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Chapter 8 : Friction, Wear, Coating, Oxydation and Corrosion

Constitutive models and numerical methods
for frictional contact

by Michel Raous
Directeur de Recherche au CNRS
Laboratoire de Mécanique et d’Acoustique
31, chemin Joseph Aiguier
13402 Marseille Cedex 20 - France

1. Validity

The following models are adapted to treat :
- unilateral contact, which means that penetration into the obstacle cannot occur and
separation is free (the effective contact area depends on the loading),
- friction, which means that on the parts of the boundary where contact is established, a
frictional force occurs.
The formulations and the algorithms are given under the assumptions that :
- contact occurs between a deformable body and a rigid obstacle (extension to contact
between two deformable bodies is given as a remark),
- the deformations are small,
- the solid is elastic,
- the problem is quasistatic,
- adhesion is not involved,
- physico-chemical forces are not involved in the contact.
Extensions to finite deformations, non linear behaviour, dynamics problems and coupling
to adhesion can be found in [1] and in references given in [1].

2. Models and identification of the parameters

2.1 Unilateral contact

Model CI : strict unilateral contact (Signorini conditions)

uN ≤ 0

FN ≤ 0

uNFN = 0


(1)

where F , the unknown contact force density, and u, the displacement defined on the part
on the boundary where the contact may occur, are decomposed into normal and tan-
gential components (n is the outward unit vector to the boundary) : u = uN n + uT ,
F = FN n+ FT .
This satisfactorily describes unilateral contact with the two possible conditions : either no
contact, when uN < 0 and FN = 0, or contact, when uN = 0 and FN ≤ 0. This is a non
smooth problem, and the complementarity problem (??) implies that FN is a multivalued
application of uN , see the graph on Fig.??. No parameter is needed.



Remark 1 : in the case where an initial gap between the solid and the obstacle has
to be considered, uN has to be replaced by (un − d) where the function d, defined on the
boundary, is the initial distance between the solid and the obstacle. When the obstacle
moves, the function d is also used to define its movement.

Remark 2 : for the contact between two deformable bodies, in small deformations, a
point to point relationship can be used under making a simple change of variables : if A
(solid 1) and B (solid 2) are two facing points, let uA

∗ = uA and uB
∗ = uA − uB.

Model CII : compliance
This model allows a penetration which is controlled by a strong reacting force as follows :

FN = −Cn(uN)mn
+ (2)

where (uN)+ is zero when uN < 0 (no contact), and (uN)+ = uN when uN ≥ 0. This
problem is much more regular, because FN is now a function of uN . Its graph is given on
Fig.??. This model is simpler for both computational and mathematical reasons. Never-
theless, some penetration, depending of the choice of parameters Cn and mn, occurs.

Identification of Cn and mn. A strict identification of Cn and mn is not possible. The
choice is often made for computational reasons. Mechanical estimates can be obtained
by considering the penetration tolerance relatively to the current normal pressure. Con-
siderations on the behaviour of surface asperities, analytically or through computations,
can be helpful.
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Figure 1: Graph of the Signorini law Figure 2: Graph of the compliance law

2.2 Friction

The general form of a friction law can be written :

‖FT‖ ≤ f and

if ‖FT‖ < f then u̇T = 0

if ‖FT‖ = f then u̇T is colinear and opposite to FT


(3)

where various choices for the sliding threshold f can be made.

Model FI : Coulomb law, f = µ | FN |
This is the most classical friction law (µ is the friction coefficient).



Identification of the friction coefficient µ. It is a very difficult matter because, firstly,
this coefficient characterizes a pair of materials and, secondly it depends strongly on var-
ious conditions (surface machining, temperature, hygrometry, ...). Consequently, tables
of friction coefficients are rarely given. As a qualitative indication, it can be said that the
range of magnitude is about 0.1 to 0.3 for a metal/metal contact, larger than 1 for contact
between rubber and another material and about 0.3 to 0.6 for a wood/wood contact.
Specific measurements can be undergone on a sample of the pair of materials by using
a tribometer. When it is possible, it is recommended to identify this coefficient on the
structure itself by adjusting this parameter, comparing a finite element computation to
the experimental result for an elementary loading.

Model FII : Tresca law, f = g
The function g is given and defined on the contact boundary. In this case, the sliding limit
does not depend on the normal force. This model cannot be directly coupled with unilat-
eral contact. It can be convenient when the normal force is known (polymer injection for
example). It is useful in some iterative algorithms used to solve Coulomb problems.

Identification of the function g. When the normal pressure on the contact boundary
is known, g is obtained by multiplying it by µ, otherwise, some iterative procedure has to
be used to determine a convenient value of the function g on each contact point.

Model FIII : variants
- Coulomb-Orowan law, f = min(µ | FN |, k)
The parameter k is usually the elastic limit of the material. It can be used when very
high pressures are involved.
- Shaw law, f = αk
The function α is defined by α = ΓR/ΓC where ΓR is the nominal (real) contact surface
depending on the flattening of the asperities, and ΓC the whole supposed contact surface.
This function depending on the normal compression has to be determined either analyti-
cally or numerically.

Model FIV : models with a variable friction coefficient
A dependence of the friction coefficient on either the sliding velocity (the most classical),
the normal pressure, the temperature, or other quantities can be introduced. The Stribeck
law (see ”Friction in lubricated contacts” by J. Frêne and T. Cicone in this volume) is an
example of such a dependence allowing to take into account the transition between dry
friction and hydrodynamics regime.

Note : in spite of the attractiveness of this kind of model, one has to be aware of the loss
of uniqueness (even for small friction coefficients) and the lack of existence results. This
can lead to serious problems in so far as the reliability of the numerical results is concerned.

Model FV : regularized Coulomb law.
A regularized formulation of the Coulomb law is obtained when FT is given as a function
of u̇T (instead of the multivalued application), FT = −µ ϕε(u̇T ) | FN |. For 2D problems,
square root, hyperbolic tangent or piecewise polynomial functions are often used. In these
cases, a parameter of regularization has to be chosen and the stick situation occurs only
when FT = 0.



Model FVI : compliance model.
As in the case of unilateral contact, a compliance law is introduced for the friction law :

‖FT‖ ≤ Ct(uN)mt
+ and

if ‖FT‖ < Ct(uN)mt
+ then u̇T = 0

if ‖FT‖ = Ct(uN)mt
+ then u̇T is colinear and opposite to FT


(4)

where Ct and mt are two parameters. The case where Ct = Cn and mt = mn corresponds
to the classical Coulomb law associated with the compliance model for the unilateral con-
tact. The same difficulties as for Cn and mn occur for identifying Ct and mt.
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Figure 3: Graph of the Coulomb law (in 2D) Figure 4: Various friction laws (in 2D)

3. Numerical methods

3.1 Formulations

Both the displacements (unilateral conditions) and the velocities (friction law) are in-
volved. When a displacement formulation is used, an incremental formulation has to be
introduced. For each step, a ”static” problem will be solved, involving extra terms com-
puted at the previous step and characterizing the memory of the previous loading history.
This section focuses on the resolution of this associated ”static” problem.
The first three formulations concern models using the strict contact relationships (models
CI, FI, FII, FIII, FIV), and the fourth formulation is related to models using the regu-
larized contact relationships (models CII, FV, FVI).

An implicit variational inequality
Elimination of the contact forces leads to an implicit variational inequality. For example,
a Signorini problem with Coulomb friction can be written as Problem P1.

Problem P1 : For each time tk+1, find uk+1 ∈ K such that :

a(uk+1, w−uk+1)+j(uk+1, w−uk)−j(uk+1, uk+1−uk) ≥ Lk+1(w−uk+1) ∀w ∈ K (5)

where a(.,.) is a bilinear form associated to the elasticity mapping, L(.) is a linear form
associated to the current loading, the non differentiable functional j(v, w)(associated to



the friction) is j(u, v) =
∫
ΓC

µ|FN(u)|‖vT‖ ds and the convex K characterizes the unilat-
eral conditions K = {v ∈ U/ vN ≤ 0 on ΓC} where ΓC is the part of the boundary where
contact may occur.

A complementarity problem
An alternative is to write the problem as a linear complementarity problem, introducing
two new variables by separating the tangential displacement into left and right sliding. It
is then written, after FEM discretization and condensation of the problem to the contact
variables (partial inversion of the linear parts), as problem P2.

Problem P2 : Find F ∈ Rp, u ∈ Rp such that

Mu = F ∗ + F

Fi ≤ 0, ui ≤ 0 i = 1 . . . p

Fiui = 0 i = 1 . . . p


(6)

where M and F ∗ are respectively a non symmetric matrix and a loading vector deduced
from the FEM problem by condensation (and taking into account the change of variables
associated to the choice of new variables), F and u are the contact forces and the contact
displacements, and p is the number of contact degrees of freedom. This 2D formulation
can be extended to 3D problems using a polygonalization of the Coulomb cone.

Lagrange multipliers
Another alternative is based, as for the previous formulation, in keeping the contact forces
F as variables (Lagrange multipliers). This time, the unilateral conditions are kept under
the form (??) but the friction conditions are written under the Kuhn-Tucker conditions
(analogous to plasticity). This is written as problem P3 where K∗ is the condensed regular
FEM matrix.

Problem P3 : Find F ∈ Rp, ∆ξ ∈ Rp such that

K∗u = F ∗ + F

uN ≤ 0, FN ≤ 0, uNFN = 0

fs ≤ 0, ∆uT = −∆ξ ∂fs/∂FT , ∆ξ ≥ 0, ∆ξ fs = 0

fs = ‖FT‖ − µ | FN |


(7)

A smooth non linear formulation
When compliance, regularized models or penalization techniques are used, non linear
variational equalities are obtained. Penalization can be considered as a numerical form
of the compliance laws previously introduced. The problem is then written in the generic
following form.

Problem P4 : Find u ∈ Rp such that :

K∗u = F ∗ + φN(uN) + φT (uT ) (8)

where φN(uN) is given either by the compliance law (??) or by a penalization (for ex-
ample ε(uN)+), and φT (uT ) will be adjusted during the iterations in order to satisfy the



Coulomb law.

3.2 Algorithms and numerical parameters

For problem P1, a fixed point procedure can be introduced to determine the tangen-
tial frictional force FT : then, at each step n+ 1, we have to solve a Tresca problem with
a given sliding threshold gn which can be itself set as the following minimization problem
P1bis, and solution of P1 is obtained when the process gn+1 = µ | FN(un) | has converged.

Problem P1bis : Find un such that J(un) ≤ J(v) ∀v ∈ K with :

J(v) = 1/2 a(v, v)− L(v) +
∫

ΓC

gn‖vT‖ ds (9)

This minimization problem under constraints ( ∀v ∈ K) of a non differentiable functional
can be solved by using various algorithms.

a - Overrelaxation method (SSOR) with projection (Problem P1bis)
An optimal parameter of relaxation has to be determined by a trial procedure. The
method is very robust but can be costly when extension to non linear problems is consid-
ered.

b - A Gauss-Seidel method accelerated with an Aitken procedure (Problem
P1bis)
No numerical parameter is needed. Same remark as for (a)can be made.

c - Conjugate gradient method with projection and regularization (Problem
P1bis)
A special procedure is used to preserve the conjugation relationship between the descent
directions. Computations of the gradients need a regularization of the friction law which
introduces numerical parameters (see model FV). Specific preconditionning has to be
used. A regularization parameter is needed.

d - Lemke method (Problem P2)
The complementarity problem P2 is solved by using a mathematical programming method,
Lemke method for example. This is a direct mathematical programming method based
on pivoting techniques analogous to Simplex methods. It is a very powerful method. No
parameter is needed.

e - Augmented Lagrangian with radial return (Problem P3)
Problem P3 is solved with augmented Lagrangian procedure which introduces a penaliza-
tion by defining :

FN = (λN − εNuN) (10)

∆FT = ∆λT − εT (uT + ∆ξ ∂fs/∂FT ) (11)

A Newton Raphson algorithm is associated to a radial return procedure. It is analogous
to a procedure used in plasticity (even for finite deformations). It is a very powerful
method, the accuracy (and also the computational cost) depends on the choice of εT , εN ,
and on the number of augmentations performed.



f - Newton-Raphson method for the penalized problem (Problem P4)
Problem P4 is a classical non linear problem where the normal contact force is directly
computed during the resolution and the frictional force is adjusted during the iterations
in order to verify the Coulomb law. The choice of the penalization parameters (or of the
parameters of the compliance law), is delicate because it has a strong influence on the ac-
curacy of the solution (penetration can be large) and on the computational time. Usually,
a progressive decrease of the parameters is conducted during the iterations. Accuracy of
the solution has always to be checked.

g - Iterative procedure on boundary conditions
A simple procedure based on iterations on adjusting boundary conditions in order to verify
the unilateral and the friction conditions is sometimes used : at each iterate, uN is set to
zero when penetration occurs, u̇T is first supposed to be zero and, when ‖FT‖ > µ | FN |
the previous condition is released but a frictional force is applied, colinear and opposite to
u̇T and such that ‖FT‖ = µ | FN |. Despite the lack of convergence results, this procedure
can be efficient for simple linear problems. In other case, the procedure may not converge.
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