in the limiting rough models, however, is not the main goal of the study.

(ii) The second approximation occurs at the level of the resolution of the optimal stopping problem for the approximated model. In the approximated model, classical techniques such as the Longstaff Schwarz algorithm can be difficult to implement because of the high dimensionality of the model. It is at this stage that recent studies propose novel approaches, including techniques relying on neural networks [START_REF] Goudenège | Machine learning for pricing American options in high-dimensional markovian and non-markovian models[END_REF][START_REF] Lapeyre | Neural network regression for Bermudan option pricing[END_REF], to ease the implementation. It is also important to mention at this point the study in [START_REF] Bayer | Pricing options under rough volatility with backward SPDEs[END_REF], where the authors propose an approximation of American option prices using penalized versions of the backward stochastic partial differential equation (BSPDE) satisfied by the value function of the problem. A deep learning-based method is used to approximate the solutions of these penalized BSPDEs.

The present paper does not focus on the second level of the approximation. For this part, in our numerical experiments we employ classical simulation-based techniques and, in particular, the Longstaff Schwarz algorithm over a low-dimensional space of functions.

Our study mainly focuses on the first level of the approximation. More precisely, we concentrate on the convergence of the prices in the approximating model towards the prices in the limiting Volterra model. This point has not been addressed in the previous literature and is what distinguishes our paper from other papers on American options under the rough volatility paradigm. To prove this convergence in our framework and with our kernel-based approximation approach, we appeal to the particular affine structure of the Volterra Heston model, which explains our choice of setting. One could extend some of the results to other settings as long as the results regarding the convergence of the conditional Fourier-Laplace transform remain valid. Beyond the affine paradigm, for instance for the rough Bergomi model, this question falls outside the scope of our work and is an interesting topic for future research. The rest of this paper is organized as follows. In Section 2 we introduce the setup and state our main result of convergence, namely Theorem 2.7. Section 3 contains the results on the adjusted forward process and the conditional Fourier-Laplace transform necessary for the proof of the main theorem. The proof of the main theorem is presented in Section 4. In Section 5, within the framework of the rough Heston model, we provide numerical illustrations of the convergence and behavior of Bermudan put option prices. Appendix A explains some properties of the Riccati equations appearing in the expression of the conditional Fourier-Laplace transform. In Appendix B we provide results on the kernel approximation which guarantee certain hypotheses appearing in our main theorem.

Notation

We denote by L 2 loc the space of real-valued locally square integrable functions on R + . Similarly, given T > 0, L 2 (0, T ) stands for the space of real-valued square integrable functions on the interval (0, T ). The space C(X, Y ), where X, Y ⊆ C, is the space of continuous functions from X to Y , with the conventions C(X, R) = C(X) and C = C(R + ). We use the same conventions for C b , C 2 b , C c , H β , B, and B c , which are the spaces of bounded continuous functions, bounded continuous functions with bounded and continuous derivatives up to order two, continuous functions with compact support, Hölder continuous functions of any order less than β, bounded functions, and bounded functions with compact support, respectively. We write ∆ for the shift operator, i.e., ∆ ξ f = f (•+ξ). For a function h on R we denote its support by supp(h). Given a function K and a measure L of locally bounded variation, we let K * L be the convolution (K * L)(t) = [0,t] K(t-s)L(ds), whenever the integral is well defined. If F is a function on R + , we define K * F = K * (F ds).

Setup and main result 2.1 The model

We consider a Volterra Heston stochastic volatility model as in [START_REF] Jaber | Markovian structure of the Volterra Heston model[END_REF][START_REF] Jaber | Affine Volterra processes[END_REF]. In this model, under a risk-neutral measure, the asset's log price X and spot variance V are

X t = X 0 + t 0 r - V s 2 ds + t 0 V s ρ dW s + 1 -ρ 2 dW ⊥ s , V t = v 0 (t) -λ t 0 K(t -s)V s ds + η t 0 K(t -s) V s dW s .
(2.1)

In these equations, X 0 ∈ R is the initial log price, (W, W ⊥ ) is a two-dimensional Brownian motion, r is the risk-free rate, and ρ ∈ [-1, 1] is a correlation parameter. The variance process V is a Volterra square root process. The constant λ ≥ 0 is a parameter of mean reversion speed and η ≥ 0 is the volatility of volatility. The kernel K is in L2 loc and the function v 0 is in C. Observe that-for fixed X 0 , interest rate r, and correlation parameter ρ-the log price process X is completely determined by the variance process V and the Brownian motion (W, W ⊥ ). Proposition 2.3 gives sufficient conditions ensuring the existence and uniqueness of weak solutions to the stochastic Volterra equation of the variance process.

Following the setting in [START_REF] Jaber | Affine Volterra processes[END_REF], we introduce a subset K of L 2 loc in which we will consider the kernels. Definition 2.1. Let K ∈ L 2 loc . We write K ∈ K if the following holds:

(i) There exist a constant γ ∈ (0, 2] and a locally bounded function c K :

R + → R + such that ξ 0 |K(t)| 2 dt + T -ξ 0 |K(t + ξ) -K(t)| 2 dt ≤ c K (T )ξ γ (2.2)
for every T > 0 and 0 < ξ ≤ T .

(ii) K is nonidentically zero, nonnegative, nonincreasing, continuous on (0, ∞), and admits a so-called resolvent of first kind L. 2 In addition, L is nonnegative and

the function s → L([s, s + t]) is nonincreasing on R +
for every t > 0.

Inspired by [START_REF] Jaber | Markovian structure of the Volterra Heston model[END_REF], we specify the space of functions in which we will take the functions v 0 . For a given kernel K ∈ K, with associated constant γ as in (2.2), let

G K = {g ∈ H γ/2 : g(0) ≥ 0, ∆ ξ g -(∆ ξ K * L)(0)g -d(∆ ξ K * L) * g ≥ 0 for all ξ ≥ 0}. (2.3)
The space G K is stochastically invariant with respect to the adjusted version of the forward variance defined in Section 3.1, and it plays a crucial role in our arguments.

Throughout our study we will make use of the following assumption.

Assumption 2.2. The kernel K and the function v 0 satisfy the following:

(i) K ∈ K and ∆ ξ K satisfies (ii) in Definition 2.1 for all ξ ≥ 0. (ii) v 0 ∈ G K .
The existence and uniqueness in law for the stochastic Volterra equation of the variance process in (2.1) is guaranteed by the following proposition.

Proposition 2.3. Suppose that Assumption 2.2 holds. Then the stochastic Volterra equation for the variance process V in (2.1) has a unique R + -valued weak solution. Furthermore, the trajectories of V belong to H γ/2 and given p ≥ 1,

sup t∈[0,T ] E[|V t | p ] ≤ c, T > 0, (2.4)
where c < ∞ is a constant that only depends on p, T, λ, η, γ, c K , and

v 0 C[0,T ] .
Proof. This result follows from [3, Theorems 2.1 and 2.3], with the exception of the last assertion on the bound (2.4). Following the argument in the proof of [START_REF] Jaber | Affine Volterra processes[END_REF]Lemma 3.1], this bound can be shown to depend on p, T, λ, η, v 0 C[0,T ] , and

L 2 -continuously on K| [0,T ] .
Note that, thanks to the Fréchet-Kolmogorov theorem, the set of restrictions K| [0,T ] of nonincreasing kernels satisfying the property (2.2) for a given c K and γ is relatively compact in L 2 (0, T ). Maximizing the bounds over all such K yields a bound c < ∞ that only depends on p, T, λ, η, γ, c K and

v 0 C[0,T ] .
The theoretical results of this study are stated for general kernels K and functions v 0 satisfying Assumption 2.2. This is convenient in order to keep the notation simple. It is also in tune with forward-type stochastic volatility models, such as the rough Bergomi model [START_REF] Bayer | Pricing under rough volatility[END_REF]. Indeed, thanks to (2.4), taking expectations in the equation for the variance process in (2.1) yields the following relation between the function v 0 and the initial forward-variance curve (E[V t ]):

v 0 (t) = E[V t ] + λ t 0 K(t -s)E[V s ] ds.
For the numerical illustrations in Section 5 we will use the setting of the rough Heston model [START_REF] Euch | The characteristic function of rough Heston models[END_REF], which we summarize in the following example.

Example 2.4. In the rough Heston model, the kernel K is a fractional kernel

K(t) = t α-1 Γ(α) , (2.5) 
with α ∈ 1 2 , 1 and Γ(α) = ∞ 0 x α-1 e -x dx, and the function v 0 is of the form

v 0 (t) = V 0 + λν t 0 K(s) ds, (2.6) 
where V 0 ≥ 0 is an initial variance and ν ≥ 0 is a long term mean reversion level. Assumption 2. Assume that Assumption 2.2 holds. Let P be the probability measure, and let F = (F t ) be the filtration of the stochastic basis associated to the weak solution (X, V ) to (2.1). Suppose that f ∈ C b (R). Our goal is to determine the value process (P t ) 0≤t≤T of the American option with payoff process (f (X t )) 0≤t≤T . We know that P is given by

P t = ess sup τ ∈T t,T E e -r(τ -t) f (X τ )|F t , 0 ≤ t ≤ T, (2.7) 
where E is the expectation with respect to P and T t,T denotes the set of F-stopping times taking values in [t, T ]. In order to compute American option prices, the financial model has to be approximated by more tractable models. In this work, we will consider approximations of the Volterra Heston model resulting from L 2 -approximations of the kernel. In the next section, we describe the approximation procedure.

Approximation of the kernel and the Volterra Heston model

We consider a sequence of kernels (K n ) n≥1 in L 2 loc and functions (v n 0 ) n≥1 in C. We make the following assumption.

Assumption 2.5. The kernels (K n ) n≥1 and the functions (v n 0 ) n≥1 satisfy the following: (i) There exist a constant γ ∈ (0, 2] and a locally bounded function c

K : R + → R + such that K n satisfies (i) in Definition 2.1 for all n ≥ 1. (ii) ∆ ξ K n satisfies (ii) in Definition 2.1 for all ξ ≥ 0 and n ≥ 1. (iii) K n converges to K in L 2 loc . (iv) v n 0 ∈ G K n ,
with the constant γ of (i) for all n ≥ 1 and v n 0 converges to v 0 in C. According to Proposition 2.3, under Assumption 2.5, for each n ≥ 1 there exists a unique weak solution (X n , V n ) to

X n t = X 0 + t 0 r - V n s 2 ds + t 0 V n s ρ dW n s + 1 -ρ 2 dW n,⊥ s , V n t = v n 0 (t) -λ t 0 K n (t -s)V n s ds + η t 0 K n (t -s) V n s dW n s , (2.8) 
where (W n , W n,⊥ ) is a Brownian motion in the corresponding stochastic basis. Furthermore, given p ≥ 1, sup

n≥1 sup t∈[0,T ] E n [|V n t | p ] ≤ c, T > 0, (2.9) 
with a constant c < ∞ which can be chosen to depend only on p, T, λ, η, γ, c K , and

sup n≥1 v n 0 C[0,T ] ,
and where E n denotes the expectation in the respective probability space. Moreover, the argument in the proof of [START_REF] Jaber | Multifactor approximation of rough volatility models[END_REF]Theorem 3.6] shows that

(X n , V n ) converges in law to (X, Y ), in C(R + , R 2 ), as n → ∞. (2.10)
This is a consequence of a more general result proven in Proposition 3.3. For completely monotone kernels3 , an approximation with a sum of exponentials is natural. We briefly explain this procedure below.

Approximation with a sum of exponentials

Assume that the kernel K is completely monotone. By Bernstein's theorem this is equivalent to the existence of a nonnegative Borel measure µ on R + such that

K(t) = R + e -xt µ(dx).
(2.11)

As in [START_REF] Jaber | Multifactor approximation of rough volatility models[END_REF] and [START_REF] Carmona | Approximation of some Gaussian processes[END_REF][START_REF] Harms | Affine representations of fractional processes with applications in mathematical finance[END_REF], an approximation of the measure µ in (2.11) with a weighted sum of Dirac measures

µ n = n i=1 c n i δ x n i (2.12)
yields a candidate approximation of the kernel

K n (t) = R + e -xt µ n (dx) = n i=1 c n i e -x n i t . (2.13) 
The kernels (K n ) n≥1 are completely monotone. If, in addition, they are not identically zero, as explained in [5, Example 6.2], condition (ii) in Assumption 2.5 holds. The representation (2.13) yields the following factor-representation for the Volterra equation (2.8) satisfied by the variance process V n :

V n t = v n 0 (t) + n i=1 c n i Y n,i t , Y n,i t = t 0 (-x n i Y n,i s -λV n s ) ds + t 0 η V n s dW n s , i = 1, . . . , n. (2.14) 
This representation is convenient because the process (Y n,i ) n i=1 is an n-dimensional Markov process with an affine structure. This observation, together with the convergence in (2.10), was exploited in [START_REF] Jaber | Multifactor approximation of rough volatility models[END_REF] in order to approximate European option prices in the rough Heston models employing Fourier methods. The affine structure will also play a crucial role in our study.

We now describe a natural way to determine the weights c n i and the points x n i . We truncate the integral in (2.13) and introduce a subdivision (η n i ) n i=0 which is a strictly increasing sequence in [0, ∞). We then define c n i and x n i as the mass and the center of mass of the interval [η n i-1 , η n i ), i.e.,

c n i = [η n i-1 ,η n i ) µ(dx) = µ([η n i-1 , η n i )), c n i x n i = [η n i-1 ,η n i )
xµ(dx), i = 1, . . . , n.

(2.15)

In Appendix B we provide sufficient conditions on the measure µ and the partitions (η n i ) n i=0 that imply condition (i) in Assumption 2.5.

For the numerical illustrations in Section 5 we will use a fractional kernel and a geometric partition which we present in the following example.

Example 2.6. The fractional kernel (2.5) is completely monotone, and in this case

µ(dx) = x -α Γ(1 -α)Γ(α) dx.
Following [START_REF] Jaber | Lifting the Heston model[END_REF], we consider the geometric partition (η n i ) n i=0 given by

η n i = r i-n 2 n for r n > 1 such that r n ↓ 1 and n log r n → ∞ as n → ∞.
In this setting, the vectors (c n i ) and (x n i ) in (2.15) take the form

c n i = (r 1-α n -1) Γ(α)Γ(2 -α) r (1-α)(i-1-n/2) n , x n i = 1 -α 2 -α r 2-α n -1 r 1-α n -1 r i-1-n/2 n , i = 1, . . . , n.
(2.16) Like in Example 2.4, along with the kernels (K n ) n≥1 , we consider functions (v n 0 ) n≥1 of the form With the setup of Example 2.6, since K n is a C 1 -kernel and Assumption 2.5 holds, [4, Proposition B.3] implies that, for each n ≥ 1, there exists a unique strong solution (X n , V n ) to (2.8). Since, in addition, the factor process (Y n,i ) n i=1 in (2.14) is a diffusion, classical discretization schemes can be used in order to simulate the trajectories of the variance and log price. Relying on this observation, the numerical study in Section 5 uses a simulation-based method in order to approximate American option prices in the rough Heston model. The convergence of the approximated prices is a consequence of the main theoretical findings of our study, which we present in the next section.

v n 0 (t) = V 0 + λν t 0 K n (

Main convergence result

We start by approximating the American option value process P in (2.7) with Bermudan option prices. More precisely, given a nonnegative integer N , T ≥ 0, a partition (t i ) N i=0 of [0, T ] with mesh π N , and t ∈ [0, T ], we denote by T N t,T the set of F-stopping times taking values in [t, T ] ∩ {t 0 , ..., t N }. For any N ≥ 0, the Bermudan value process is then defined by

P N t = ess sup τ ∈T N t,T E e -r(τ -t) f (X τ )|F t , 0 ≤ t ≤ T.
(2.17)

In addition, given (X n , V n ) n≥1 weak solutions to (2.8), we define the corresponding American option prices

P n t = ess sup τ ∈T n t,T E n e -r(τ -t) f (X n τ )|F n t , 0 ≤ t ≤ T (2.18)
and Bermudan option prices

P N,n t = ess sup τ ∈T N,n t,T E n e -r(τ -t) f (X n τ )|F n t , 0 ≤ t ≤ T. (2.19) 
In the previous definitions, (F n t ) is the filtration and E n is the expectation on the stochastic basis associated to the weak solution to (2.8). The sets T n t,T , T N,n t,T are defined similarly to T t,T , T N t,T on this stochastic basis. Theorem 2.7 below is our main theoretical result. It implies, in particular, that the approximated American option prices P n 0 converge to the prices P 0 in the original Volterra Heston model. Theorem 2.7. Suppose that Assumptions 2.2 and 2.5 hold. Let (X, V ) and (X n , V n ) be the unique weak solutions to (2.1) and (2.8), respectively. For a function f ∈ C b (R) define P , P N , P n , and P N,n as in (2.7), (2.17), (2.18), and (2.19), respectively. Then

P N,n t i converges in law to P N t i as n → ∞, N ≥ 0, 0 ≤ i ≤ N, (2.20) 
and lim n→∞

P n 0 = P 0 . (2.21)
The proof of Theorem 2.7 is based on the study of the adjusted forward variance process and the associated Fourier-Laplace transform, which constitutes the main topic of the next section.

3 Conditional Fourier-Laplace transform

Adjusted forward process

In this section we study the adjusted forward process. This infinite-dimensional process was studied in [START_REF] Jaber | Markovian structure of the Volterra Heston model[END_REF] to characterize the Markovian structure of the Volterra Heston model (2.1). The adjusted forward process is very useful in order to study path-dependent options such as Bermudan and American options because, as we will see in Section 3.2, it allows us to better understand the conditional laws of the underlying process by means of the conditional Fourier-Laplace transform.

Assume that Assumption 2.2 holds. Let P be the probability measure, and let F = (F t ) be the filtration of the stochastic basis associated to the weak solution (X, V ) to (2.1). The adjusted forward process (v t ) of V is

v t (ξ) = E V t+ξ + λ ξ 0 K(ξ -s)V t+s ds|F t , ξ ≥ 0. 5 (3.1)
In particular, the variance process is embedded in the adjusted forward process because v t (0) = V t . Notice that, thanks to (2.4), the process

r 0 K(t + ξ -s)
√ V s dW s 0≤r≤t+ξ is a martingale, and we can rewrite the adjusted forward process as

v t (ξ) = v 0 (t + ξ) + t 0 K(t + ξ -s) -λV s ds + η V s dW s , ξ ≥ 0. ( 3.2) 
Moreover, as shown in [3, Theorem 3.1], v t ∈ G K for all t ≥ 0, i.e., G K is stochastically invariant with respect to (v t ). Similarly, if Assumption 2.5 holds, we can define the adjusted forward process for the approximating sequence (V n ) n≥1 by

v n t (ξ) = E n V n t+ξ + λ ξ 0 K n (ξ -s)V n t+s ds|F n t = v n 0 (t + ξ) + t 0 K n (t + ξ -s) -λV n s ds + η V n s dW n s , ξ ≥ 0, (3.3) 
and we have v n t (0) = V n t and v n t ∈ G K n , for all t ≥ 0 and n ≥ 1. We start with a lemma regarding the regularity for the approximated adjusted forward processes v n , n ≥ 1.

Lemma 3.1. Let T, M ≥ 0 and p > max{2, 4/γ}. Suppose that Assumption 2.5 holds and for n ≥ 1 define the processes

ṽn t (ξ) = v n t (ξ) -v n 0 (t + ξ)
with v n as in (3.3). Then

E n [|ṽ n t (ξ ) -ṽn s (ξ)| p ] ≤ C(max(|t -s|, |ξ -ξ |)) pγ/2 , (s, ξ), (t, ξ ) ∈ [0, T ] × [0, M ],
where C is a constant that only depends on p, T, M, λ, η, γ, c K , and sup n≥1 v n 0 C[0,T ] . As a consequence (ṽ n t (ξ)) (t,ξ)∈[0,T ]×[0,M ] admits an α-Hölder continuous version for any α < γ 2 . Moreover, for this version and for α < γ 2 -2 p we have

E n sup (t,ξ ) =(s,ξ)∈[0,T ]×[0,M ] |ṽ n t (ξ ) -ṽn s (ξ)| |(t -s, ξ -ξ)| α p < c,
where c < ∞ is a constant that only depends on p, α, T, M, λ, η, γ, c K , and

sup n≥1 v n 0 C[0,T ] .
Proof. Thanks to (3.3), we have for s ≤ t and ξ, ξ ≤ M ,

ṽn t (ξ ) -ṽn s (ξ) = ṽn t (ξ ) -ṽn s (ξ ) + ṽn s (ξ ) -ṽn s (ξ) = s 0 (K n (t + ξ -u) -K n (s + ξ -u)) dZ n u + t s K n (t + ξ -u) dZ n u + s 0 (K n (s + ξ -u) -K n (s + ξ -u)) dZ n u where Z n t = -λ t 0 V n s ds + η t 0
V n s dW n s . From this point on, using Assumption 2.5 and the bound (2.9), the argument is analogous to the proof of [5, Lemma 2.4] and it is based on successive applications of Jensen and Burkholder-Davis-Gundy inequalities, and Kolmogorov's continuity theorem; see [45, 

sup n≥1 E n sup t∈[0,T ] V n t ≤ c, (3.4) 
where c < ∞ is a constant that only depends on T, λ, η, γ, c K , and

sup n≥1 v n 0 C[0,T ] .
We are now able to establish the convergence of the approximated adjusted forward process in the next proposition. Proposition 3.3. Suppose that Assumptions 2.2 and 2.5 hold. Let X (resp., X n ) be as in (2.1) (resp., (2.8)), and let v (resp., v n ) be as in (3.1) (resp., (3.3)). Then, as n goes to infinity, (X n t , v n t (ξ)

) (t,ξ)∈R 2 + converges in law to (X t , v t (ξ)) (t,ξ)∈R 2 + in C(R 2 + , R 2 ).
Proof. This proof is similar to the proof of [4, Theorem 3.6 and Proposition 4.2]. We include a short explanation for completeness. Lemma 3.1 and Assumption 2.5(iv) imply tightness for the uniform topology of the triple (X n , v n , Z n ), where

Z n t = -λ t 0 V n s ds + η t 0
V n s dW n s . Suppose that (X, v, Z) is a limit point. Thanks to (3.3) and [2, Lemma 3.2], we have

1 * v n (ξ) = 1 * v n 0 (ξ + •) + 1 * (∆ ξ K n * dZ n ) = 1 * v n 0 (ξ + •) + ∆ ξ K n * Z n = 1 * v n 0 (ξ + •) + ∆ ξ K * Z n + (∆ ξ K -∆ ξ K n ) * Z n , ξ ≥ 0.
In the previous identities, we have used the notation ∆ ξ K * dZ for the stochastic integral

(∆ ξ K * dZ) t = t 0 K(t -s + ξ)dZ s . Assumption 2.5 and the convergence in law of (v n , Z n ) towards (v, Z) yield 1 * v(ξ) = 1 * v 0 (ξ + •) + ∆ ξ K * Z ξ ≥ 0. One can show, as in [4, Theorem 3.6], that Z is of the form Z t = -λ t 0 V s ds+η t 0 √ V s dW s for some Brownian motion W , where V t = v t (0), t ≥ 0. Once again, [2, Lemma 3.2] implies that v t (ξ) = v 0 (ξ + t) + (∆ ξ K * dZ) t , t, ξ ≥ 0.
Hence, V t = v t (0), t ≥ 0, is the (unique) weak solution to the stochastic Volterra equation in (2.8) and v is the associated adjusted forward process. Furthermore, since X is completely determined by V , one can prove that (X, V ) is the unique weak solution to (2.1) (see also [START_REF] Jaber | Multifactor approximation of rough volatility models[END_REF]Theorem 3.5]).

Conditional Fourier-Laplace transforms

This section studies the conditional Fourier-Laplace transform of the log price and the adjusted forward variance in the Volterra Heston model based on previous considerations in [START_REF] Keller-Ressel | Affine rough models[END_REF][START_REF] Jaber | Markovian structure of the Volterra Heston model[END_REF][START_REF] Cuchiero | Generalized Feller processes and Markovian lifts of stochastic Volterra processes: the affine case[END_REF]. The results of this section will be useful to establish the convergence of Bermudan option prices in the approximated models to the Bermudan option prices in the original model, i.e., (2.20) in Theorem 2.7, using a dynamic programming approach. We start by introducing some notation. For a kernel K ∈ K define

G * K = h ∈ B c (R + , C) : t → -Re ∞ 0 h(ξ)K(t + ξ) dξ ∈ G K (3.5)
with G K as in (2.3). This space is a dual space that we will consider in the computation of the Fourier-Laplace transform of the adjusted forward process. The next proposition characterizes the conditional Fourier Laplace transform of the log price X and the adjusted forward variance v through solutions of some Riccati equations. Proposition 3.4. Suppose that Assumption 2.2 holds, let X be the log price process given by (2.1), and let v be the adjusted forward process given by (3.1). Fix T ≥ 0, w ∈ C with Re(w) ∈ [0, 1] and h ∈ G * K . Then the conditional Fourier-Laplace transform of (X, v)

L t (w, h; X T , v T ) = E exp wX T + ∞ 0 h(ξ)v T (ξ) dξ |F t , t ≤ T, (3.6) 
can be computed thanks to the following formula:

L t (w, h; X T , v T ) = exp w(X t + r(T -t)) + ∞ 0 Ψ(T -t, ξ; w, h)v t (ξ) dξ , (3.7) 
where

Ψ satisfies ξ → Ψ(t, ξ; w, h) ∈ G * K , t ≥ 0, (3.8) 
and it is a solution to the following Riccati equation:

Ψ(t, ξ; w, h) = h(ξ -t)1 {ξ≥t} + R w, ∞ 0 Ψ(t -ξ, z; w, h)K(z) dz 1 {ξ<t} , t, ξ ≥ 0,
(3.9) and the operator R is defined by

R(w, ϕ) = 1 2 (w 2 -w) + ρηw -λ + η 2 2 ϕ ϕ. (3.10) Moreover, if Re(w) = 0, ∞ 0 Re(h(ξ))v T (ξ) dξ ≤ 0, then ∞ 0 Re(Ψ(T -t, ξ; w, h))v t (ξ) dξ ≤ 0, t ≤ T.
Remark 3.5. Existence of solutions to (3.9) satisfying (3.8) is shown in Appendix A (see Propostion A.1). Notice that by setting

ψ(t) = ∞ 0 Ψ(t, ξ; w, h)K(ξ) dξ, (3.11) 
then the Riccati equation (3.9) can be recast as the following Riccati-Volterra equation for ψ:

ψ(t) = ∞ 0 h(ξ)K(t + ξ) dξ + (K * R (w, ψ(•)))(t), (3.12) 
and we have the identity

Ψ(t, ξ; w, h) = h(ξ -t)1 {ξ≥t} + R (w, ψ(t -ξ)) 1 {ξ<t} . (3.13)
We also point out the similarity between Proposition 3.4 and [31, Proposition 4.6]. In this regard, we highlight that in our formulation we allow the argument w to be complex and we specify an invariant space G * for the Riccati equation (3.9). These points are important for the proof of our main convergence result.

Proof of Proposition 3.4. Let Ψ be a solution to (3.9), satisfying (3.8) (see Proposition A.1). To simplify notation, throughout this proof we will omit the parameters w and h. Let Z be the semimartingale Z t = -λ t 0 V s ds + η t 0 √ V s dW s , ψ be as in (3.11), and set

Y t = ∞ 0 Ψ(T -t, ξ)(v t (ξ) -v 0 (ξ + t)) dξ.
The identity (3.2), equation (3.9), the stochastic Fubini theorem (see [44, Theorem 65]), and a change of variables yield

Y t = ∞ 0 t 0 Ψ(T -t, ξ)K(t + ξ -s) dZ s dξ = t 0 ∞ T -t h(ξ -T + t)K(t + ξ -s) dξ dZ s + t 0 T -t 0 R(ψ(T -t -ξ))K(t + ξ -s) dξ dZ s = t 0 ∞ T -s h(ξ -T + s)K(ξ) dξ dZ s + t 0 T -s t-s R(ψ(T -s -ξ))K(ξ) dξ dZ s . (3.14) 
Equation (3.12) implies that

ψ(T -s) = ∞ T -s h(ξ -T + s)K(ξ) dξ + T -s 0 R(ψ(T -s -ξ))K(ξ)dξ. (3.15) 
We then plug (3.15) into (3.14) and obtain

Y t = t 0 ψ(T -s) dZ s - t 0 t-s 0 R(ψ(T -s -ξ))K(ξ) dξ dZ s . (3.16)
We deduce, thanks to (3.16) and the stochastic Volterra equation for the variance process, the following semimartingale dynamics for the process Y :

d Y t = ψ(T -t) dZ t -R(ψ(T -t)) t 0 K(t -s) dZ s dt = ψ(T -t) dZ t -R(ψ(T -t))(V t -v 0 (t)) dt.
(3.17)

On the other hand, similar calculations show that

∞ 0 Ψ(T -t, ξ)v 0 (ξ + t) dξ = ∞ 0 h(ξ)v 0 (ξ + T ) dξ + T -t 0 R(ψ(ξ))v 0 (T -ξ) dξ. (3.18)
Define the process Y as

Y t = Y t + ∞ 0 Ψ(T -t, ξ)v 0 (ξ + t) dξ = ∞ 0 Ψ(T -t, ξ)v t (ξ) dξ.
From (3.17) and (3.18) we obtain the following semimartingale dynamics for Y :

dY t = ψ(T -t) dZ t -R(ψ(T -t))V t dt. (3.19)
Consider now the semimartingale

M t = exp(w(X t -rt) + Y t ).
From (3.19) and Itô's formula, we obtain

dM t M t = w dX t -wr dt + dY t + 1 2 w 2 d X t + 1 2 d Y t + w d X, Y t = - w 2 V t dt + w V t dB t + ψ(T -t) dZ t -R(ψ(T -t))V t dt + 1 2 w 2 V t dt + 1 2 ψ 2 (T -t)η 2 V t dt + ρηwψ(T -t)V t dt,
where

B = ρW + 1 -ρ 2 W ⊥ .
From the definition of R in (3.10), we finally get

dM t M t = w V t dB t + ψ(T -t)η V t dW t . (3.20) 
M is then a local martingale and 

M T = exp w(X T -rT ) + ∞ 0 h(ξ)v T (ξ)
M t = M 0 exp U t - 1 2 U t , with U t = t 0 w V s dB s + ψ(T -s)η V s dW s ,
is a true martingale. This implies the formula for the Fourier-Laplace transform (3.7). The last implication in the statement of the proposition is a direct consequence of (3.7).

To establish the convergence of approximated Bermudan option prices, we will use convergence results of the conditional Fourier-Laplace transform, which we present in the following section.

Convergence of the Fourier-Laplace transform

Suppose that the kernels (K n ) n≥1 and the functions (v n 0 ) n≥1 satisfy Assumption 2.5. Let (X n , V n ) n≥1 be the solutions to (2.8), and let (v n ) n≥1 be the corresponding adjusted forward processes as in (3.3). We define, analogously to (3.6), the associated conditional Fourier-Laplace transform

L n (w, h n ; X n T , v n T ) = E n exp wX n T + ∞ 0 h n (ξ)v n T (ξ) dξ |F n t (3.21) with h n ∈ G * K n and Re(w) ∈ [0, 1]. Proposition 3.4 implies that L n t (w, h n ; X n T , v n T ) = exp w(X n t + r(T -t)) + ∞ 0 Ψ n (T -t, ξ; w, h n )v n t (ξ) dξ ,
where Ψ n solves (3.9) with h replaced by h n and K replaced by K n . We have the following convergence result for the conditional Fourier-Laplace transforms.

Proposition 3.6. Suppose that Assumptions 2.2 and 2.5 hold. Let X (resp., X n ) be as in (2.1) (resp., (2.8)), and let v (resp., v n ) be as in (3.1) (resp.,

(3.3)). Fix T ≥ 0, w ∈ C with Re(w) ∈ [0, 1], and (h n ) n≥1 with h n ∈ G * K n , n ≥ 1. Assume that there is M ≥ 0 such that supp(h n ) ⊆ [0, M ], n ≥ 1; and h n → h ∈ G * K in B([0, M ], C), as n → ∞. Then L n (w, h n ; X n T , v n T ) converges in law to L(w, h; X T , v T ) in C[0, T ], as n → ∞,
where L(w, h; X T , v T ) and L n (w, h n ; X n T , v n T ) are the conditional Fourier-Laplace transforms defined in (3.6) and (3.21), respectively.

The proof of Proposition 3.6 is based on Proposition 3.3 and the following lemma, whose proof can be found in Appendix A. Lemma 3.7. Assume that the hypotheses of Proposition 3.6 hold. Let Ψ (resp., Ψ n ) be solutions to the Riccati equation (3.9) with kernel K (resp., K n ) and initial condition h (resp., h n ). Define

ψ(t) = ∞ 0 Ψ(t, ξ; w, h)K(ξ) dξ, ψ n (t) = ∞ 0 Ψ n (t, ξ; w, h n )K n (ξ) dξ.
Then, as n goes to infinity,

ψ n converges to ψ in C[0, T ]. Moreover, letting M = max{M, T }, the support of Ψ n (t, •; w, h n ) is contained in [0, M ] for all n ≥ 1 and t ≤ T , and Ψ n (t, •; w, h n ) converges to Ψ(t, •; w, h) in B([0, M ], C) uniformly in t ∈ [0, T ].
Proof of Proposition 3.6. By Proposition 3.3 and Skorohod's representation theorem we can construct (X n , v n ) and (X, v) on the same probability space such that, as n goes to infinity, (X n , v n ) converges almost surely to (X, v) in C(R 2 + , R 2 ). This observation and Lemma 3.7 imply that

lim n→∞ sup t∈[0,T ] wX n t + ∞ 0 Ψ n (t, ξ; w, h n )v n t (ξ) dξ -wX t - ∞ 0 Ψ(t, ξ; w, h)v t (ξ) dξ = 0, a.s. Hence, wX n + ∞ 0 Ψ n (•, ξ; w, h n )v n t (ξ) dξ converges in law to wX + ∞ 0 Ψ(•, ξ; w, h)v t (ξ) dξ in C[0, T ].
An application of the continuous mapping theorem with the exponential function, together with Proposition 3.4, yields the conclusion.

We now possess all the elements necessary for the proof of Theorem 2.7.

Proof of the main convergence result

We break down the argument into different parts. We start by establishing, in the next section, the convergence of the Bermudan option prices as stated in (2.20). To this end, we will consider a more general payoff structure that is better suited for an inductive argument.

Convergence of Bermudan option prices

Throughout this section we will use the notation

h 1 , h 2 = ∞ 0 h 1 (ξ)h 2 (ξ) dξ
for h 1 ∈ B c (R + , C) and h 2 ∈ C. In addition, for a given finite set of indices J, we define

D J = {(x, (η j ) j∈J ) ∈ (R, C #J ) : Re(η j ) ≤ 0 for all j ∈ J}.
We will consider options with intrinsic payoff processes (Z t ) 0≤t≤T defined as

Z t = f (X t ), for 0 ≤ t < T, g(X T , ( h j , v T ) j∈J ), for t = T, (4.1) 
where v denotes the adjusted forward process (3.1), J is a finite set of indexes,

f ∈ C b (R), g ∈ C b (D J ), h j ∈ G *
K for all j ∈ J, and (X T , ( h j , v T ) j∈J ) ∈ D J . In this setting, the Bermudan option discrete value process over the grid (t i ) N i=0 takes the form

U N i = ess sup τ ∈T N t i ,T E e -r(τ -t i ) Z τ |F t i , 0 ≤ i ≤ N. (4.2)
For the approximating models, and in an analogous manner, we will consider options with payoff processes (Z n t ) 0≤t≤T defined as

Z n t = f (X n t ), for 0 ≤ t < T, g(X n T , ( h n j , v n T ) j∈J ), for t = T, (4.3) 
where h j ∈ G * K n , for all j ∈ J, and (X n T , ( h n j , v n T ) j∈J ) ∈ D J . The Bermudan option discrete value process, in the approximated model and over the grid (t i ) N i=0 , takes the form

U N,n i = ess sup τ ∈T N t i ,T E n e -r(τ -t i ) Z n τ |F n t i , 0 ≤ i ≤ N. (4.4)
The following is the main result of this section.

Theorem 4.1. Suppose that Assumptions 2.2 and 2.5 hold. Let X (resp., X n ) be as in (2.1) (resp., (2.8)), and let v (resp., v n ) be as in (3.1) (resp.,

(3.3)). Fix T ≥ 0, J a finite set of indexes, f ∈ C b (R), g ∈ C b (D J ), and (h n ) n≥1 with h n ∈ G * K n , n ≥ 1. Assume that there is M ≥ 0 such that supp(h n ) ⊆ [0, M ], n ≥ 1;
and

h n → h ∈ G * K in B([0, M ], C), as n → ∞. Then U N,n i converges in law to U N i , i = 0, . . . , N, as n → ∞,
where U N i and U N,n i are given by (4.2) and (4.4), respectively.

Proof. We prove the result by induction on the number of exercise dates N + 1.

Initialization. Assume that N = 0. We just have to prove that lim n→∞ g(X 0 , ( h n j , v n 0 ) j∈J ) = g(X 0 , ( h j , v 0 ) j∈J ).

This follows from continuity of g on D J , because our hypotheses readily imply

lim n→∞ h n j , v n 0 = h j , v 0 .
Induction. Assume that the claim holds for Bermudan options with N exercise dates. We have to consider three different cases.

(1) Suppose that g on D J has the form

g(x, (η j ) j∈J ) = Re   k∈I c k exp   i   ν k x + j∈J β j,k Im(η j )   + j∈J α j,k Re(η j )     , with I a finite set of indices, c k ∈ C, ν k ∈ R, α j,k ≥ 0, β j,k ∈ R.
In this case the value of the option at maturity (in the original Volterra model) is

Z T = Re k∈I c k exp(iν k X T + y k (0), v T ) , with y k (0) = j∈J α j,k Re(h j ) + i j∈J β j,k Im(h j ), k ∈ I.
One can verify that for each k ∈ I, y k (0) ∈ G * K thanks to the fact that α j,k ≥ 0, j ∈ J, and the definition of G * K in (3.5) and G K in (2.3). Since the process U N discounted coincides with the Snell envelope of the discounted payoff process, we have

U N N -1 = max Z t N -1 , e -r(∆t N -1 ) E U N T |F t N -1 = max f (X t N -1 ), e -r∆t N -1 E g(X T , ( h j , v T ) j∈J )|F t N -1 , where ∆t N -1 = t N -t N -1 = T -t N -1 .
According to the affine transform formula in Proposition 3.4, with w being purely imaginary, the value of the option at time N -1 is then

U N N -1 = max f (X t N -1 ), e -r∆t N -1 Re k∈I c k e iν k (Xt N -1 +r∆t N -1 )+ y k (∆t N -1 ),vt N -1 ,
where y k (∆t N -1 ) ∈ G * K is a solution at time ∆t N -1 of the associated Riccati equation (with initial condition y k (0)), k ∈ I. Similarly, in the approximated model, we have

U N,n N -1 = max f (X n t N -1 ), e -r∆t N -1 Re k∈I c k e iν k (X n t N -1 +r∆t N -1 )+ y n k (∆t N -1 ),v n t N -1
, where y n k (∆t N -1 ) ∈ G * K n is a solution at time ∆t N -1 of the associated Riccati equation with initial condition

y n k (0) = j∈J α j,k Re(h n j ) + i j∈J β j,k Im(h n j ) ∈ G * K n .
Propositions 3.3 and 3.6 imply that U N,n N -1 converges in law to U N N -1 . To prove that U N,n i converges in law to U N i for i = 0, . . . , N -2, we apply Lemma 3.7 together with the induction hypothesis in the case of a Bermudan option with maturity t N -1 , N exercise dates, and final payoff ĝ(X t N -1 , ( ĥk , v t N -1 ) k∈I ), where, for k ∈ I, ĥk = y k (∆t) and

ĝ(x, (η k ) k∈I ) = max f (x), , e -r∆t N -1 Re k∈I c k exp (iν k (x + r∆t N -1 ) + η k ) .
Notice that (X t N -1 , ( ĥk , v t N -1 ) k∈I ) ∈ D I thanks to the last implication in Proposition 3.4.

(2) Assume now that g vanishes outside a compact set Γ ⊂ D J . Let ε > 0. By tightness of the sequence (X n T , v n T ), its convergence to (X T , v T ), and the convergence of h n j to h j for all j ∈ J, there exists a compact set Γ ⊂ D J such that Γ ⊂ Γ and

P (X T , ( h j , v T ) j∈J ) / ∈ Γ < ε, P n (X n T , ( h n j , v n T ) j∈J ) / ∈ Γ < ε, n ≥ 1. (4.5)
Furthermore, we can assume that there exists a constant A > 0 such that

Γ = (x, (η j ) j∈J ) ∈ D J : |x| + max j∈J (|η j |) ≤ A .
Let A be an algebra of functions defined as follows. We say that a function ĝ on

D J belongs to A if it is of the form ĝ(x, (η j ) j∈J ) = Re   k∈I c k exp   2πi   n k 2A x + j∈J m k,j 2A Im(η j )   + j∈J α j,k Re(η j )     ,
with I a finite set of indices, c k ∈ C, α j,k ≥ 0, and n k and m k,j integers. We also define the following compact subset of D J :

Γ = (x, (η j ) j∈J ) ∈ D J : |x| + max j∈J |Im(η j )|) ≤ A .
Notice that we have Γ ⊂ Γ, and if we denote by A| Γ the restriction of all the functions in A to Γ, then A| Γ is a subset of C 0 ( Γ, R)-the space of continuous functions that vanish at infinity-that satisfies the hypothesis of the Stone-Weierstrass Theorem. Therefore, there exists ĝ ∈ A such that sup

(x,(η j ) j∈J )∈ Γ |g(x, (η k ) k∈I ) -ĝ(x, (η k ) k∈I )| ≤ ε. (4.6) 
Now observe that for all (x, (η j ) j∈J ) ∈ D J , there exists (x , (η j ) j∈J ) ∈ Γ such that ĝ(x, (η j ) j∈J ) = ĝ(x , (η j ) j∈J ). Hence

ĝ ∞ ≤ ε + g ∞ , (4.7) 
where • ∞ denotes the sup norm on D J .

Denote by U N (resp., U N,n ) the value processes for the Bermudan options corresponding to the payoff process Z (resp., Z n ) obtained by replacing g by g in (4.1) (resp., (4.3)). As shown in the previous case, we already know that

U N,n i converges in law to U N i for i = 0, . . . , N -1. (4.8) 
Moreover, since the process U N discounted coincides with the Snell envelope of the discounted payoff process, we have

|U N i -U N i | ≤ E |U N i+1 -U N i+1 | F t i , i = 0, . . . , N -1.
By iterating this inequality, we deduce

|U N i -U N i | ≤ E [|g(X T , ( h j , v T ) j∈J ) -ĝ(X T , ( h j , v T ) j∈J )||F t i ] , i = 0, . . . , N.
Therefore, thanks to the inequalities (4.5), (4.6), and (4.7),

E |U N i -U N i | ≤ ε(1 + ĝ ∞ ) ≤ ε(1 + ε + g ∞ ), i = 0, . . . , N. (4.9) 
Similarly, we can prove that

E n |U N,n i -U N,n i | ≤ ε(1 + ε + g ∞ ), i = 0, . . . , N, n ≥ 1. (4.10) 
Since ε is arbitrary we conclude, using (

, that U N,n i converges in law to U N i , for i = 0, . . . , N .

(3) Suppose now that g belongs to C b (D J ). Let ε > 0 be arbitrary. As before, tightness of the sequence (X n T , v n T ), its convergence to (X T , v T ), and the convergence of h n j to h j , j ∈ J, imply that there is a compact set Γ ⊂ D J such that

P ((X T , ( h j , v T ) j∈J ) / ∈ Γ) < ε, P n (X n T , ( h n j , v n T ) j∈J ) / ∈ Γ < ε, n ≥ 1.
Let ϕ : D J → [0, 1] be a function of compact support such that ϕ ≡ 1 on Γ.

Denote U N (resp., U N,n ) the value processes for the Bermudan options corresponding to the payoff process Z (resp., Z n ) obtained by replacing g by g = ϕg in (4.1) (resp., Additionally, we have

E |U N i -U N i | ≤ E [|g(X T , h j , v T ) j∈J )) -g(X T , h j , v T ) j∈J ))|] ≤ ε g ∞ , (4.12) 
and

E n |U N,n i -U N,n i | ≤ ε g ∞ . (4.13)
Since ε is arbitrary we conclude, from (4.11), (4.12), and (4.13), that U N,n i converges in law to U N i , for i = 0, . . . , N .

Approximation of American options with Bermudan options

The following theorems establish the convergence of Bermudan option prices towards American option prices and they are crucial in order to prove Theorem 2.7.

Theorem 4.2. Suppose that Assumption 2.2 holds. Let (X, V ) be the unique weak solution to (2.1). For a function f ∈ C 2 b (R) consider the American and Bermudan option prices given by (2.7) and (2.17), respectively. Then

0 ≤ P 0 -P N 0 ≤ c 1 + E sup t∈[0,T ] V t π N , (4.14) 
where π N is the mesh of the partition (t i ) N i=0 and c is a constant that only depends on r, T and f (m) C[0,T ] , m = 0, 1, 2.

Proof. We obviously have 0 ≤ P 0 -P N 0 . Let ε > 0. There exists τ * ε ∈ T 0,T , ε-optimal in the sense that P 0 ≤ E e -rτ * ε f (X τ * ε ) + ε. Now, we introduce the lowest stopping time taking values in {t 0 , ..., t N }, greater than τ * ε ; that is τ N, * ε = inf{t k : t k ≥ τ * ε }. We have that τ N, * ε belongs to T N 0,T . Since the drift and the quadratic variation of X are affine in V , applying Itô's formula to the process e -rt f (X t ) 0≤t≤T between τ * ε and τ N, * ε yields

P 0 -P N 0 ≤ cE τ N, * ε τ * ε (1 + V s ) ds + ε ≤ cE (τ N, * ε -τ * ε ) sup t∈[0,T ] (1 + V t ) + ε ≤ c 1 + E sup t∈[0,T ] V t π N + ε,
where c is a constant that only depends on r, T and f (m) C[0,T ] , m = 0, 1, 2. Since ε > 0 was arbitrary, we deduce (4.14).

As a direct consequence of (3.4) and Theorem 4.2, we have the following convergence result for payoffs f ∈ C 2 b (R). Theorem 4.3. Suppose that Assumptions 2.2 and 2.5 hold. Let (X, V ) and (X n , V n ) be the unique weak solutions to (2.1) and (2.8), respectively. For a function f ∈ C 2 b (R) define P , P N , P n and P N,n as in (2.7), (2.17), (2.18), and (2.19), respectively. Then We are now ready to prove our main theorem. 

-P g 0 | = 0, g ∈ C 2 b (R), (4.16) 
where P n,g 0 and P g 0 denote the prices at time zero of an American option with payoff g in the approximated model (2.8) and in the Volterra Heston model (2.1), respectively. To this end fix ε > 0. For all τ ∈ T 0,T , τ n ∈ T n 0,T , and M > 0 we have

P(|X τ | > M ) ≤ E[|X τ |] M ≤ E[sup t∈[0,T ] |X t |] M , P n (|X n τn | > M ) ≤ E n [|X n τn |] M ≤ E n [sup t∈[0,T ] |X n t |] M , n ≥ 1. (4.17) 
Moreover, the Burkholder-Davis-Gundy inequality and (3.4) imply that

E[ sup t∈[0,T ] |X t |] ≤ C(1 + E[ sup t∈[0,T ] V t ]) ≤ c, E n [ sup t∈[0,T ] |X n t |] ≤ C(1 + E n [ sup t∈[0,T ] V n t ]) ≤ c, n ≥ 1, (4.18) 
for a constant c that depends only on T, λ, η, γ, c K , and sup n≥1 v 0 C[0,T ] . We conclude, thanks to (4.17) and (4.18), that if M = c ε , then for all τ ∈ T 0,T and τ n ∈ T n 0,T

P(|X τ | > M ) ≤ ε, P n (|X n τn | > M ) ≤ ε, n ≥ 1. (4.19) Let g ∈ C ∞ c (R) be such that sup x∈[-M,M ] |f (x) -g(x)| ≤ ε, g ∞ ≤ f ∞ . (4.20) 
For all δ > 0 there exists τ δ ∈ T 0,T such that

E[f (X τ δ )] > P f 0 -δ.
The inequalities (4. [START_REF] Callegaro | Fast hybrid schemes for fractional Riccati equations (rough is not so tough)[END_REF]) and (4.20) imply

E[f (X τ δ )] ≤ P g 0 + E[(f -g)(X τ δ )] ≤ P g 0 + ε(1 + 2 f ∞ ). Then P f 0 ≤ P g 0 + ε(1 + 2 f ∞ ) + δ. Similarly, P g 0 ≤ P f 0 + ε(1 + 2 f ∞ ) + δ.
Since δ > 0 was arbitrary we conclude that

|P f 0 -P g 0 | ≤ ε(1 + 2 f ∞ ).
An analogous argument over the approximating models, using the inequalities (4. [START_REF] Callegaro | Fast hybrid schemes for fractional Riccati equations (rough is not so tough)[END_REF]) and (4.20), yields 

|P n,f 0 -P n,g 0 | ≤ ε(1 + 2 f ∞ ), n ≥ 1. Therefore, |P n,f 0 -P f 0 | ≤ |P n,g 0 -P g 0 | + 2ε(1 + 2 f ∞ ), n ≥
-P f 0 | ≤ 2ε(1 + 2 f ∞ ).
Since ε > 0 was arbitrary, this yields

lim n→∞ |P n,f 0 -P f 0 | = 0.

Numerical illustrations

In this section we illustrate with numerical examples the convergence and behavior of Bermudan put option prices in the approximated sequence of models. To this end, we consider the framework of the rough Heston model in Example 2.4 and the approximation scheme of Example 2.6.

We choose the same model parameters as in [START_REF] Jaber | Lifting the Heston model[END_REF], namely

V 0 = 0.02, ν = 0.02, λ = 0.3, η = 0.3, ρ = -0.7.
We fix a maturity T = 0.5 and a spot interest rate r = 0.06. In order to compute Bermudan option prices in the approximated model (X n , V n ) in (2.8), we apply the Longstaff Schwartz algorithm [START_REF] Longstaff | Valuing American options by simulation: a simple least-squares approach[END_REF] using 10 5 path simulations. Following the suggestion in [START_REF] Jaber | Lifting the Heston model[END_REF], and based on the factor-representation (2.14), we simulate the trajectories of the variance with a truncated explicit-implicit Euler-scheme and the trajectories of the log price with an explicit Euler-scheme. More precisely, given a uniform partition (s k ) N time k=0 of [0, T ] of norm ∆t, and G k 1 k≥1 and G k 2 k≥1 independent sequences of independent centered and reduced Gaussian variables, we simulate the log price with the scheme

X n s k+1 = X n s k + r - V n s k 2 ∆t + V n + s k √ ∆t ρG k+1 1 + 1 -ρ 2 G k+1 2 , X n s 0 = X 0 ,
and the variance with the scheme

V n s k = v n 0 (s k ) + n i=1 c n i Y n,i s k , Y n,i 0 = 0, i = 1, . . . , n, Y n,i s k+1 = 1 1 + x n i ∆t Y n,i s k -λ V n s k ∆t + η V n + s k √ ∆tG k+1 1 , i = 1, . . . , n.
In this framework the approximation of the initial curve v 0 in (2.6) takes the form

v n 0 (s k ) = V 0 + λν n i=1 c n i 1 -e -x n i s k x n i . 6 
We take N time = 500 and select equidistant exercise times (t k ) N i=0 , with N = 50, within the partition (s k ) N time k=0 . Given a strike price K, for the regressions of the Longstaff Schwartz algorithm we use the linear space of functions generated by functions with argument S, corresponding to the log price, and V corresponding to the volatility, of the form

f 1 S K f 2 V ν , f 1 , f 2 ∈ A,
where A is given by A = {1} ∪ {e -z L i (z) : i = 0, 1, 2}, and L i denotes the Laguerre polynomial of order i. 7

6 For generality and consistency reasons, we have done the numerical experiments with this approximation of v0. We notice, however, that for the fractional kernel, v0 is given explicitly by v0(t) = V0 + λν t α Γ(1+α) . 7 In the framework of our factor-approximation scheme, the prices of the Bermudan options at intermediate times are functions of the price S and the factors (Y n,i ) n i=1 defined in (2.14). These functions could be approximated using neural network-based techniques similar to those in [START_REF] Lapeyre | Neural network regression for Bermudan option pricing[END_REF]. Our initial experiments, however, indicate that there is no significant gain in using this more complex approach. This is consistent with similar findings in [START_REF] Bayer | Pricing American options by exercise rate optimization[END_REF][START_REF] Goudenège | Machine learning for pricing American options in high-dimensional markovian and non-markovian models[END_REF] for American options prices in the rough Bergomi model. 

= K -K n 2
L 2 (0,T ) obtained using (5.1) with α = 0.6 and T = 0.5.

To illustrate the convergence of options prices, we fix the parameter α = 0.6 and choose parameters r n > 1 in the kernel approximation such that

r n = arg min r K -K r 2 L 2 (0,T ) = arg min r   i,j≤n c r i c r j 1 -e -(x r i +x r j )T x r i + x r j -2 i≤n c r i (x r i ) -α γ(α, T x r i )   , (5.1) 
where c r i , x r i , i = 1, . . . , n, are as in (2.16) with r n replaced by r, K r is the corresponding kernel obtained as a sum of exponentials, and γ(α, x) = 1 Γ(α) x 0 t α-1 e -t dt is the lower incomplete gamma function. Table 1 contains the values of the parameter r n along with the corresponding values of K -K n 2 L 2 (0,T ) for n = 4, 10, 20, 40, 200. 8 Figure 1 shows Bermudan put option prices for a strike K = 100, initial prices S 0 = exp(X 0 ) in [93, 96], and n = 4, 10, 20, 40 number of factors. We also plot the prices obtained for the classical Heston model, which corresponds to the case n = 1, c 1 1 = 1, and x 1 1 = 0. For each set of prices we indicate the corresponding so-called critical price, this is the greatest value of the initial price for which the Bermudan option price is equal to the payoff. We observe that as n increases the option prices on this interval decrease and as a result the critical price increases. In Figure 2, we plot the critical-price as a function of the norm K -K n To study the behavior of Bermudan put option prices with respect to the parameter α, and taking into account our previous findings, we proxy the prices in the rough Heston model using the approximated model with n = 40 factors. We consider the same parameters as in the previous example with the exception of α. The parameter r 40 is chosen as in (5.1) depending on the parameter α of the fractional kernel K. We compute prices and critical prices for α = 0.6, 0.7, 0.8, 0.9, 1. Figure 3 shows the Bermudan option prices obtained for these values of α and Figure 4 displays the critical price as a function of α. As α increases, 8 These values were obtained using the function fminbnd in the MATLAB optimization toolbox. we observe a similar behavior as the one obtained by increasing K -K n L 2 (0,T ) in our previous example. More precisely, as the regularity of the paths in the model increases, i.e., α increases, the prices of the option increase and the critical price decreases. This is consistent with similar findings reported in [START_REF] Horvath | Functional central limit theorems for rough volatility[END_REF] within the context of the rough Bergomi model and it could be a consequence of the fact that for smaller values of α the variance has rougher paths and spends more time in a neighborhood of zero.

To illustrate the impact of the initial spot variance, we compare in Figure 5 the levels of the critical price for different values of V 0 in the rough Heston model with α = 0.6 and the classical Heston model. The critical price seems to depend almost linearly on the initial spot variance V 0 in both the classical and the rough Heston model. In the rough Heston model the critical price, and hence the Bermudan option prices, appear to be slightly less sensitive to the initial level of the variance. This could be a result of the difference in sensitivity, with respect to V 0 , of the time spent around zero by the trajectories in the classical and rough Heston models.

We also plot in Figure 6 the critical prices for different maturities and for V 0 = 0.06. We observe that for short maturities the sensitivity is higher in the classical Heston model than in the rough Heston model. This is coherent with the previously described behavior with respect to the initial variance level.

To finish, we numerically illustrate in Figure 7 the convergence of Bermudan put option prices to American put option prices in the rough Heston model with α = 0.6. Figure 8 shows the convergence of the corresponding critical prices. A theoretical explanation of our numerical findings would require more detailed results about the path-behavior of the rough Heston model, and their impact on American and Bermudan option prices. Such study falls outside of the scope of this paper but could be an interesting topic of future research, along with a deeper numerical analysis of the behavior of American and Bermudan option prices in terms of the parameters of rough volatility models.

A Riccati-Volterra equations

Proposition A.1. Suppose that K ∈ L 2 loc satisfies condition (i) in Assumption 2.2. Then, given w ∈ C with Re(w) ∈ [0, 1], and h ∈ G * K , the Riccati-Volterra equation (3.9) admits a solution Ψ such that Ψ(t, •; w, h) ∈ G * K for all t ≥ 0.

Proof. As pointed out in Remark 3.5, the Riccati equation (3.9) for Ψ can be recast as the stochastic Volterra equation (3.12) for the function ψ given by (3.11). Thanks to the continuity of ∞ 0 h(ξ)K(• + ξ) dξ, [START_REF] Gripenberg | Volterra integral and functional equations[END_REF]Theorem 12.1.1] implies the existence of a continuous solution ψ on a maximal interval [0, T max ). In order to prove that T max = ∞, we can follow the proof of [START_REF] Jaber | Affine Volterra processes[END_REF]Lemma 7.4]. In [START_REF] Jaber | Affine Volterra processes[END_REF] the authors consider L 2 -solutions and a particular type of initial conditions for the Riccati-Volterra equations. In our case we consider continuous solutions and we have initial conditions of the form ∞ 0 h(ξ)K(t + ξ) dξ such that -∞ 0 Re(h(ξ))K(t + ξ) dξ ∈ G K . The same arguments, however, can be adapted to our setting using the invariance result in [4, Theorem C.1] together with the fact that

  dξ since Ψ(0, ξ) = h(ξ). As pointed out in the proof of Proposition A.1 in Appendix A, thanks to the continuity of ∞ 0 h(ξ)K(•+ξ) dξ, the function ψ is a continuous, and hence bounded, function on [0, T ] . Using (3.20), the fact that ψ is bounded, and a similar argument to the one used in [5, Lemma 7.3], we can show that

( 4 . 3 )

 43 ). As shown in the previous case, we already know thatU N,n i converges in law to U N i for i = 1, . . . , N -1.(4.11)

L 2

 2 (0,T ) for n = 1, 4, 10, 20, 40, where n = 1 corresponds to the classical Heston model. Computing prices with n = 200 factors we observe the same critical price as with n = 40 which illustrates the convergence of the approximated models.
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 1 Figure 1: Bermudan put option prices in terms of n. Payoff (black), Heston model (blue), n = 4 (red), n = 10 (yellow), n = 20 (purple), n = 40 (green).
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 223 Figure 2: Critical prices as a function of K -K n L 2 (0,T ) .

Figure 4 :

 4 Figure 4: Critical prices as a function of α.

Figure 5 :

 5 Figure 5: Critical prices for α = 0.6, 1 and V 0 = 0.02 + k * 0.01, k = 0, 1, 2, 3, 4. The solid lines represent the linear regressions.

Figure 6 :

 6 Figure 6: Critical prices for α = 0.6, 1, V 0 = 0.06 and different maturities T . Specifically, T = 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5.

Figure 7 :

 7 Figure 7: Bermudan put option prices in terms of N . Payoff (black), N = 5 (blue), N = 10 (red), N = 25 (yellow), N = 50 (purple), N = 100 (green).

Figure 8 :

 8 Figure 8: Critical prices as a function of N .

  Theorem I.2.1]. As an immediate consequence of Lemma 3.1, if Assumption 2.5 holds, then

	Remark 3.2.

Table 1 :

 1 Values of r n and norm 2 n

	n	r n	norm 2 n
	4	50.5458	0.3699
	10 18.0548	0.1125
	20	8.8750	0.0325
	40	4.4737	0.0076
	200 1.6946 1.1166e-04

This is an important problem as the majority of equity options are of American type. This can be confirmed, for instance, for stock options traded on Euronext, by visiting https://live.euronext.com/ en/products/stock-options/list.

This is a real-valued measure L of locally bounded variation on R+ such that K * L = 1.

K is completely monotone if (-1) m d m dt m K(t) ≥ 0 for all nonnegative integers m.

In the case of a uniform partition η n i = iπn, conditions that ensure (i)-(iii) in Assumption 2.5 are studied in[START_REF] Jaber | Multifactor approximation of rough volatility models[END_REF].

We called (vt) the adjusted forward process to distinguish it from the classical Musiela parametrization of the forward process (E[Vt+•|Ft]).
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∞ 0 f (ξ)K(t + ξ) dξ ∈ G K for all f ∈ B c (R + , R + ). Moreover, taking the real part in (3.12), [START_REF] Jaber | Multifactor approximation of rough volatility models[END_REF]Theorem C.1] guarantees that s → g t (s) = ∆ t g(s) -(∆ s K * Re(R(w, ψ)))(t) ∈ G K , t ≥ 0, (A.1) where g(s) = -∞ 0 Re(h(ξ))K(s + ξ) dξ. We now define Ψ using (3.13), which satisfies (3.9) thanks to (3.12). The fact that Ψ(t, •; w, h) ∈ G * K , for all t ≥ 0, is a consequence of (A.1) and the identity

This concludes the proof.

We finish this section with a sketch of the proof of Lemma 3.7.

Proof of Lemma 3.7. To prove the convergence of ψ n towards ψ in C[0, T ], one can use similar arguments as in the proof of [START_REF] Jaber | Multifactor approximation of rough volatility models[END_REF]Theorem 4.1], replacing the zero initial condition by the initial curves

The convergence of Ψ n towards Ψ is a consequence of the identity (3.13), the convergence of (h n , ψ n ) to (h, ψ), and the quadratic structure of R(w, •). Since supp(h n ) ⊆ [0, M ] for all n ≥ 1, thanks to the form of the Riccati equations satisfied by Ψ n , we conclude that the support of Ψ n (t, •; w, h n ) is contained in [0, max{T, M }] for all n ≥ 1 and t ≤ T .

B Some results on the kernel approximation

In this appendix we provide sufficient conditions on the kernel approximation which ensure condition (i) in Assumption 2.5.

with γ ∈ (0, 2] and c : R + → R + a locally bounded function. If, in addition,

then the kernels (K n ) n≥1 defined in (2.13), with (c n i ) n i=1 , (x n i ) n i=1 given by (2.15), satisfy condition (i) in Assumption 2.5 with γ as in (B.1).

To prove Theorem B.1 we use the following lemma. 9 This condition was also considered also in [START_REF] Jaber | Markovian structure of the Volterra Heston model[END_REF]Section 4].

Lemma B.2. Suppose that µ is a nonnegative Borel measure µ on R + such that (B.1) holds. Let K be the corresponding completely monotone kernel as in (2.11). Then K satisfies condition (i) in Definition 2.1, with the locally bounded function 2c 2 and the same constant γ as in (B.1).

Proof. Note that

This implies, by (B.1), that

The conclusion readily follows from these observations. Proof of Theorem B.1. According to Lemma B.2 it is enough to show that there is a locally bounded function c : R + → R + such that for all n ≥ 1,

where µ n is a sum of Dirac measures as in (2.12). This is a routine verification, using the definition of c n i , x n i in (2.15), Jensen's inequality, and conditions (B.1) and (B.2). For the sake of brevity, we omit the details.

Remark B.3. Let K be the fractional kernel (2.5) and consider the geometric partition

, i = 0, . . . , n. It is easy to check that the hypotheses of Theorem B.1 hold with γ = 2α -1 as long as sup n≥1 r n < ∞.