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American options in the Volterra Heston model∗

Etienne Chevalier† Sergio Pulido‡ Elizabeth Zúñiga§

March 22, 2021

Abstract

We price American options using kernel-based approximations of the Volterra He-
ston model. We choose these approximations because they allow simulation-based
techniques for pricing. We prove the convergence of American option prices in the
approximating sequence of models towards the prices in the Volterra Heston model.
A crucial step in the proof is to exploit the affine structure of the model in order to
establish explicit formulas and convergence results for the conditional Fourier-Laplace
transform of the log price and an adjusted version of the forward variance. We illus-
trate with numerical examples our convergence result and the behavior of American
option prices with respect to certain parameters of the model.

1 Introduction

Stochastic volatility models whose trajectories are continuous but less regular than Brow-
nian motion, also known as rough volatility models, seem well-adapted to capture stylized
features of the time series of realized volatility and of the implied volatility surface. In-
deed, recent statistical studies in [14, 25, 24] demonstrate that – under multiple time scales
and across many markets – the time series of realized volatility oscillates more rapidly
than Brownian motion. In addition, the observed implied volatility smile for short matu-
rities is steeper than the one obtained with classical low-dimensional diffusion models. As
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maturity decreases, the slope at the money of the implied volatility smile obeys a power
law that explodes at zero. This power law can be reproduced by rough volatility models
with power kernels in the spirit of fractional Brownian motion, cf. [9, 23]. Furthermore,
these empirical discoveries are supported by micro-structural considerations because, as
explained for instance in [35, 19], rough volatility models appear naturally as scaling limits
of micro-structural pricing models with self-exciting features driven by Hawkes processes.

The aforementioned findings have motivated the study of various rough volatility models
in the literature. Among these are the rough fractional stochastic volatility model [25],
the rough Bergomi model [9], and the fractional and rough Heston models [16, 29, 21].
In these models, due to the absence of the semimartingale and Markov properties, even
simple tasks such as pricing European options have proven challenging. Consequently, the
theory of stochastic control for rough volatility models is at an early stage. Under the
rough volatility paradigm, classical control problems such as linear quadratic and optimal
investment problems have only been analyzed recently, for example in [6] and [22, 7, 30, 31],
respectively.

In this paper we tackle an optimal stopping problem, namely the problem of pricing
American options, in the Volterra Heston model introduced in [3, 5]. This path-dependent
problem is difficult because it requires a good understanding of the conditional laws in
a model where in general the semimartingale and Markov properties do not hold. Even
though we could extend parts of the analysis to more general frameworks, we concentrate
on the Volterra Heston model because in this setup – as we will explain below – we can
prove the necessary convergence results.

The Volterra Heston model is a generalization of the widely-known Heston model [33].
The dynamics of the spot variance in the Volterra Heston model are described by a stochas-
tic Volterra equation of convolution type. More specifically, the spot variance process is
a Volterra square root or CIR process. When the kernel appearing in the convolution is
of power-type, one obtains the now well-known rough Heston model [20, 21]. The L2-
regularity of the kernel in the Volterra Heston model controls the Hölder regularity of the
trajectories and the steepness of the implied volatility smile for short maturities. Tractabil-
ity in the Volterra Heston model is a result of a semi-explicit formula for the Fourier-Laplace
transform, which resembles the formula in the classical Heston model. More precisely, the
Fourier-Laplace transform can be expressed in terms of the solution to a deterministic sys-
tem of convolution equations of Riccati-type. This phenomenon is a particular instance
of a more general law governing the structure of the Fourier-Laplace transform of what is
known as Affine Volterra Processes [5, 36, 26, 18]. The knowledge of the Fourier-Laplace
transform in the Volterra Heston model facilitates the application of Fourier-based meth-
ods in order to price European options. This circumvents the difficulties encountered in
the implementation of other popular rough volatility models, such as the rough Bergomi
model, where Monte-Carlo techniques [9, 13] or Donsker-type theorems [34] are employed
to compute prices of European options.

The numerical resolution of the Riccati convolution equations appearing in the expres-
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sion of the Fourier-Laplace transform in the Volterra Heston model is, however, cumber-
some due to the possibly exploding character of the associated kernel. In order to alleviate
these numerical difficulties for the rough Heston model, the author in [1] proposed a kernel-
based approximation with a diffusion – high dimensional but parsimonious – model, named
the Lifted Heston model. Despite being a semimartingale model, the Lifted Heston model
is able to mimic the rough character of the trajectories and to reproduce steep volatility
smiles for short maturities. The approximation of the rough Heston model with the Lifted
Heston model is an example of a more general approximation technique of Volterra pro-
cesses via an approximation of the kernel in [4] originally inspired by [17, 15, 32]. The
convergence of the approximating processes and the prices of European-type options is
guaranteed by stability results proven in [4] and in a more general framework in [2].

To price American options, and inspired by the approach in [1, 4], we draw upon kernel-
based approximations of the Volterra Heston model. In the context of the rough Heston
model where the kernel is of power-type, and for the approximation scheme in [1], the
approximating models are high dimensional-diffusion models where classical simulation-
based techniques, such as the Longstaff Schwartz algorithm [38], can be implemented.
Within this framework, we can conduct an empirical study of the convergence and behavior
of Bermudan put option prices in the approximated sequence of models. The results of our
numerical experiments are summarized in Section 5.

Our main theoretical result is Theorem 2.7. In the first part of the theorem, we show
convergence of prices of Bermudan options in the approximating sequence of models to-
wards the prices in the original Volterra Heston model. This result is not a direct conse-
quence of previous stability results in [4, 2] because of the path-dependent structure of the
option. It is at this stage, and for purely theoretical reasons, that we exploit the affine
structure of the model. More precisely, in order to prove the desired convergence results
we first need to establish the convergence of the conditional Fourier-Laplace transforms.
Once the convergence of the Bermudan option prices is established – and using classical
arguments – we can prove, in the second part of Theorem 2.7, the convergence of American
option prices by approximating them with Bermudan option prices.

It is important to mention at this point that there exist other studies of optimal stopping
and American option pricing in rough or fractional models; see for instance [34, 12, 11, 27,
11]. To understand the novelty of our work it is crucial to point out that in general there
are two levels of approximation in the resolution of an optimal stopping problem using a
probabilistic approach:

(i) First, the model has to be approximated with simpler models where the trajectories
can be simulated or where prices of American options can be computed more easily.
For classical diffusion models this could correspond to a classical Euler scheme for
simulation or a tree-based discrete approximation. Under rough volatility, simula-
tion is cumbersome due to the non-Markovianity of the model. There is not a unified
theory about how this approximation and simulation have to be performed. For in-
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stance, in the rough Bergomi model in order to simulate the volatility process one
could use hybrid schemes [13]. These schemes correspond to an approximation of the
power kernel by concentrating on its behavior around zero and performing a step-
wise approximation away from zero. But we could also imagine schemes relying on an
approximation of the fractional kernel in terms of a sum of exponentials as in [15, 32].
Other recent studies in this direction are [41, 8]. In this work, for our numerical illus-
trations, we use the approximation scheme of [1, 4], based on an approximation of the
kernel using a sum of exponentials. Regarding the approximation via discrete-type
models, in [34] the authors prove a Donsker-type theorem for certain rough volatility
models and apply it to perform tree-like approximations. These approximations allow
them to develop tree-based algorithms, as opposed to simulation-based techniques,
to price American options. The convergence of the American option prices computed
on the approximating trees towards prices in the limiting rough models, however, is
not the main goal of the study.

(ii) The second approximation occurs at the level of the resolution of the optimal stop-
ping problem for the approximated model. In the approximated model, classical
techniques such as the Longstaff Schwarz algorithm, can be difficult to implement
because of the high-dimensionality of the model. It is at this stage that recent studies
propose novel approaches, including techniques relying on neural networks [37, 27],
to ease the implementation. It is also important to mention at this point the study
in [10], where the authors propose an approximation of American option prices using
penalized versions of the BSPDE satisfied by the value function of the problem. A
deep learning-based method is used to approximate the solutions of these penalized
BSPDEs.

The present paper does not focus on the second level of the approximation. For this
part, in our numerical experiments we employ classical simulation-based techniques and in
particular the Longstaff Schwarz algorithm over a low dimensional space of functions. Our
study mainly focuses on the first level of the approximation. More precisely, we concentrate
on the convergence of the prices in the approximating model towards the prices in the
limiting Volterra model. This point has not been addressed in the previous literature and
is what distinguishes our paper from other papers on American options under the rough
volatility paradigm. To prove this convergence in our framework and with our kernel-based
approximation approach, we appeal to the particular affine structure of the Volterra Heston
model, which explains our choice of setting. One could extend some of the results to other
settings as long as the results regarding the convergence of the conditional Fourier-Laplace
transform remain valid. Beyond the affine paradigm, for instance for the rough Bergomi
model, this question falls outside the scope of our work and it is an interesting topic for
future research.

The rest of the paper is organized as follows. In Section 2 we introduce the setup and
state our main result of convergence, namely Theorem 2.7. Section 3 contains the results
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on the adjusted forward process and the conditional Fourier-Laplace transform necessary
for the proof of the main theorem. The proof of the main theorem is presented in Section
4. In Section 5, within the framework of the rough Heston model, we provide numerical
illustrations of the convergence and behavior of Bermudan put option prices. Appendix
A explains some properties of the Riccati equations appearing in the expression of the
conditional Fourier-Laplace transform. In Appendix B we provide results on the kernel
approximation which guarantee certain hypotheses appearing in our main theorem.

Notation

We denote by L2
loc the space of real-valued locally square integrable functions on R+. Sim-

ilarly, given T > 0, L2(0, T ) stands for the space of real-valued square integrable function
on the interval (0, T ). The space C(X,Y ), where X,Y ⊆ C, is the space of continuous
functions from X to Y , with the conventions C(X,R) = C(X) and C = C(R+). We use the
same conventions for Cb, C2

b , Cc, Hβ, B and Bc, which are the spaces of bounded continu-
ous functions, bounded continuous functions with bounded and continuous derivatives up
to order two, continuous functions with compact support, Hölder continuous functions of
any order less than β, bounded functions and bounded functions with compact support,
respectively. We write ∆ for the shift operator, i.e. ∆εf = f(·+ ε). For a function h on R
we denote its support by supp(h). Given a function K and a measure L of locally bounded
variation, we let K ∗ L be the convolution (K ∗ L)(t) =

∫
[0,T ]K(t− s)L(ds), whenever the

integral is well-defined. If F is a function on R+, we define K ∗ F = K ∗ (F ds).

2 Setup and main result

2.1 The model

We consider a Volterra Heston stochastic volatility model as in [3, 5]. In this model, under
a risk-neutral measure, the asset’s log price X and spot variance V are

Xt = X0 +

∫ t

0

(
r − Vs

2

)
ds+

∫ t

0

√
Vt

(
ρdWs +

√
1− ρ2 dW⊥s

)
,

Vt = v0(t)− λ
∫ t

0
K(t− s)Vs ds+ η

∫ t

0
K(t− s)

√
Vs dWs.

(2.1)

In these equations, X0 ∈ R is the initial log price, (W,W⊥) is a two-dimensional Brownian
motion, r is the risk-free rate, and ρ ∈ [−1, 1] is a correlation parameter. The variance
process V is a Volterra square root process. The constant λ ≥ 0 is a parameter of mean
reversion speed and η ≥ 0 is the volatility of volatility. The kernel K is in L2

loc and
the function v0 is in C. Observe that – for fixed X0, interest rate r, and correlation
parameter ρ – the log price process X is completely determined by the variance process
V and the Brownian motion (W,W⊥). Proposition 2.3 gives sufficient conditions ensuring
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the existence and uniqueness of weak solutions to the stochastic Volterra equation of the
variance process.

Following the setting in [5], we introduce a subset K of L2
loc in which we will consider

the kernels.

Definition 2.1. Let K ∈ L2
loc. We write K ∈ K if the following holds:

(i) There exist a constant γ ∈ (0, 2] and a locally bounded function cK : R+ → R+ such
that ∫ ε

0
|K(t)|2 dt+

∫ T−ε

0
|K(t+ ε)−K(t)|2 dt ≤ cK(T )εγ (2.2)

for every T > 0 and 0 < ε ≤ T .

(ii) K is non-identically zero, non-negative, non-increasing, continuous on (0,∞) and
admits a so-called resolvent of first kind L.1 In addition, L is non-negative and

the function s 7→ L([s, s+ t]) is non-increasing on R+

for every t > 0.

Inspired by [3], we specify the space of functions in which we will take the functions v0.
For a given kernel K ∈ K, with associated constant γ as in (2.2), let

GK = {g ∈ Hγ/2 : g(0) ≥ 0, ∆εg−(∆εK∗L)(0)g−d(∆εK∗L)∗g ≥ 0 for all ε ≥ 0}. (2.3)

The space GK is stochastically invariant with respect to the adjusted version of the forward
variance defined in Section 3.1, and it plays a crucial role in our arguments.

Throughout our study we will make the following assumption.

Assumption 2.2. The kernel K and the function v0 satisfy:

(i) K ∈ K and ∆εK satisfies (ii) in Definition 2.1 for all ε ≥ 0.

(ii) v0 ∈ GK .

The existence and uniqueness in law for the stochastic Volterra equation of the variance
process in (2.1) is guaranteed by the following proposition.

Proposition 2.3. Suppose that Assumption 2.2 holds. Then the stochastic Volterra equa-
tion for the variance process V in (2.1) has a unique R+–valued weak solution. Further-
more, the trajectories of V belong to Hγ/2 and given p ≥ 1

sup
t∈[0,T ]

E[|Vt|p] ≤ c, T > 0, (2.4)

where c <∞ is a constant that only depends on p, T, λ, η, γ, cK and ‖v0‖C[0,T ].

1This is a real-valued measure L of locally bounded variation on R+ such that K ∗ L = 1.
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Proof. This result follows from [3, Theorems 2.1 and 2.3], with the exception of the last
assertion on the bound (2.4). Following the argument in the proof of [5, Lemma 3.1],
this bound can be shown to depend on p, T, λ, η, ‖v0‖C[0,T ] and L2–continuously on K|[0,T ].
Note that, thanks to the Fréchet-Kolmogorov theorem, the set of restrictions K|[0,T ] of non-
increasing kernels satisfying the property (2.2) for a given cK and γ is relatively compact in
L2(0, T ). Maximizing the bounds over all such K yields a bound c <∞ that only depends
on p, T, λ, η, γ, cK and ‖v0‖C[0,T ].

The theoretical results of this study are stated for general kernels K and functions v0

satisfying Assumption 2.2. This is convenient in order to keep the notation simple. It is also
in tune with forward-type stochastic volatility models, such as the rough Bergomi model
[9]. Indeed, thanks to (2.4), taking expectations in the equation for the variance process in
(2.1) yields the following relation between the function v0 and the initial forward-variance
curve (E[Vt])

v0(t) = E[Vt] + λ

∫ t

0
K(t− s)E[Vs] ds.

For the numerical illustrations in Section 5 we will use the setting of the rough Heston
model [21], which we summarize in the following example.

Example 2.4. In the rough Heston model, the kernel K is a fractional kernel

K(t) =
tα−1

Γ(α)
, (2.5)

with α ∈
(

1
2 , 1
]
, and the function v0 is of the form

v0(t) = V0 + λν

∫ t

0
K(s) ds, (2.6)

where V0 ≥ 0 is an initial variance and ν ≥ 0 is a long term mean reversion level. Assump-
tion (2.2), with γ = 2α − 1, holds in this framework thanks to [5, Examples 2.3 and 6.2]
and [3, Example 2.2].

Assume that Assumption 2.2 holds. Let P be the probability measure and F = (Ft)
be the filtration of the stochastic basis associated to the weak solution (X,V ) to (2.1).
Suppose that f ∈ Cb(R). Our goal is to determine the value process (Pt)0≤t≤T of the
American option with payoff process (f(Xt))0≤t≤T . We know that P is given by

Pt = ess supτ∈Tt,T E
[
e−r(τ−t)f(Xτ )|Ft

]
, 0 ≤ t ≤ T, (2.7)

where E is the expectation with respect to P and Tt,T denotes the set of F-stopping times
taking values in [t, T ]. In order to compute American option prices, the financial model
has to be approximated by more tractable models. In this work, we will consider approxi-
mations of the Volterra Heston model resulting from L2-approximations of the kernel. In
the next section, we describe the approximation procedure.
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2.2 Approximation of the kernel and the Volterra Heston model

We consider a sequence of kernels (Kn)n≥1 in L2
loc and functions (vn0 )n≥1 in C. We make

the following assumption.

Assumption 2.5. The kernels (Kn)n≥1 and the functions (vn0 )n≥1 satisfy:

(i) There exist a constant γ ∈ (0, 2] and a locally bounded function cK : R+ → R+ such
that Kn satisfies (i) in Definition 2.1, for all n ≥ 1.

(ii) ∆εK
n satisfies (ii) in Definition 2.1 for all ε ≥ 0 and n ≥ 1.

(iii) Kn converges to K in L2
loc.

(iv) vn0 ∈ GKn, with the constant γ of (i), for all n ≥ 1 and vn0 converges to v0 in C.

According to Proposition 2.3, under Assumption 2.5, for each n ≥ 1 there exists a
unique weak solution (Xn, V n) to

Xn
t = X0 +

∫ t

0

(
r − V n

s

2

)
ds+

∫ t

0

√
V n
t

(
ρdWn

s +
√

1− ρ2 dWn,⊥
s

)
,

V n
t = vn0 (t)− λ

∫ t

0
Kn(t− s)V n

s ds+ η

∫ t

0
Kn(t− s)

√
V n
s dWn

s ,

(2.8)

where (Wn,Wn,⊥) is a Brownian motion in the corresponding stochastic basis. Further-
more, given p ≥ 1

sup
n≥1

sup
t∈[0,T ]

En[|V n
t |p] ≤ c, T > 0, (2.9)

with a constant c < ∞ which can be chosen to depend only on p, T, λ, η, γ, cK and
supn≥1 ‖vn0 ‖C[0,T ], and where En denotes the expectation in the respective probability space.
Moreover, the argument in the proof of [4, Theorem 3.6] shows that

(Xn, V n) converges in law to (X,Y ) in C(R+,R2), as n→∞. (2.10)

This is a consequence of a more general result proven in Proposition 3.3.
For completely monotone kernels2, an approximation with a sum of exponentials is

natural. We briefly explain this procedure below.

2.2.1 Approximation with a sum of exponentials

Assume that the kernel K is completely monotone. By Bernstein’s theorem this is equiv-
alent to the existence of a non-negative Borel measure µ on R+ such that

K(t) =

∫
R+

e−xtµ(dx). (2.11)

2K is completely monotone if (−1)m dm

dtm
K(t) ≥ 0 for all non-negative integers m.
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As in [4] and [15, 32], an approximation of the measure µ in (2.11) with a weighted sum
of Dirac measures

µn =
n∑
i=1

cni δxni (2.12)

yields a candidate approximation of the kernel

Kn(t) =

∫
R+

e−xtµn(dx) =
n∑
i=1

cni e−x
n
i t. (2.13)

The kernels (Kn)n≥0 are completely monotone. If in addition they are not identically zero,
as explained in [5, Example 6.2], condition (ii) in Assumption 2.5 holds.

The representation (2.13) yields the following factor-representation for the Volterra
equation (2.8) satisfied by the variance process V n

V n
t = vn0 (t) +

n∑
i=1

cni Y
n,i
t ,

Y n,i
t =

∫ t

0
(−xni Y n,i

s − λV n
s ) ds+

∫ t

0
η
√
V n
s dWn

s , i = 1, . . . , n.

(2.14)

This representation is convenient because the process (Y n,i)ni=1 is an n-dimensional Markov
process with an affine structure. This observation, together with the convergence in (2.10),
was exploited in [4] in order to approximate European option prices in the rough Heston
models employing Fourier methods. The affine structure will also play a crucial role in our
study.

We now describe a natural way to determine the weights cni and the points xni . Let
(ηni )ni=0 be a strictly increasing sequence in [0,∞) and define cni and xni as the mass and
the center of mass of the interval [ηni−1, η

n
i ), i.e.

cni =

∫
[ηni−1,η

n
i )
µ(dx) = µ([ηni−1, η

n
i )),

cni x
n
i =

∫
[ηni−1,η

n
i )
xµ(dx), i = 1, . . . , n.

(2.15)

In Appendix B we provide sufficient conditions on the measure µ and the partitions (ηni )ni=0

that imply condition (i) in Assumption 2.5.
For the numerical illustrations in Section 5 we will use a fractional kernel and a geo-

metric partition which we present in the following example.

Example 2.6. The fractional kernel (2.5) is completely monotone and in this case

µ(dx) =
x−α

Γ(1− α)Γ(α)
dx.
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Following [1], we consider the geometric partition (ηni )ni=0 given by ηni = r
i−n

2
n , for rn > 1

such that
rn ↓ 1 and n log rn →∞, as n→∞.

In this setting, the vectors (cni ) and (xni ) in (2.15) take the form

cni =
(r1−α
n − 1)

Γ(α)Γ(2− α)
r(1−α)(i−1−n/2)
n , xni =

1− α
2− α

r2−α
n − 1

r1−α
n − 1

ri−1−n/2
n , i = 1, . . . , n.

(2.16)
Like in Example 2.4, along with the kernels (Kn)n≥1, we consider functions (vn0 )n≥1 of the
form

vn0 (t) = V0 + λν

∫ t

0
Kn(s) ds.

Under this framework Assumption 2.5 holds3. Indeed, Remark B.3 in Appendix B shows
that condition (i) holds. As explained in [5, Example 6.2], condition (ii) is a consequence
of the complete monotonicity of Kn, n ≥ 1. Condition (iii) is shown in [1, Lemma A.3].
This convergence and the considerations in Example 2.4 imply condition (iv).

With the setup of Example 2.6, since Kn is a C1-kernel and Assumption 2.5 holds,
[4, Proposition B.3] implies that, for each n ≥ 1, there exists a unique strong solution
(Xn, V n) to (2.8). Since in addition the factor process (Y n,i)ni=1 in (2.14) is a diffusion,
classical discretization schemes can be used in order to simulate the trajectories of the
variance and log price. Relying on this observation, the numerical study in Section 5 uses
a simulation-based method in order to approximate American option prices in the rough
Heston model. The convergence of the approximated prices is a consequence of the main
theoretical findings of our study, which we present in the next section.

2.3 Main convergence result

We start by approximating the American option value process P in (2.7) with Bermudan
option prices. More precisely, given a non-negative integer N , T ≥ 0, a partition (ti)

N
i=0 of

[0, T ] with mesh πN , and t ∈ [0, T ], we denote by T Nt,T the set of F-stopping times taking
values in [t, T ] ∩ {t0, ..., tN}. For any N ≥ 0, the Bermudan value process is then defined
by

PNt = ess supτ∈T Nt,T
E
[
e−r(τ−t)f(Xτ )|Ft

]
, 0 ≤ t ≤ T. (2.17)

In addition, given (Xn, V n)n≥1 weak solutions to (2.8), we define the corresponding
American option prices

Pnt = ess supτ∈T nt,T En
[
e−r(τ−t)f(Xn

τ )|Fnt
]
, 0 ≤ t ≤ T (2.18)

3In the case of a uniform partition ηni = iπn, conditions that ensure (i)-(iii) in Assumption 2.5 are
studied in [4].
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and Bermudan option prices

PN,nt = ess sup
τ∈T N,nt,T

En
[
e−r(τ−t)f(Xn

τ )|Fnt
]
, 0 ≤ t ≤ T. (2.19)

In the previous definitions, (Fnt ) is the filtration and En is the expectation on the stochastic
basis associated to the weak solution to (2.8). The sets T nt,T , T N,nt,T are defined similarly to

Tt,T , T Nt,T on this stochastic basis.
Theorem 2.7 below is our main theoretical result. It implies, in particular, that the

approximated American option prices Pn0 converge to the prices P0 in the original Volterra
Heston model.

Theorem 2.7. Suppose that Assumptions 2.2 and 2.5 hold. Let (X,V ) and (Xn, V n) be
the unique weak solutions to (2.1) and (2.8), respectively. For a function f ∈ Cb(R) define
P , PN , Pn and PN,n as in (2.7), (2.17), (2.18) and (2.19), respectively. Then

PN,nti
converges in law to PNti as n→∞, N ≥ 0, 0 ≤ i ≤ N. (2.20)

Moreover, if f ∈ C2
b (R) we have

lim
πN→0

sup
n≥1
|PN,n0 − Pn0 | = lim

πN→0
|PN0 − P0| = 0 (2.21)

and as a result
lim
n→∞

Pn0 = P0. (2.22)

Remark 2.8. For American put option prices, the convergence stated in (2.22) can be
deduced by approximating the payoff function in Cb(R) with functions (fn)n≥1 in the space
C2
b (R) such that fn, f

′
n and f ′′n are uniformly bounded in n.

The proof of Theorem 2.7 is based on the study of the adjusted forward variance process
and the associated Fourier-Laplace transform, which constitutes the main topic of the next
section.

3 Conditional Fourier-Laplace transform

3.1 Adjusted forward process

In this section we study the adjusted forward process. This infinite-dimensional process
was studied in [3] to characterize the Markovian structure of the Volterra Heston model
(2.1). The adjusted forward process is very useful in order to study path-dependent options
such as Bermudan and American options because, as we will see in Section 3.2, it allows
us to better understand the conditional laws of the underlying process by means of the
conditional Fourier-Laplace transform.
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Assume that Assumption 2.2 holds. Let P be the probability measure and F = (Ft) be
the filtration of the stochastic basis associated to the weak solution (X,V ) to (2.1). The
adjusted forward process (vt) of V is

vt(ξ) = E
[
Vt+ξ + λ

∫ ξ

0
K(ξ − s)Vt+s ds|Ft

]
, ξ ≥ 0.4 (3.1)

In particular, the variance process is embedded in the adjusted forward process because
vt(0) = Vt. Notice that, thanks to (2.4), the process

(∫ r
0 K(t+ ξ − s)

√
Vs dWs

)
0≤r≤t+ξ is

a martingale, and we can rewrite the adjusted forward process as

vt(ξ) = v0(t+ ξ) +

∫ t

0
K(t+ ξ − s)

[
−λVs ds+ η

√
Vs dWs

]
, ξ ≥ 0. (3.2)

Moreover, as shown in [3, Theorem 3.1], vt ∈ GK for all t ≥ 0, i.e. GK is stochastically
invariant with respect to (vt).

Similarly, if Assumption 2.5 holds, we can define the adjusted forward process for the
approximating sequence (V n)n≥1 by

vnt (ξ) = En
[
V n
t+ξ + λ

∫ ξ

0
Kn(ξ − s)V n

t+s ds|Fnt
]

= vn0 (t+ ξ) +

∫ t

0
Kn(t+ ξ − s)

[
−λV n

s ds+ η
√
V n
s dWn

s

]
, ξ ≥ 0,

(3.3)

and we have vnt (0) = V n
t and vnt ∈ GKn , for all t ≥ 0 and n ≥ 1.

We start with a lemma regarding the regularity for the approximated adjusted forward
processes vn, n ≥ 1.

Lemma 3.1. Let T,M ≥ 0 and p > max{2, 4/γ}. Suppose that Assumption 2.5 holds and
for n ≥ 1 define the processes

ṽnt (ξ) = vnt (ξ)− vn0 (t+ ξ)

with vn as in (3.3). Then

En[|ṽnt (ξ′)− ṽns (ξ)|p] ≤ C(max(|t− s|, |ξ − ξ′|))pγ/2, (s, ξ), (t, ξ′) ∈ [0, T ]× [0,M ],

where C is a constant that only depends on p, T,M, λ, η, γ, cK and supn≥1 ‖vn0 ‖C[0,T ]. As a
consequence (ṽnt (ξ))(t,ξ)∈[0,T ]×[0,M ] admits an α-Hölder continuous version for any α < γ

2 .

Moreover, for this version and for α < γ
2 −

2
p we have

En
[(

sup
(t,ξ′) 6=(s,ξ)∈[0,T ]×[0,M ]

|ṽnt (ξ′)− ṽns (ξ)|
|(t− s, ξ′ − ξ)|α

)p]
< c, (3.4)

where c <∞ is a constant that only depends on p, α, T,M, λ, η, γ, cK and supn≥1 ‖vn0 ‖C[0,T ].

4We called (vt) the adjusted forward process to distinguish it from the classical Musiela parametrization
of the forward process (E[Vt+·|Ft]).
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Proof. Thanks to (3.3), we have for s ≤ t and ξ, ξ′ ≤M

ṽnt (ξ′)− ṽns (ξ) = ṽnt (ξ′)− ṽns (ξ′) + ṽns (ξ′)− ṽns (ξ)

=

∫ s

0
(Kn(t+ ξ′ − u)−Kn(s+ ξ′ − u)) dZnu +

∫ t

s
Kn(t+ ξ′ − u) dZnu

+

∫ s

0
(Kn(s+ ξ′ − u)−Kn(s+ ξ − u)) dZnu

where Znt = −λ
∫ t

0 V
n
s ds + η

∫ t
0

√
V n
s dWn

s . From this point onwards, using Assumption
2.5 and the bound (2.9), the argument is analogous to the proof of [5, Lemma 2.4] and it is
based on successive applications of Jensen and Burkhölder-Davis-Gundy inequalities, and
Kolmogorov’s continuity theorem; see [40, Theorem I.2.1].

Remark 3.2. As an immediate consequence of Lemma 3.1, if Assumption 2.5 holds then

sup
n≥1

En
[

sup
t∈[0,T ]

V n
t

]
≤ c, (3.5)

where c <∞ is a constant that only depends on T, λ, η, γ, cK and supn≥1 ‖vn0 ‖C[0,T ].

We are now able to establish the convergence of the approximated adjusted forward
process in the next proposition.

Proposition 3.3. Suppose that Assumptions 2.2 and 2.5 hold. Let X (resp. Xn) be as
in (2.1) (resp. (2.8)) and let v (resp. vn) be as in (3.1) (resp. (3.3)). Then, as n goes to
infinity, (Xn

t , v
n
t (ξ))(t,ξ)∈R2

+
converges in law to (Xt, vt(ξ))(t,ξ)∈R2

+
in C(R2

+,R2).

Proof. This proof is similar to the proof of [4, Theorem 3.6 and Proposition 4.2]. We
include a short explanation for completeness. Lemma 3.1 and Assumption 2.5(iv) imply
tightness for the uniform topology of the triple (Xn, vn, Zn), where Znt = −λ

∫ t
0 V

n
s ds +

η
∫ t

0

√
V n
s dWn

s . Suppose that (X, v, Z) is a limit point. Thanks to (3.3) and [2, Lemma
3.2], we have

1 ∗ vn(ξ) = 1 ∗ vn0 (ξ + ·) + 1 ∗ (∆ξK
n ∗ dZn)

= 1 ∗ vn0 (ξ + ·) + ∆ξK
n ∗ Zn

= 1 ∗ vn0 (ξ + ·) + ∆ξK ∗ Zn + (∆ξK −∆ξK
n) ∗ Zn, ξ ≥ 0. (3.6)

In the previous identities, we have used the notation ∆ξK ∗ dZ for the stochastic integral

(∆ξK ∗ dZ)t =
∫ t

0 K(t− s+ ξ)dZs. Assumption 2.5 and the convergence in law of (vn, Zn)
towards (v, Z) yield

1 ∗ v(ξ) = 1 ∗ v0(ξ + ·) + ∆ξK ∗ Z ξ ≥ 0.
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One can show, as in [4, Theorem 3.6], that Z is of the form Zt = −λ
∫ t

0 Vs ds+η
∫ t

0

√
Vs dWs

for some Brownian motion W , where V = v(0). Once again, [2, Lemma 3.2] implies that

vt(ξ) = v0(ξ + t) + (∆ξK ∗ dZ)t , t, ξ ≥ 0.

Hence, V = v(0) is the (unique) weak solution to the stochastic Volterra equation in (2.8)
and v is the associated adjusted forward process. Furthermore, one can prove that (X,V )
is the unique weak solution to (2.1).

3.2 Conditional Fourier-Laplace transforms

This section studies the conditional Fourier-Laplace transform of the log price and the
adjusted forward variance in the Volterra Heston model based on previous considerations
in [36, 3, 18]. The results of this section will be useful to establish the convergence of
Bermudan option prices in the approximated models to the Bermudan option prices in the
original model, i.e. (2.20) in Theorem 2.7, using a dynamic programming approach.

We start by introducing some notation. For a kernel K ∈ K define

G∗K =

{
h ∈ Bc(R+,C) : t 7→ −Re

(∫ ∞
0

h(ξ)K(t+ ξ) dξ

)
∈ GK

}
(3.7)

with GK as in (2.3). This space is a dual space that we will consider in the computation of
the Fourier-Laplace transform of the adjusted forward process.

The next proposition characterizes the conditional Fourier Laplace transform of the log
price X and the adjusted forward variance v through solutions of some Riccati equations.

Proposition 3.4. Suppose that Assumption 2.2 holds, and let X be the log price process
given by (2.1) and v be the adjusted forward process given by (3.1). Fix T ≥ 0, w ∈ C with
Re(w) ∈ [0, 1] and h ∈ G∗K . Then the conditional Fourier-Laplace transform of (X, v)

Lt(w, h;XT , vT ) = E
[
exp

(
wXT +

∫ ∞
0

h(ξ)vT (ξ) dξ

)
|Ft
]
, t ≤ T (3.8)

can be computed thanks to the following formula

Lt(w, h;XT , vT ) = exp

(
w(Xt + r(T − t)) +

∫ ∞
0

Ψ(T − t, ξ;w, h)vt(ξ) dξ

)
, (3.9)

where Ψ satisfies
ξ 7→ Ψ(t, ξ;w, h) ∈ G∗K , t ≥ 0, (3.10)

and it is a solution to the following Riccati equation

Ψ(t, ξ;w, h) = h(ξ − t)1{ξ≥t} +R
(
w,

∫ ∞
0

Ψ(t− ξ, z;w, h)K(z) dz

)
1{ξ<t}, t, ξ ≥ 0,

(3.11)
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and the operator R is defined by

R(w,ϕ) =
1

2
(w2 − w) +

(
ρηw − λ+

η2

2
ϕ

)
ϕ. (3.12)

Moreover, if

Re(w) = 0,

∫ ∞
0

Re(h(ξ))vT (ξ) dξ ≤ 0

then ∫ ∞
0

Re(Ψ(T − t, ξ;w, h))vt(ξ) dξ ≤ 0, t ≤ T.

Remark 3.5. Existence of solutions to equations (3.11) satisfying (3.10) is shown in Ap-
pendix A (see Propostion A.1). Notice that by setting

ψ(t) =

∫ ∞
0

Ψ(t, ξ;w, h)K(ξ) dξ, (3.13)

then the Riccati equation (3.11) can be recast as the following Riccati-Volterra equation for
ψ

ψ(t) =

∫ ∞
0

h(ξ)K(t+ ξ) dξ + (K ∗ R (w,ψ(·)))(t), (3.14)

and we have the identity

Ψ(t, ξ;w, h) = h(ξ − t)1{ξ≥t} +R (w,ψ(t− ξ)) 1{ξ<t}. (3.15)

Proof of Proposition 3.4. Let Ψ be a solution to (3.11), satisfying (3.10) (see Proposition
A.1). To simplify notation, throughout the proof we will omit the parameters w and h.
Let Z be the semimartingale Zt = −λ

∫ t
0 Vs ds+ η

∫ t
0

√
Vs dWs, ψ be as in (3.13), and set

θ = T − t, Ỹt =

∫ ∞
0

Ψ(θ, ξ)(vt(ξ)− v0(ξ + t)) dξ.

The identity (3.2), equation (3.11), the stochastic Fubini theorem (see [39, Theorem 65]),
and a change of variables yield

Ỹt =

∫ ∞
0

∫ t

0
Ψ(θ, ξ)K(t+ ξ − s) dZs dξ

=

∫ t

0

∫ ∞
θ

h(ξ − θ)K(t+ ξ − s) dξ dZs +

∫ t

0

∫ θ

0
R(ψ(θ − ξ))K(t+ ξ − s) dξ dZs

=

∫ t

0

∫ ∞
T−s

h(ξ − T + s)K(ξ) dξ dZs +

∫ t

0

∫ T−s

t−s
R(ψ(T − s− ξ))K(ξ) dξ dZs.

(3.16)
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Equation (3.14) implies that

ψ(T − s) =

∫ ∞
T−s

h(ξ − T + s)K(ξ) dξ +

∫ T−s

0
R(ψ(T − s− ξ))K(ξ)dξ. (3.17)

We then plugg (3.17) into (3.16) and obtain

Ỹt =

∫ t

0
ψ(T − s) dZs −

∫ t

0

∫ t−s

0
R(ψ(T − s− ξ))K(ξ) dξ dZs. (3.18)

We deduce, thanks to (3.18) and the stochastic Volterra equation for the variance process,
the following semimartingale dynamics for the process Ỹ

dỸt = ψ(θ) dZt −R(ψ(θ))

∫ t

0
K(t− s) dZs dt = ψ(θ) dZt −R(ψ(θ))(Vt − v0(t)) dt. (3.19)

On the other hand, similar calculations show that∫ ∞
0

Ψ(θ, ξ)v0(ξ + t) dξ =

∫ ∞
0

h(ξ)v0(ξ + T ) dξ +

∫ θ

0
R(ψ(ξ))v0(T − ξ) dξ. (3.20)

Define the process Y as

Yt = Ỹt +

∫ ∞
0

Ψ(θ, ξ)v0(ξ + t) dξ =

∫ ∞
0

Ψ(θ, ξ)vt(ξ) dξ.

From equation (3.19) and (3.20) we obtain the following semimartingale dynamics for Y

dYt = ψ(θ) dZt −R(ψ(θ))Vt dt. (3.21)

Consider now the semimartingale

Mt = exp(w(Xt − rt) + Yt).

From equation (3.21) and Itô’s formula, we obtain

dMt

Mt
= w dXt − wr dt+ dYt +

1

2
w2 d〈X〉t +

1

2
d〈Y 〉t + w d〈X,Y 〉t

= −w
2
Vt dt+ w

√
Vt dBt + ψ(θ) dZt −R(ψ(θ))Vt dt (3.22)

+
1

2
w2Vt dt+

1

2
ψ2(θ)η2Vt dt+ ρηwψ(θ)Vt dt

where B = ρW +
√

1− ρ2W⊥. From the definition of R in (3.12), we finally get

dMt

Mt
= w

√
Vt dBt + ψ(T − t)η

√
Vt dWt. (3.23)
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M is then a local martingale and

MT = exp

(
w(XT − rT ) +

∫ ∞
0

h(ξ)vT (ξ) dξ

)
since Ψ(0, ξ) = h(ξ). As pointed out in the proof of Propostion A.1 in Appendix A, thanks
to the continuity of

∫∞
0 h(ξ)K(·+ξ) dξ, the function ψ is a continuous, and hence bounded,

function on [0, T ] . Using a similar argument to the one used in [5, Lemma 7.3], we can show
that M is a true martingale. This implies the formula for the Fourier-Laplace transform
(3.9). The last implication in the statement of the proposition is a direct consequence of
(3.9).

To establish the convergence of approximated Bermudan option prices, we will use
convergence results of the conditional Fourier-Laplace transform, which we present in the
following section.

3.3 Convergence of the Fourier-Laplace transform

Suppose that the kernels (Kn)n≥1 and the functions (vn0 )n≥1 satisfy Assumption 2.5. Let
(Xn, V n)n≥1 be the solutions to (2.8) and let (vn)n≥1 be the corresponding adjusted forward
processes as in (3.3). We define, analogously to (3.8), the associated conditional Fourier-
Laplace transform

Ln(w, hn;Xn
T , v

n
T ) = En

[
exp

(
wXn

T +

∫ ∞
0

hn(ξ)vnT (ξ) dξ

)
|Fnt

]
(3.24)

with hn ∈ GKn and Re(w) ∈ [0, 1]. Proposition (3.4) implies that

Lnt (w, hn;Xn
T , v

n
T ) = exp

(
w(Xn

t + r(T − t)) +

∫ ∞
0

Ψn(T − t, ξ;w, hn)vnt (ξ) dξ

)
, (3.25)

where Ψn solves (3.11) with h replaced by hn and K replaced by Kn. We have the following
convergence result for the conditional Fourier-Laplace transforms.

Proposition 3.6. Suppose that Assumptions 2.2 and 2.5 hold. Let X (resp. Xn) be as in
(2.1) (resp. (2.8)) and let v (resp. vn) be as in (3.1) (resp. (3.3)). Fix T ≥ 0, w ∈ C with
Re(w) ∈ [0, 1], and (hn)n≥1 with hn ∈ G∗Kn, n ≥ 1. Assume that there is M ≥ 0 such that

supp(hn) ⊆ [0,M ], n ≥ 1; and hn → h ∈ G∗K in B([0,M ],C), as n→∞.

Then

Ln(w, hn;Xn
T , v

n
T ) converges in law to L(w, h;XT , vT ) in C[0, T ], as n→∞,

where L(w, h;XT , vT ) and Ln(w, hn;Xn
T , v

n
T ) are the conditional Fourier-Laplace trans-

forms defined in (3.8) and (3.24), respectively.
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The proof of Proposition 3.6 is based on Proposition 3.3 and the following lemma,
whose proof can be found in Appendix A.

Lemma 3.7. Assume that the hypotheses of Proposition 3.6 hold. Let Ψ (resp. Ψn) be
solutions to the Riccati equation (3.11) with kernel K (resp. Kn) and initial condition h
(resp. hn). Define

ψ(t) =

∫ ∞
0

Ψ(t, ξ;w, h)K(ξ) dξ, ψn(t) =

∫ ∞
0

Ψn(t, ξ;w, hn)Kn(ξ) dξ.

Then, as n goes to infinity, ψn converges to ψ in C[0, T ]. Moreover, letting M̃ = max{M,T},
the support of Ψn(t, ·;w, hn) is contained in [0, M̃ ] for all n ≥ 1 and t ≤ T , and Ψn(t, ·;w, hn)

converges to Ψ(t, ·;w, h) in B([0, M̃ ],C) uniformly in t ∈ [0, T ] .

Proof of Proposition 3.6. By Proposition 3.3 and Skorohod’s representation theorem we
can construct (Xn, vn) and (X, v) on the same probability space such that, as n goes to
infinity, (Xn, vn) converges almost surely to (X, v) in C(R2

+,R2). This observation and
Lemma 3.7 imply that

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣wXn
t +

∫ ∞
0

Ψn(t, ξ;w, hn)vnt (ξ) dξ − wXt −
∫ ∞

0
Ψ(t, ξ;w, h)vt(ξ) dξ

∣∣∣∣ = 0, a.s.

Hence, wXn+
∫∞

0 Ψn(·, ξ;w, hn)vnt (ξ) dξ converges in law to wX+
∫∞

0 Ψ(·, ξ;w, h)vt(ξ) dξ in
C[0, T ]. An application of the continuous mapping theorem with the exponential function,
together with Proposition 3.4, yields the conclusion.

We now possess all the elements necessary for the proof of Theorem 2.7.

4 Proof of the main convergence result

We break down the argument into different parts. We start by establishing, in the next
section, the convergence of the Bermudan option prices as stated in (2.20). To this end, we
will consider a more general payoff structure that is better suited for an inductive argument.

4.1 Convergence of Bermudan option prices

Throughout this section we will use the notation

〈h, ĥ〉 =

∫ ∞
0

h(ξ)ĥ(ξ) dξ

for h ∈ Bc(R+,C) and ĥ ∈ C. In addition, for a given finite set of indices J , we define

DJ = {(x, (ηj)j∈J) ∈ (R,C#J) : Re(ηj) ≤ 0 for all j ∈ J}. (4.1)

18



We will consider options with intrinsic payoff processes (Zt)0≤t≤T defined as

Zt =

{
f(Xt), for 0 ≤ t < T,
g(XT , (〈hj , vT 〉)j∈J), for t = T,

(4.2)

where v denotes the adjusted forward process (3.1), J is a finite set of indexes, f ∈ Cb(R),
g ∈ Cb(DJ), hj ∈ G∗K for all j ∈ J , and (XT , (〈hj , vT 〉)j∈J) ∈ DJ . In this setting, the
Bermudan option discrete value process over the grid (ti)

N
i=0 takes the form

UNi = ess supτ∈T Nti,T
E
[
e−r(τ−ti)Zτ |Fti

]
, 0 ≤ i ≤ N. (4.3)

For the approximating models, and in an analogous manner, we will consider options
with payoff processes (Znt )0≤t≤T defined as

Znt =

{
f(Xn

t ), for 0 ≤ t < T,
g(Xn

T , (〈hnj , vnT 〉)j∈J), for t = T,
(4.4)

where hj ∈ G∗Kn , for all j ∈ J , and (Xn
T , (〈hnj , vnT 〉)j∈J) ∈ DJ . The Bermudan option

discrete value process, in the approximated model and over the grid (ti)
N
i=0, takes the form

UN,ni = ess supτ∈T Nti,T
En
[
e−r(τ−ti)Znτ |Fnti

]
, 0 ≤ i ≤ N. (4.5)

The following is the main result of this section.

Theorem 4.1. Suppose that Assumptions 2.2 and 2.5 hold. Let X (resp. Xn) be as in
(2.1) (resp. (2.8)) and let v (resp. vn) be as in (3.1) (resp. (3.3)). Fix T ≥ 0, J a finite
set of indexes, f ∈ Cb(R), g ∈ Cb(DJ), and (hn)n≥1 with hn ∈ G∗Kn, n ≥ 1. Assume that
there is M ≥ 0 such that

supp(hn) ⊆ [0,M ], n ≥ 1; and hn → h ∈ G∗K in B([0,M ],C), as n→∞.

Then
UN,ni converges in law to UNi , i = 0, . . . , N, as n→∞,

where UNi and UN,ni are given by (4.3) and (4.5), respectively.

Proof. We prove the result by induction on the number of exercise dates N + 1.
Initialization: Assume that N = 0. We just have to prove that

lim
n→+∞

g(X0, (〈hnj , vn0 〉)j∈J) = g(X0, (〈hj , v0〉)j∈J).

This follows from continuity of g on DJ , because our hypotheses readily imply

lim
n→+∞

〈hnj , vn0 〉 = 〈hj , v0〉.

Induction: Assume that the claim holds for Bermudan options with N exercise dates. We
have to consider three different cases.
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1) Suppose that g on DJ has the form

g(x, (ηj)j∈J) = Re

∑
k∈I

ck exp

i
νkx+

∑
j∈J

βj,kIm(ηj)

+
∑
j∈J

αj,kRe(ηj)

 ,

(4.6)
with I a finite set of indices, ck ∈ C, νk ∈ R, αj,k ≥ 0, βj,k ∈ R. In this case the value
of the option at maturity (in the original Volterra model) is

ZT = Re

(∑
k∈I

ck exp(iνkXT + 〈yk(0), vT 〉)

)
,

with
yk(0) =

∑
j∈J

αj,kRe(hj) + i
∑
j∈J

βj,kIm(hj), k ∈ I.

One can verify that for each k ∈ I, yk(0) ∈ G∗K thanks to the fact that αj,k ≥ 0, j ∈ J ,
and the definition of G∗K in (3.7) and GK in (2.3). Since the process UN discounted
coincides with the Snell envelope of the discounted payoff process, we have

UNN−1 = max
(
ZtN−1 , e

−r(∆tN−1)E
[
UNT |FtN−1

])
= max

(
f(XtN−1), e−r∆tN−1E

[
g(XT , (〈hj , vT 〉)j∈J))|FtN−1

])
,

where ∆tN−1 = tN − tN−1 = T − tN−1. According to the affine transform formula
in Proposition 3.4, with w being purely imaginary, the value of the option at time
N − 1 is then

UNN−1 = max

{
f(XtN−1), e−r∆tN−1Re

(∑
k∈I

cke
iνk(XtN−1

+r∆tN−1)+〈yk(∆tN−1),vtN−1
〉

)}
,

where yk(∆tN−1) ∈ G∗K is a solution at time ∆tN−1 of the associated Riccati equation
(with initial condition yk(0)), k ∈ I. Similarly, in the approximated model, we have

UN,nN−1 = max

{
f(Xn

tN−1
), e−r∆tN−1Re

(∑
k∈I

cke
iνk(Xn

tN−1
+r∆tN−1)+〈ynk (∆tN−1),vntN−1

〉
)}

,

where ynk (∆tN−1) ∈ G∗Kn is a solution at time ∆tN−1 of the associated Riccati equa-
tion with initial condition

ynk (0) =
∑
j∈J

αj,kRe(hnj ) + i
∑
j∈J

βj,kIm(hnj ) ∈ G∗Kn .
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Propositions 3.3 and 3.6 imply that UN,nN−1 converges in law to UNN−1. To prove that

UN,ni converges in law to UNi for i = 0, . . . , N − 2, we apply Lemma 3.7 together
with the induction hypothesis in the case of a Bermudan option with maturity tN−1,
N exercise dates and final payoff ĝ(XtN−1 , (〈ĥk, vtN−1〉)k∈I) where, for k ∈ I, ĥk =
yk(∆t) and

ĝ(x, (ηk)k∈I) = max

{
f(x), , e−r∆tN−1Re

(∑
k∈I

ck exp (iνk(x+ r∆tN−1) + ηk)

)}
.

Notice that (XtN−1 , (〈ĥk, vtN−1〉)k∈I) ∈ DI thanks to the last implication in Proposi-
tion 3.4.

2) Assume now that g vanishes outside a compact set Γ ⊂ DJ .
Let ε > 0. By tightness of the sequence (Xn

T , v
n
T ), its convergence to (XT , vT ), and

the convergence of hnj to hj for all j ∈ J , there exists a compact set Γ′ ⊂ DJ such
that Γ ⊂ Γ′ and

P
((

(XT , (〈hj , vT 〉)j∈J)) /∈ Γ′
))
< ε, Pn

((
(Xn

T , (〈hnj , vnT 〉)j∈J)) /∈ Γ′
))
< ε, n ≥ 1.

(4.7)
Furthermore, we can assume that there exists a constant A > 0 such that

Γ′ =

{
(x, (ηj)j∈J) ∈ DJ : |x|+ max

j∈J
(|ηj |) ≤ A

}
.

Let A be an algebra of functions defined as follows. We say that a function ĝ on DJ
belongs to A if it is of the form

ĝ(x, (ηj)j∈J) = Re

∑
k∈I

ck exp

2πi

 nk
2A

x+
∑
j∈J

mk,j

2A
Im(ηj)

+
∑
j∈J

αj,kRe(ηj)

 ,

with I a finite set of indices, ck ∈ C, αj,k ≥ 0, and nk and mk,j integers. We also
define the following compact subset of DJ

Γ̃ =

{
(x, (ηj)j∈J) ∈ DJ : |x|+ max

j∈J
|Im(ηj)|) ≤ A

}
.

Notice that we have Γ′ ⊂ Γ̃ and, if we denote by A|
Γ̃

the restriction of all the functions

in A to Γ̃, A|
Γ̃

is a subset of C0(Γ̃,R) – the space of continuous functions that vanish
at infinity – that satisfies the hypothesis of Stone-Weierstrass Theorem. Therefore,
there exists ĝ ∈ A such that

sup
(x,(ηj)j∈J )∈Γ̃

|g(x, (ηk)k∈I)− ĝ(x, (ηk)k∈I)| ≤ ε. (4.8)
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Now observe that for all (x, (ηj)j∈J) ∈ DJ , there exists (x′, (η′j)j∈J) ∈ Γ̃ such that
ĝ(x, (ηj)j∈J) = ĝ(x′, (η′j)j∈J). Hence

‖ĝ‖∞ ≤ ε+ ‖g‖∞, (4.9)

where ‖ · ‖∞ denotes the sup norm on DJ .

Denote by ÛN (resp. ÛN,n) the value processes for the Bermudan options corre-
sponding to the payoff process Ẑ (resp. Ẑn) obtained by replacing g by ĝ in (4.2)
(resp. (4.4)). As shown in the previous case, we already know that

ÛN,ni converges in law to ÛNi for i = 0, . . . , N − 1. (4.10)

Moreover, since the process UN discounted coincides with the Snell envelope of the
discounted payoff process, we have

|UNi − ÛNi | ≤ E
[
|UNi+1 − ÛNi+1|

∣∣∣∣Fti] , i = 0, . . . , N − 1.

By iterating this inequality, we deduce

|UNi − ÛNi | ≤ E [|g(XT , 〈hj , vT 〉)j∈J))− ĝ(XT , 〈hj , vT 〉)j∈J))||Fti ] , i = 0, . . . , N.

Therefore, thanks to the inequalities (4.7), (4.8) and (4.9),

E
[
|UNi − ÛNi |

]
≤ ε(1 + ‖ĝ‖∞) ≤ ε(1 + ε+ ‖g‖∞), i = 0, . . . , N. (4.11)

Similarly we can prove that

En
[
|UN,ni − ÛN,ni |

]
≤ ε(1 + ε+ ‖g‖∞), i = 0, . . . , N, n ≥ 0. (4.12)

Since ε is abitrary we conclude, using (4.10), (4.11) and (4.12), that UN,ni converges
in law to UNi , for i = 0, . . . , N .

3) Suppose now that g belongs to Cb(DJ).
Let ε > 0 be arbitrary. As before, tightness of the sequence (Xn

T , v
n
T ), its convergence

to (XT , vT ), and the convergence of hnj to hj , j ∈ J , imply that there is a compact
set Γ ⊂ DJ such that

P (((XT , (〈hj , vT 〉)j∈J)) /∈ Γ)) < ε, Pn
((

(Xn
T , (〈hnj , vnT 〉)j∈J)) /∈ Γ

))
< ε, n ≥ 1.

(4.13)

Let ϕ : DJ → [0, 1] be a function of compact support such that ϕ ≡ 1 on Γ.
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Denote U
N

(resp. U
N,n

) the value processes for the Bermudan options corresponding
to the payoff process Z (resp. Z

n
) obtained by replacing g by g = ϕg in (4.2) (resp.

(4.4)). As shown in the previous case, we already know that

U
N,n
i converges in law to U

N
i for i = 1, . . . , N − 1. (4.14)

Additionally, we have

E
[
|UNi − U

N
i |
]
≤ E [|g(XT , 〈hj , vT 〉)j∈J))− g(XT , 〈hj , vT 〉)j∈J))|]

≤ ε‖g‖∞,
(4.15)

and
En
[
|UN,ni − UN,ni |

]
≤ ε‖g‖∞. (4.16)

Since ε is abitrary we conclude, from (4.14), (4.15) and (4.16), that UN,ni converges
in law to UNi , for i = 0, . . . , N .

4.2 Approximation of American options with Bermudan options

The following theorem establishes the convergence of Bermudan option prices towards
American option prices and it is crucial in order to prove (2.21) in Theorem 2.7.

Theorem 4.2. Suppose that Assumption 2.2 holds. Let (X,V ) be the unique weak solution
to (2.1). For a function f ∈ C2

b (R) consider the American and Bermudan option prices
given by (2.7) and (2.17), respectively. Then

0 ≤ P0 − PN0 ≤ c

(
1 + E

[
sup
t∈[0,T ]

Vt

])
πN , (4.17)

where πN is the mesh of the partition (ti)
N
i=0 and c is a constant that only depends on r, T

and ‖f (m)‖C[0,T ], m = 0, 1, 2.

Proof. We obviously have 0 ≤ P0 − PN0 . Let ε > 0. There exists τ∗ε ∈ T0,T , ε-optimal in
the sense that

P0 ≤ E
[
e−rτ

∗
ε f(Xτ∗ε )

]
+ ε.

Now, we introduce the lowest stopping time taking values in {t0, ..., tN}, greater than τ∗ε ,
this is

τN,∗ε = inf{tk : tk ≥ τ∗ε }.
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We have that τN,∗ε belongs to T N0,T . Since the drift and the quadratic variation of X are

affine in V , applying Itô’s formula to the process
(
e−rtf(Xt)

)
0≤t≤T between τ∗ε and τN,∗ε

yields

P0 − PN0 ≤ cE
[ ∫ τN,∗ε

τ∗ε

(1 + Vs) ds
]

+ ε (4.18)

≤ cE
[
(τN,∗ε − τ∗ε ) sup

t∈[0,T ]
(1 + Vt)

]
+ ε (4.19)

≤ c

(
1 + E

[
sup
t∈[0,T ]

Vt

])
πN + ε, (4.20)

where c is a constant that only depends on r, T and ‖f (m)‖C[0,T ], m = 0, 1, 2. Since ε > 0
was arbitrary, we deduce (4.17).

We are now ready to prove our main theorem.

Proof of Theorem 2.7. The convergence in (2.20) is a direct consequence of Theorem 4.1.
On the other hand, (3.5) and Theorem 4.2 yield (2.21). The limit (2.22) follows from (2.20)
and (2.21).

5 Numerical illustrations

In this section we illustrate with numerical examples the convergence and behavior of
Bermudan put option prices in the approximated sequence of models. To this end, we
consider the framework of the rough Heston model in Example 2.4 and the approximation
scheme of Example 2.6.

We choose the same model parameters as in [1], namely

V0 = 0.02, ν̄ = 0.02, λ = 0.3, η = 0.3, ρ = −0.7. (5.1)

We fix a maturity T = 0.5 and a spot interest rate r = 0.06.
In order to compute Bermudan option prices in the approximated model (Xn, V n) in

(2.8), we apply the Longstaff Schwartz algorithm [38] using 105 path simulations. Follow-
ing the suggestion in [1], and based on the factor-representation (2.14), we simulate the
trajectories of the variance with a truncated explicit-implicit Euler-scheme and the tra-
jectories of the log price with an explicit Euler-scheme. More precisely, given a uniform
partition (sk)

Ntime
k=0 of [0, T ] of norm ∆t, and

(
Gk1
)
k≥1

and
(
Gk2
)
k≥1

independent sequences
of independent centered and reduced gaussian variables, we simulate the log price with the
scheme

X̂n
sk+1

= X̂n
sk

+

(
r −

V̂ n
sk

2

)
∆t+

√
V̂ n +
sk

√
∆t
(
ρGk+1

1 +
√

1− ρ2Gk+1
2

)
, X̂n

s0 = X0,
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and the variance with the scheme

V̂ n
sk

= vn0 (sk) +
n∑
i=1

cni Ŷ
n,i
sk
, Ŷ n,i

0 = 0, i = 1, . . . , n,

Ŷ n,i
sk+1

=
1

1 + xni ∆t

(
Ŷ n,i
sk
− λV̂ n

sk
∆t+ η

√
V̂ n +
sk

√
∆tGk+1

1

)
, i = 1, . . . , n.

In this framework the initial curve v0 in (2.6) takes the form

vn0 (sk) = V0 + λν̄
n∑
i=1

cni

(
1− e−xni sk

xni

)
.

We take Ntime = 500 and select equidistant exercise times (tk)
N
i=0, with N = 50, within the

partition (sk)
Ntime
k=0 . Given a strike price K, for the regressions of the Longstaff Schwartz

algorithm we use the linear space of functions generated by functions with argument S,
corresponding to the log price, and V corresponding to the volatility, of the form

f1

(
S

K

)
f2

(
V

ν̄

)
, f1, f2 ∈ A

where A is given by
A = {1} ∪ {e−zLi(z) : i = 0, 1, 2},

and Li denotes the Laguerre polynomial of order i.5

To illustrate the convergence of options prices, we fix the parameter α = 0.6 and choose
parameters rn > 1 in the kernel approximation such that

rn = arg min
r
‖K −Kr‖2L2(0,T )

= arg min
r

∑
i,j≤n

cri c
r
j

1− e−(xri+x
r
j )T

xri + xrj
− 2

∑
i≤n

cri (x
r
i )
−αγ(α, Txri )

 ,
(5.2)

where cri , x
r
i , i = 1, . . . , n, are as in (2.16) with rn replaced by r, Kr is the corresponding

kernel obtained as a sum of exponentials, and γ(α, x) = 1
Γ(α)

∫ x
0 t

α−1e−t dt is the lower
incomplete gamma function. Table 1 contains the values of the parameter rn along with
the corresponding values of ‖K − Kn‖2L2(0,T ) for n = 4, 10, 20, 40, 200. Figure 1 shows

Bermudan put option prices for a strike K = 100, initial prices S0 = exp(X0) in [93, 96],

5In the framework of our factor-approximation scheme, the prices of the Bermudan options at interme-
diate times are functions of the price S and the factors (Y n,i)ni=1 defined in (2.14). This functions could
be approximated using neural network-based techniques similar to those in [37]. Our initial experiments,
however, indicate that there is no significant gain in using this more complex approach. This is consistent
with similar findings in [11] and [27] for American options prices in the rough Bergomi model.
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n rn norm2
n

4 50.5458 0.3699
10 18.0548 0.1125
20 8.8750 0.0325
40 4.4737 0.0076
200 1.6946 1.1166e-04

Table 1: Values of rn and norm2
n = ‖K−Kn‖2L2(0,T ) obtained using (5.2) with α = 0.6 and

T = 0.5.
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S0

4

4.5

5

5.5

6

6.5

7

P
ri
c
e

Prices in terms of n

Figure 1: Bermudan put option prices in terms of n. Payoff (black), Heston model (blue),
n = 4 (red), n = 10 (yellow), n = 20 (purple), n = 40 (green).

and n = 4, 10, 20, 40 number of factors. We also plot the prices obtained for the classical
Heston model. For each set of prices we indicate the corresponding so-called critical price,
this is the greatest value of the initial price for which the Bermudan option price is equal to
the payoff. We observe that as n increases the option prices on this interval decrease and
as a result the critical price increases. In Figure 2, we plot the critical-price as a function of
the norm ‖K −Kn‖L2(0,T ) for n = 1, 4, 10, 20, 40, where n = 1 corresponds to the classical
Heston model. Computing prices with n = 200 factors we observe the same critical price
as with n = 40 which illustrates the convergence of the approximated models.

To study the behavior of Bermudan put option prices with respect to the parameter
α, and taking into account our previous findings, we proxy the prices in the rough Heston
model using the approximated model with n = 40 factors. We consider the same parameters
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Figure 2: Critical prices as a function of ‖K −Kn‖L2(0,T ).

as in the previous example with the exception of α. The parameter r40 is chosen as in (5.2)
depending on the parameter α of the fractional kernel K. We compute prices and critical
prices for α = 0.6, 0.7, 0.8, 0.9, 1. Figure 3 shows the Bermudan option prices obtained for
these values of α and Figure 4 displays the critical price as a function of α. As α increases,
we observe a similar behavior as the one obtained by increasing ‖K − Kn‖L2(0,T ) in our
previous example. More precisely, as the regularity of the paths in the model increases,
i.e. α increases, the prices of the option increase and the critical price decreases. This is
consistent with similar findings reported in [34] within the context of the rough Bergomi
model and it could be a consequence of the fact that for smaller values of α the variance
has rougher paths and spends more time in a neighborhood of zero.

To illustrate the impact of the initial spot variance, we compare in Figure 5 the levels
of the critical price for different values of V0 in the rough Heston model with α = 0.6 and
the classical Heston model. The critical price seems to depend almost linearly on the initial
spot variance V0 in both the classical and the rough Heston model. In the rough Heston
model the critical price, and hence the Bermudan option prices, appear to be slightly less
sensitive to the initial level of the variance. This could be a result of the difference in
sensitivity, with respect to V0, of the time spent around zero by the trajectories in the
classical and rough Heston models.

A theoretical explanation of our numerical findings would require more detailed results
about the path-behavior of the rough Heston model, and their impact on American and
Bermudan option prices. Such study falls outside of the scope of this manuscript and it
could be an interesting topic of future research, along with a deeper numerical analysis of
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Figure 3: Bermudan put option prices and critical prices in terms of α. Payoff (black),
α = 1 (blue), α = 0.9 (red), α = 0.8 (yellow), α = 0.7 (purple), α = 0.6 (green).
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Figure 4: Critical prices as a function of α.
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Figure 5: Critical prices for α = 0.6, 1 and V0 = 0.02 + k ∗ 0.01, k = 0, 1, 2, 3, 4. The solid
lines represent the linear regressions.

the behavior of American and Bermudan option prices in terms of the parameters of rough
volatility models.

A Riccati-Volterra equations

Proposition A.1. Suppose that K ∈ L2
loc satisfies condition (i) in Assumption 2.2. Then,

given w ∈ C with Re(w) ∈ [0, 1], and h ∈ G∗K , the Riccati-Volterra equation (3.11) admits
a solution Ψ such that Ψ(t, ·;w, h) ∈ G∗K for all t ≥ 0.

Proof. As pointed out in Remark 3.5 the Riccati equation (3.11) for Ψ can be recast
as the stochastic Volterra equation (3.14) for the function ψ given by (3.13). Thanks
to the continuity of

∫∞
0 h(ξ)K(· + ξ) dξ, [28, Theorem 12.1.1] implies the existence of a

continuous solution ψ on a maximal interval [0, Tmax). In order to prove that Tmax = ∞,
we can follow the proof of [5, Lemma 7.4]. In [5] the authors consider L2-solutions and
a particular type of initial conditions for the Riccati-Voterra equations. In our case we
consider continuous solutions and we have initial conditions of the form

∫∞
0 h(ξ)K(t+ξ) dξ

such that −
∫∞

0 Re(h(ξ))K(t+ ξ) dξ ∈ GK . The same arguments, however, can be adapted
to our setting using the invariance result in [3, Theorem C.1] together with the fact that∫∞

0 f(ξ)K(t+ ξ) dξ ∈ GK for all f ∈ Bc(R+,R+). Moreover, taking minus the real part in
(3.14), [3, Theorem C.1] guarantees that

s 7→ gt(s) = ∆tg(s)− (∆sK ∗ Re(R(w,ψ)))(t) ∈ GK , t ≥ 0, (A.1)
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where g(s) = −
∫∞

0 Re(h(ξ))K(s + ξ) dξ. We now define Ψ using (3.15), which satisfies
(3.11) thanks to (3.14). The fact that Ψ(t, ·;w, h) ∈ G∗K , for all t ≥ 0, is a consequence of
(A.1) and the identity

∆tg(s)− (∆sK ∗ Re(R(w,ψ)))(t) = −
∫ ∞

0
Re(Ψ(t, ξ;w, h))K(s+ ξ) dξ.

We finish this section with a sketch of the proof of Lemma 3.7.

Proof of Lemma 3.7. To prove the convergence of ψn towards ψ in C[0, T ], one can use
similar arguments as in the proof of [4, Theorem 4.1], replacing the zero initial condition
by the initial curves

∫∞
0 h(ξ)K(t+ξ) dξ and

∫∞
0 hn(ξ)Kn(t+ξ) dξ, n ≥ 1. The convergence

of Ψn towards Ψ is a consequence of the identity (3.15), the convergence of (hn, ψn) to
(h, ψ), and the quadratic structure of R(w, ·). Since supp(hn) ⊆ [0,M ] for all n ≥ 1,
thanks to the form of the Riccati equations satisfied by Ψn, we conclude that the support
of Ψn(t, ·;w, hn) is contained in [0,max{T,M}] for all n ≥ 1 and t ≤ T .

B Some results on the kernel approximation

In this appendix we provide sufficient conditions on the kernel approximation which ensure
condition (i) in Assumption 2.5.

Theorem B.1. Suppose that µ is a non-negative Borel measure on R+ such that∫
R+

(1 ∧ (εx)−
1
2 )µ(dx) ≤ c(T )ε

γ−1
2 , T > 0, ε ≤ T, 6 (B.1)

with γ ∈ (0, 2] and c : R+ → R+ a locally bounded function. If in addition

sup
n≥1

sup
i∈{0,...n−1}

ηni+1

ηni
<∞ (B.2)

then the kernels (Kn)n≥1 defined in (2.13), with (cni )ni=1, (xni )ni=1 given by (2.15), satisfy
condition (i) in Assumption 2.5 with γ as in (B.1).

To prove Theorem B.1 we use the following lemma.

Lemma B.2. Suppose that µ is a non-negative Borel measure µ on R+ such that (B.1)
holds. Let K be the corresponding completely monotone kernel as in (2.11). Then K
satisfies condition (i) in Definition 2.1, with the locally bounded function 2c2 and the same
constant γ as in (B.1).

6This condition was considered also in [3, Section 4].
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Proof. Note that

‖K‖L2(0,ε) ≤
∫ ∞

0
‖e−·x‖L2(0,ε)µ(dx) =

∫ ∞
0

√
1− e−2xε

2x
µ(dx) ≤ ε

1
2

∫ ∞
0

(1 ∧ (εx)−
1
2 )µ(dx).

This implies, by (B.1), that ‖K‖L2(0,ε) ≤ c(T )ε
γ
2 , ε ≤ T . A similar argument shows that

‖∆εK −K‖L2(0,T ) ≤ c(T )ε
γ
2 . The conclusion readily follows from these observations.

Proof of Theorem B.1. According to Lemma B.2 it is enough to show that there is a locally
bounded function c̃ : R+ → R+ such that for all n ≥ 1∫

R+

(1 ∧ (εx)−
1
2 )µn(dx) ≤ c̃(T )ε

γ−1
2 , T > 0, ε ≤ T,

where µn is a sum of Dirac measures as in (2.12). This is a routine verification, using the
definition of cni , x

n
i in (2.15), Jensen’s inequality, and conditions (B.1) and (B.2). For the

sake of brevity, we omit the details.

Remark B.3. Let K be the fractional kernel (2.5) and consider the geometric partition

ηni = r
i−n

2
n , i = 0, . . . , n. It is easy to check that the hypotheses of Theorem B.1 hold with

γ = 2α− 1 as long as supn≥1 rn <∞.
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