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Introduction

In this course, we propose to outline some of the classical results obtained in contact
mechanics and to present in addition some contributions resulting from the research
carried out in our group ”Mécanique et Modélisation du Contact” in the ”Laboratoire
de Mécanique et d’Acoustique” in Marseille. These research topics concern :
- the study of the dynamic instabilities associated with friction in small or finite elastic
deformations, in collaboration with Professor J.A.C. Martins from the IST in Lisbon,
with applications to the modelling of stress waves occurring in some sliding contact or
squeal phenomena involving rubber-glass contact ([8] [117]),
- the development of models coupling adhesion, unilateral contact and friction with
applications to the modelling of the fiber/matrix interface of composite materials ([17]
[88]),
- the modelling of frictional unilateral contact in finite plastic deformations conducted
by P. Chabrand with applications to metal forming ([97] [42] [24] [83]),
- the development of accelerating numerical approaches in contact mechanics, using
methods such as multigrid or subdomain decomposition methods (Fast Adaptive Com-
posite grids) or Arbitrary Lagrangian Eulerian formulations ([54] [83]),
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- the study of the mathematical aspects of the previous problems with Professor M.
Cocu and E. Pratt.

The numerical results presented in this course have been obtained with our finite ele-
ment codes Gyptis and Euxene written in the Modulef standard and with the Simem3
code first developed for the Renault company.

Although it will not be attempted here to give an exhaustive bibliography, we would
like to mention a few significant general contributions to contact mechanics. Among
the numerous books on the various topics related to contact mechanics, the following
are worth noting :
- on the modelling aspects [Jonhson, 1987], [Rabinowicz, 1995], [Kalker, 1990],
- on tribology [Dowson, 1979],
- on the mathematical aspects (functional and convex and non convex analysis) [Duvaut-
Lions, 1972], [Moreau-Panagiotopoulos, Eds, 1988], [Panagiotopoulos, 1985], [Pana-
giotopoulos, 1993],
- on both mathematical and numerical aspects [Kikuchi-Oden, 1988], [Glowinski et al,
1976], [Antes-Panagiotopoulos, 1992]).

Numerous references can be found in [Zhong-Mackerle, 1992].

Many papers can also be found in the proceedings of a series of congresses, dealing
with contact and unilateral problems, which took place :
. in Italy [Del Piero-Maceri, Eds., 1985, 1987, 1991 and 1997],
. in Lausanne [Curnier, Ed., 1992],
. in Carry-Le-Rouet [Raous-Jean-Moreau, Eds., 1995].

On the tribological aspects, the proceedings of the annual ”Leeds-Lyon Symposium
on Tribology” (see for example [Dowson et al., Eds., 1996]), and those of the scientific
meetings of the ”Société Tribologique de France” (for example [Delamare, Ed.,1993])
are worth mentioning.

Generally speaking, sessions focusing on contact problems take place at important
international congresses, such as the ISMP97 meeting held in Lausanne in August
1997 or the Fourth WCCM congress held in Buenos Aires in June 1998 (to mention
only recent ones).
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1 Constitutive models for frictional contact

1.1 Introduction

In this section, a few comments on the real physical complexity of a contact surface are
first presented before giving an overview of the various basic formulations of frictional
unilateral contact. In this short presentation of some of the tribological aspects of
the contact, I would like to make it clear that on the one hand the models are only
rough approximations of reality, and that on other hand, the regularization parameters
introduced into some models should be based on physical considerations. Various
formulations for unilateral contact and different friction laws are given. Among them,
the Signorini problem (strictly unilateral conditions) and the Coulomb friction law
which will be treated in the following chapters. Most of the analytical models in the
past were based on microscopic considerations. References to some of them will be
given. Nowadays, some finite element models are being developed with a view to
correlate friction with the plastic deformation of the asperities.

1.2 Some tribological aspects

1.2.1 Surface asperities

To let the reader have a look at the real appearance of a contact surface, an experimen-
tal profile of a metal sheet is given in Fig.1. These surfaces are classically characterized
by statistical parameters (Ra, Rp, etc).

Figure 1: Roughness of a metal surface (metal forming) [Felder, 1993]

3



1.2.2 Real contact surface

A real physical contact is not a full contact but a contact between asperities. During
loading, the asperities will be deformed and the real contact area changes as schema-
tized in Fig.2, where the obstacle is assumed to be flat which is not the case in reality
(see [Kikuchi-Oden, 1988]).

X

Figure 2: Asperity behaviour during compression

1.2.3 Complexity of the surface material

Regarding the physico-chemical aspects, a contact surface is very complex and some
of the components are not well known. A scheme of a metal surface is given in Fig.3
(see [Rabinowicz, 1995]).

Metal substrate

Contaminant layer

Oxide layer

Work-hardened layer

Figure 3: Complexity of the composition of the material in the vicinity of the surface

1.3 Unilateral contact

First, various formulations for unilateral contact are given. They take into account
the non penetration (or the weak penetration) of the solid into the obstacle, which is
assumed to be rigid and fixed for the sake of simplicity.
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1.3.1 The Signorini problem

Let Ω be an open bounded set of Rd (with d = 2, 3), which is the interior of an elastic
body, with a sufficiently smooth boundary Γ = ΓF ∪ ΓD ∪ ΓC , in contact with a rigid
body. The boundary ΓD (respectively ΓF ) is the part of Γ on which the displacements
(respectively the forces) are prescribed. ΓC is the part (of the boundary) initially in
contact with the rigid body (see Fig.4).

n

1

C

F
D

2

Figure 4: Contact with a rigid obstacle

Let F , the unknown contact force density, and u, the displacement defined on ΓC ,
be decomposed into normal and tangential components, where n is the outward unit
vector to Γ.

u = uN n + uT (1)

F = FN n + FT (2)

The strictly unilateral contact problem, known as the Signorini problem, can then be
written:

uN ≤ 0

FN ≤ 0

uNFN = 0





(3)

This satisfactorily describes the unilateral contact with the two possible conditions :
- no contact, then uN < 0 and FN = 0,
- contact, then uN = 0 and FN ≤ 0.

This is a non smooth problem, and the complementarity problem (3) implies that
FN is a multivalued application of uN , see the graph Fig.5.
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FN

uN

Figure 5: Graph of the Signorini law

Generalization

a - Possible extension of the contact area
In the previous problem, the size of the contact area cannot exceed the size of ΓC . In
the case where an extension of the contact area is possible during the loading process,
the condition uN ≤ 0 will be replaced by the condition uN ≤ d, where d is the initial
gap between the solid and the obstacle. In small deformations, this initial gap can be
defined using the normal related either to the solid or to the obstacle.

b - Contact between two deformable solids
In small deformations, the contact between two deformable bodies can be easily dealt
with by using a point to point procedure, making a simple change of variables ([99]).
When dealing with finite deformations or large displacements, the problem is much
more complex.

c - Orientation of the surfaces
Let us mention that, from the computational point of view, instead of making the
change of variables (1), a local change of referential will be made once and for all in
the finite element matrix for each contact node.

1.3.2 Compliance model [Oden-Martins, 1985]

This is another class of models which can be said to be a regularization of the Signorini
conditions. The ”unilateral” contact is then accounted for by a nonlinear behaviour
law relating the normal force FN to the normal displacement uN as follows (where
(uN)+ is zero when uN < 0 (no contact), and (uN)+ = uN when uN ≥ 0) :

−FN = Cn(uN)mn

+ (4)

This problem is much more regular, because we now have FN as a function of uN ,
the graph is given in Fig.6. This model is simpler in terms of both the computational
and the mathematical. Nevertheless, some penetration of the solid into the obstacle
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uN

FN

Figure 6: Graph of the compliance law

occurs. This penetration depends on the choise of the constitutive parameters Cn and
mn. When they are chosen for the sake of computational comfort, the penetration can
be large. Whereas when they are obtained from mechanical estimates (see [Raous-Sage,
1992]) where these parameters are deduced by calculating the flattening of asperities
with a finite plasticity model, the penetration is slight but computation may become
very uncomfortable because FN is then a very stiff function of uN . This compliance
law, which as many similarities with penalty methods, has the advantage of having a
mechanical meaning.

This model and these numerical solvers are very convenient for dealing with prob-
lems where the solution is only slightly sensitive to the penetration. When subtle
phenomena such as instabilities or the adhesion coupling are studied, the amount of
penetration one accepts can strongly affect the results ; that is different values of the
penalty or constitutive parameters induce slightly different contact solutions which may
have large consequences in the mentioned phenomena. For these reasons, we will deal
here mainly with the Signorini formulation, i.e. with the strictly unilateral conditions.

1.3.3 ”Third body” model

Some models treat the contact by assuming that a third body is connected to the solid
and the obstacle (or to the two deformable bodies) by boundary conditions. This third
body approach is very rarely used now. In this case, the contact is not modelled in
terms of inequalities, but in terms of the behaviour of this third body. One advantage of
this approach is that the numerical treatment can be attempted using a classical finite
element code with various behaviour laws. Another attractive point is that it takes into
account some specific physical aspects of the phenomena involved in a contact (fluid
or solid lubricants, wear fragments, etc). Some difficulties arise however : the micro-
behaviour of these third bodies (except for fluids) are very complex and little known
and the numerical treatment has to deal with evanescent thicknesses which leads to
ill-posed problems.
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1.4 Friction

Friction in the analysis and the numerical methods presented in the following chapters
is modelled by the Coulomb law or a variant with a given sliding threshold, Tresca
friction. In this section, after giving these two models, a compliance law developed by
Martins-Oden [85] is recalled and some variants of the Coulomb law are given. Non
local friction laws have been introduced by Oden-Pires [93] ; the normal force is then
defined at each point through a convolution on a small area surronding the point.
These formulations are helpful for establishing mathematical results (see section 2).
Another interesting formulation in terms of non associate plasticity has been given by
Curnier [31].

1.4.1 Tresca friction

Let us first introduce an elementary friction law where the function giving the sliding
threshold g is given. The term ”Tresca friction” is often used because of the similarity
with the corresponding plasticity law. It is written as follows, where u̇T denotes the
time derivative of uT and ‖FT‖ denotes the modulus of vector FT (the 3D formulation
is given here ; in 2D it becomes an absolute value).

‖FT‖ ≤ g with

if ‖FT‖ < g then u̇T = 0

if ‖FT‖ = g then ∃λ ≥ 0 such that u̇T = −λFT





(5)

This law will be realistic only in those cases where the normal pressure is known and
constant or weakly changing (polymer injection, for example). It cannot be directly
written with unilateral contact because in this case, the normal force is not known a
priori (although it has to be zero under non-contact conditions).

On the other hand, this law is interesting however, because of its simplicity as re-
gards both the mathematical and the numerical aspects. As we will see in chapter 2,
the convexity of this law makes it possible to associate it with a minimum principle,
and will give a result of existence and uniqueness of the solution. As the problem can
also be written as a minimization one, the class of numerical methods which can be
used will be much larger than in the case of the Coulomb law. In some of the algorithms
presented in chapter 3, the solution of this problem will be used as an intermediate
step in treating the Coulomb friction.

1.4.2 Coulomb friction

This law was introduced by Amontons in 1699 [2] and developed by Coulomb in 1785
[29]. The sliding limit is proportional to the unknown normal contact force and the
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velocity of the tangential displacement is colinear to the tangential force.

‖FT‖ ≤ µ | FN | with

if ‖FT‖ < µ | FN | then u̇T = 0

if ‖FT‖ = µ | FN | then ∃λ ≥ 0 such that u̇T = −λFT





(6)

This is a non associate law because the sliding direction is not normal to the Coulomb
cone but colinear to the friction force. As given in (6), a friction law has to be written
in terms of velocities because the solution depends not only on the current loading
condition but also on the previous evolution of the system. Nevertheless a ”static”
friction problem will be also introduced in the next section. It will be considered as
either an intermediate problem in solving problem (6) (using an incremental formula-
tion), or a convenient formulation in the case of monotonic and proportional loading.
The Coulomb law is a multivalued application as can be seen from the graph given in
R2 on Fig.7.

6

-

FT

u̇T

µFN

Figure 7: Graph of the Coulomb law

Other equivalent forms of the Coulomb law
Here we briefly give some other formulations of the Coulomb law (details can be found
in [Jean,1993], [Moreau, 1988]).

- maximum dissipation principle

FT ∈ C ∀ST ∈ C (ST − FT )u̇T ≥ 0 (7)

where, in 2D :
C = [−µFN , +µFN ] (8)
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- subdifferential formulation
−u̇T ∈ ∂ICT (FN )(FT ) (9)

where ∂ICT (FN )(FT ) is the subdifferential of the indicator function of CT (FN ) with:

CT (FN ) = {P / |P| ≤ −µFN} (10)

- dual subdifferential formulation

FT ∈ ∂φFN
(−u̇T ) (11)

with :
φFN

(−u̇T ) = µFN ‖ u̇T ‖ (12)

1.4.3 Compliance model [Oden-Martins, 1985]

As in the case of unilateral contact, a compliance law has been introduced (see [Oden-
Martins, 1985]) for the friction law.

‖FT‖ ≤ CT (uN)mT
+ with

if ‖FT‖ < CT (uN)mT
+ then u̇T = 0

if ‖FT‖ = CT (uN)mT
+ then ∃λ ≥ 0 such that u̇T = −λFT





(13)

The case where CT = CN and mT = mN corresponds to the classical Coulomb law
associated with the compliance model for the unilateral contact.

1.4.4 Regularization of the Coulomb law

To obtain a smoother formulation, some classical regularizations of (6) may be used,
(FT becomming a function of u̇T instead of a multivalued application) :

FT = −µ ϕε(u̇T ) | FN | (14)

with for 2D problems :

• Square root : ϕ1
ε(u̇T ) =

u̇T√
u̇2

T + ε2
,

• Hyperbolic tangent : ϕ2
ε(u̇T ) = tanh(

u̇T

ε
) ,
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• Piecewise polynomial : ϕ3
ε(u̇T ) =





−1 , if u̇T < −ε
u̇T

2ε
, if − ε ≤ u̇T ≤ ε

+1 , if u̇T > ε

Graphs of the various regularizations are given on Fig.8.

1
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Figure 8: Three regularizations of the Coulomb law

1.4.5 Other friction laws

The Coulomb law is often thought by tribologists to be an unrealistic law, given the
complexity of the contact physics. It is clearly only a model of the friction but we want
to stress the fact that it includes some basic non regular features, which means that it
can be used to model not only many practical problems, but also complex behaviours
such as instabilities (see Martins-Raous-Barbarin-Vola-Costa [7] [84] [105] [106] [117].

a - Variants of the Coulomb law : specific choices for the sliding threshold

To take account of high pressure levels (as in metal forming [95]) or changes in the
nominal contact surface, the following form with various choices for the function f has
been proposed (graphs are given on Fig.9) :

‖FT‖ ≤ f with

if ‖FT‖ < f then u̇T = 0

if ‖FT‖ = f then ∃λ ≥ 0 such that u̇T = −λFT





(15)
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i - Coulomb-Orowan law

f = Min(µ | FN |, k) (16)

where k is usually the elastic limit of the material.

ii - Shaw law
f = αk with α = ΓR/ΓC (17)

where ΓR is the nominal (real) contact surface involved in the flattening of the asperi-
ties (depending on the normal compression).

iii - other forms
Other forms have been introduced by Cristescu, Wanheim, Bay [Bay-Wanheim, 1976]
[Bay et al, 1987], Christensen, etc.

Coulomb

Coulomb - Orowan

Shaw
Tresca

FT

FN

k

Figure 9: Graphs of various friction laws for 2D problems

b - Variable friction coefficient

The Coulomb law is sometimes used with a variable coefficient. As observed experi-
mentally the force necessary to initiate the movement is often larger than the friction
force occurring during steady sliding. More generally, a continuous evolution of the
friction coefficient relatively to the velocity is sometimes adopted. A classical law in
metal forming problems (in the presence of lubricants) is the Stribeck law given in
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Figure 10: Stribeck law

Fig.10 where p is the pressure and β the lubricant viscosity. In spite of the attrac-
tiveness of this kind of model, we have to be aware of the loss of uniqueness (even for
small friction coefficients) and the lack of existence results. This can lead to serious
problems as far as the reliability of the numerical results is concerned.

1.5 Some models based on microscopic considerations

1.5.1 Analytical modelling

Apart from the numerical analysis presented in this course, a lot of studies have been
carried out with analytical models based on micro-analysis conducted at the asperity
scale : see Archard [4] [5], Bay-Wanheim-Avitzur [10] [11], Challen-McLean-Oxley [22]
[23], Greenwood-Tabor-Williamson [52] [53] [112], Wilson-Sheu [118], etc. Numerous
references can be found in [Oden-Martins, 1985].

In some of these studies, the asperities are assumed to have elastic behaviours, as
in the case of the Archard model summarized in Fig.11. The asperities are assumed to
be spherical with a degressive radius and Hertz theory is used for the contact. Still us-
ing micro-analysis approach, Greenwood and Williamson have proposed a model based
on the hypothesis that the asperity heights have a Gaussian distribution.
In other models, the asperities are taken to have plastic behaviour [Challen-McLean-
Oxley, 1984] [Challen-Oxley, 1979]). The plastic wave occurring when an asperity
indents and ploughs into a deformable obstacle has been described in terms of a sliding
line theory by Wanheim, Bay, Rault, Entringer, etc.
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Figure 11: Analytical model of Archard ([Archard, 1974])

1.5.2 Numerical modelling

More recently, some numerical approaches have been used to account for the finite
plastic deformation of asperities, thus introducing some micro-mechanical information
into the macroscopic unilateral contact and friction models [Makinouchi et al, 1988],
[Raous-Sage, 1992], [Ike, 1995], [Chabrand et al, 1996]). This makes it possible to
treat any shape of asperity. In [Raous-Sage, 1992], by calculating the flattening of an
asperity, it was possible to estimate the normal compliance parameters CN and mN of
the law 6. The identification is conducted on the computed evolution of the normal
contact force relative to the decrease in the height of the asperity given in Fig.13.

( m)

y / 0

0 1 2 3
0

1

2

3

4

Figure 12: Computed normal force versus the the decrease in height of the asperity

In a study on the shear off of two asperities (see Fig.13 and 14) in finite plasticity, the
evolution of the micro tangential force during the sliding was estimated (see Chabrand
et al, 1996]).
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Figure 13: Shearing of two asperities

Figure 14: Simulation of the shearing of two asperities (finite plastic deformations)

1.5.3 Homogenization

To correlate the micro-behaviour of the asperities with macroscopic unilateral contact
and friction has been an attractive topic both to tribologists and contact mechanics
researchers. This has been done as far as material behaviour is concerned, using the
very powerful theory of homogenization. In contact mechanics, the problem is more
complex because the laws are not smooth. Some mathematical results have been
established in the case of elastic asperities when the height goes to zero by Sanchez-
Palencia and Suquet [109], of plastic asperities by Bouchitté, Lidouh and Suquet [14],
and with a thin dissipative layer by Licht [80]. With plastic asperities, when both the
amplitude and the period are approching zero an associated law which is similar to the
Tresca one is obtained.

15



2 Variational formulations for static and

quasistatic problems

This section is devoted to the variational formulation of the Signorini problem (strict
unilateral conditions) with Coulomb friction and the main mathematical results will
be briefly recalled. These formulations are written in terms of implicit variational in-
equalities. The academic ”static” friction problem will first be analyzed, and recent
formulations for quasi-static problems will then be presented. Dynamic formulations
for discrete problems can be found in [59] [85] [90] [94] [115] [121].

Even though chapter 3 and 4 will focus on 2D problems, we give in this chapter 3D
formulations. The presentation remains here very formal in order to give a short survey
of the mathematical aspects fo contact formulations. We do not give all the details
on the functional framework since the proofs are not given : they can be found in the
papers given in the references.

2.1 The Signorini problem with Coulomb friction

As previously mentioned in section 1.3.1 and in figure 4, the part of the boundary
initially in contact with the obstacle is ΓC . Boundary conditions are given on ΓD. A
volumic (respectively surface) force, the density of which is Φ1 (respectively Φ2), is
applied in Ω (respectively ΓF ). The behaviour is assumed to be linear elastic and the
deformations to be small. The problem can be written as follows.

Problem (PcPcPc)
Let Φ1, Φ2 be the given forces, find the displacement field u, the strain ε, the stress σ
and the contact force F such that :

ε = grads u

σ = Kε

divσ = −Φ1





on Ω

u = 0 on ΓD,

σ.n = Φ2 on ΓF
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σ.n = F

uN ≤ 0, FN ≤ 0, uNFN = 0

‖FT‖ ≤ µ | FN | with

if ‖FT‖ < µ | FN | then u̇T = 0

if ‖FT‖ = µ | FN | then ∃λ ≥ 0 such that u̇T = −λFT





on ΓC

2.2 The ”static” Coulomb problem

2.2.1 Formulation

Let us first consider a ”static” Coulomb problem where, in Problem (PcPcPc), the friction
is written on the tangential displacement instead of the velocity. The relations (6) are
replaced by :

‖FT‖ ≤ µ | FN | with

if ‖FT‖ < µ | FN | then uT = 0

if ‖FT‖ = µ | FN | then ∃λ ≥ 0 such that uT = −λFT





(18)

This law is not realistic when dealing with general cases, because the friction phenom-
ena clearly depend on the previous history of the loading and have to be formulated
in terms of velocities. Nevertheless, this static formulation will be acceptable in some
specific situations (for example, if the loadings are monotonic and proportional). The
main interest of this formulation is to constitute an intermediate problem when an
incremental formulation of the Coulomb problem will be written. On the other hand,
it should be noted that most of the mathematical results available so far have been
established using this static formulation.

2.2.2 Variational formulation : an implicit variational inequality

As announced before, the details of the rigorous mathematical analysis are not given,
but they can be found in [Duvaut-Lions, 1972] for example and in other references
given in the sections below. The functional framework is that of the Sobolev spaces,
which ensures that the various fields are sufficiently regular.

Let K be the convex of the admissible displacements :

K = {v ∈ U/ vN ≤ 0 on ΓC} (19)

with : U =
{
v ∈ [H1(Ω)]

3
/ v = 0 on ΓD

}
. The variational form of the Signorini prob-

lem with static friction is then written as follows.
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Problem (PvPvPv) : Let Φ1 ∈ [L2(Ω)]
3
, Φ2 ∈ [L2(ΓF )]

3
be given, find u ∈ K such

that :
a(u, v − u) + j1(u, v) − j1(u, u) ≥ L(v − u) ∀v ∈ K (20)

with :

a(u, v) =
∫

Ω
σ(u)ε(u) dx (21)

=
∫

Ω
Kijklεij(u)εkl(v) dx ∀u, v ∈ U (22)

L(v) =
∫

Ω
Φ1v dx +

∫

ΓF

Φ2v ds ∀v ∈ U (23)

j1(v, w) =
∫

ΓC

µ|FN(v)|‖wT‖ ds in the sense of the traces on ΓC (24)

The bilinear form a(u, v) is associated with the elasticity mapping, the linear form L(v)
with the loadings and the non differentiable functional j1(v, w) with the friction. This
is an implicit variational inequality. A dual formulation, set on the stresses, would lead
to a quasi-variational inequality because of the dependence of the convex K ′ on the
solutions in that case.

Indications about the equivalence in a weak sense with the initial
problem (details can be found in [43])

(i) Implication
The following generalized Green formula is applied as usual to the integration on Ω of
the product of the volumic equilibrium equation by the test function (v − u).

∀ v ∈ W (Γ) < σ.n, v > =
∫

Ω
σε dx +

∫

Ω
(div σ)v dx (25)

It is easy to eliminate the terms on ΓD by using the boundary conditions and to
introduce the form L(v − u) by using the surfacic equilibrium equation. Eliminating
the unknown normal contact force leads to the variational inequality by using the
Signorini conditions. To deal with the friction term on ΓC , the friction law is written
in the following equivalent form (see [43]) :

∫

ΓC

FT (vT − wT ) ds +
∫

ΓC

µ|FN(v)| (‖vT‖ − ‖wT‖) ds ≥ 0 ∀v ∈ U (26)

(ii) Reverse implication
This is established by making various convenient choices of test functions vand using
again (26).
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2.2.3 Fixed point and sequence of Tresca problems

Because of the non convexity of the Coulomb problem, which is due to the depen-
dence of the sliding limit on the normal contact force, no minimum principle can be
associated with the previous problem. A fixed point method on the sliding limit is
now introduced in order to treat the problem as a sequence of Tresca problems, the
convexity of which is ensured. A condition on the friction coefficient µ to ensure that
the following application S(.) is a contraction, is given in [79]. In [79], the Coulomb
friction problem is shown to be equivalent to problem (PfPfPf ).

Problem (PfPfPf ) : Find the fixed point of the application S :

S(g) = −µFN(ug) (27)

with ug solution of the following problem (PTPTPT ) :

Problem (PTPTPT ) : For a given g, find ug ∈ K such that :

a(ug, v − ug) + jg(v) − jg(ug) ≥ L(v − ug) ∀v ∈ K (28)

with :
jg(v) =

∫

ΓC

g‖vT‖ ds (29)

Problem (PTPTPT ) is the variational formulation of the Tresca problem 18. It is a classical
variational inequality, where the implicit character disappears because the sliding limit
is given in this case. Because of the convexity of this problem, it can be shown that
Problem (PTPTPT ) is equivalent to the following minimization problem (PmPmPm) :

Problem (PmPmPm) : For a given g, find ug ∈ K such that

J(ug) ≤ J(v) ∀ v ∈ K (30)

with:

J(v) =
1

2
a(v, v) + jg(v) − L(v) (31)

In the next chapter, a numerical algorithm will be deduced from this formulation. At
each step, the normal contact force is computed by solving the Tresca problem with a
previous value of the function g, and a new value of this sliding threshold g is obtained
for the next step from (38).

2.3 The quasistatic problem

2.3.1 Variational formulation : coupling a variational inequality to an im-

plicit variational inequality [25] [26] [27] [113]

The problem has been defined in section 2.1. With evolutive problems, the main diffi-
culty that arises in establishing the variational formulation of this quasistatic problem,
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is due to the simultaneous presence of the displacement field, which appears in the
unilateral conditions, and the velocity field, which appears in the friction law. For this
reason, the following variational form combines two inequalities : a variational inequal-
ity, which represents the unilateral conditions (with the displacement field used as test
function) and an implicit variational inequality, which describes the friction conditions
(with the velocity field used as test function). Details about this formulation are given
in Cocu-Pratt-Raous [25] [26] and Telega [113].

Problem (PtimePtimePtime) : Let Φ1 ∈ W 1,2(0, T ; [L2(Ω)]
2
), Φ2 ∈ W 1,2(0, T ; [L2(ΓF )]

2
) be given,

find u ∈ W 1,2(0, T ; U) such that u(0) = u0 given, and, for almost all t ∈ [0, T ], u(t) ∈ K
such that :





a(u(t), v − u̇(t)) + j1(u(t), v) − j1(u(t), u̇(t)) ≥ L(v − u̇(t), t)

+ < FN(u(t)), vN − u̇N(t)) > ∀v ∈ U

< FN(u(t)), zN − uN(t)) > ≥ 0 ∀z ∈ K

(32)

where u0 belongs to K and satisfies the following compatibility conditions :

a(u0, w − u0) + j1(u0, w − u0) ≥ L(w − u0, 0) ∀w ∈ K (33)

The first inequality is obtained from the integration on Ω of the product of the equilib-
rium equation by the function test (w − u̇), where w is homogenous to a velocity field.
This time, the normal contact force is kept as an unknown variable, and the following
velocity form of (26) is used to obtain the implicit variational inequality.

∫

ΓC

FT (vT − u̇T ) ds +
∫

ΓC

µ|FN(v)| (‖vT‖ − ‖u̇T‖) ds ≥ 0 ∀v ∈ U (34)

A weak formulation of the unilateral conditions (3), where the test function z is ho-
mogenous to a displacement, gives the second variational inequality .

If the solution u of Problem (PtimePtimePtime) is sufficiently regular, u will also be a solution
of Problem (PcPcPc) because :
- the equilibrium equation can easily be obtained by choosing v = u̇ + φ and v = u̇ - φ
on Ω with φ ∈ (C∞

0 (Ω))2 and the surface equilibrium equation is obtained by choosing
v = u̇ + ξ and v = u̇ - ξ on ΓC with ξ ∈ U and v = u̇ on ΓD,
- inequality (34) then holds, which yields the friction relations (6),
- the choice of u ∈ K ensures the unilateral condition uN ≤ 0 and by choosing zN = 0
and zN = 2 uN in the second variational inequality we obtain :

∫

ΓC

FNuN = 0 (35)

It follows that
∫
ΓC

FNzN ≥ 0 ∀z ∈ K which implies that FN ≤ 0 and finally, using
equation (35), that the complementarity relation uNFN = 0 holds.
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2.3.2 Incremental formulation

By using a time discretization ti+1 = ti + ∆t, the following incremental formulation is
obtained.

Problem (Pinc1Pinc1Pinc1) : Find ui+1 ∈ K such that :





a(ui+1, v − ui+1−ui

∆t
) + j1(u

i+1, v) − j1(u
i+1, ui+1−ui

∆t
) ≥ Li+1(v − ui+1−ui

∆t
)

+ < FN(ui+1), vN − uN
i+1−uN

i

∆t
) > ∀v ∈ U

< FN(ui+1), zN − uN
i+1 > ≥ 0 ∀z ∈ K

(36)

where ui approximates u(ti) and Li(v) denotes L(v, ti).

Equivalence with the following problem is shown in [26] :

Problem (Pinc2Pinc2Pinc2) : Find ui+1 ∈ K such that :

a(ui+1, w − ui+1) + j1(u
i+1, w − ui) − j1(u

i+1, ui+1 − ui) ≥ Li+1(w − ui+1) ∀w ∈ K
(37)

This is an important point because it establishes that the incremental formulation of
the quasistatic problem can be written in the form of unique implicit variational in-
equality, which was not the case for the continuous problem (PtimePtimePtime). This implicit
variational inequality is very similar to the one (20) resulting from the static problem,
but the test function of the friction term is now (w − ui) where ui is the solution ob-
tained for the previous time step ti. The previous history is included in this term.

As stated in the case of the static problem, a fixed point method is introduced on
the sliding limit and Problem (Pinc2Pinc2Pinc2) is shown to be equivalent to the following one.

Problem (Pinc3Pinc3Pinc3) : At each time step ti+1, find the fixed point of the application
S:

S(g) = −µFN(ug
i+1) (38)

where ug
i+1 is the solution of the following problem (Pinc4Pinc4Pinc4) :

Problem (Pinc4Pinc4Pinc4) : For a given g, find ug
i+1 ∈ K such that :

a(ug
i+1, v − ug

i+1) + j(v − ui) − j(ug
i+1 − ui) ≥ L(v − ug

i+1) ∀v ∈ K (39)

with :
j(v − ui) =

∫

ΓC

g‖vT − ui‖ ds (40)
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As previously, Problem (Pinc4Pinc4Pinc4) is shown to be equivalent to the following minimization
problems under constraint, either (Popt1Popt1Popt1) (set on the displacements) or problem (Popt2Popt2Popt2).

Problem (Popt1Popt1Popt1) : For a given g, find ug
i+1 ∈ K such that

J(ug
i+1) ≤ J(v) ∀ v ∈ K (41)

with:

J(v) =
1

2
a(v, v) + j(v − ug

i+1) − Li+1(v) (42)

This is a displacement formulation. For each value of the function g, at each step in
the fixed point iteration, the minimization Problem (Popt1Popt1Popt1) under the constraint v ∈ K
of the non differentiable functional (42) has to be solved. This problem is very similar
to Problem (PmPmPm) except for the fact that the known solution ui of the previous step
is present in the friction term. The loading history, due to the velocity formulation of
the friction, is characterized by this extra term. The convex K does not change from
one step to the next.

An alternative formulation of Problem (Popt1Popt1Popt1) can also be obtained. Instead of choosing
the displacement ug

i+1 as the unknown, we can take ∆ug
i+1 where :

∆ug
i+1 =

ui+1
g − ui

g

∆t
(43)

This leads to an incremental (or velocity) formulation. It leads to the minimization
problem (Popt2Popt2Popt2). In this case, the convex K changes at each time step, but it does
not depend on the current solution because Ki is defined at the previous step by (46),
and an extra loading term Ri(v) (given by (47)) has to be considered : it consists the
contact forces at the previous step. This time, the memory of the previous history of
the solution is taken into account through two contributions. The problem set on the
increments of displacement is written as follows.

Problem (Popt2Popt2Popt2) : For a given g, find ∆ug
i+1 ∈ Ki such that

J(∆ug
i+1) ≤ J(v) ∀ v ∈ Ki (44)

with :

J(v) =
1

2
a(v, v) + j(v) − ∆Li+1(v) − Ri(v) (45)

where :
Ki =

{
v ∈ U/ vN + uN

i ≤ 0 on ΓC

}
(46)

(Ri, v) = Li(v) − a(ui, v) (47)

The problems (Popt1Popt1Popt1) and (Popt2Popt2Popt2), associated with the fixed point problem (Pinc3Pinc3Pinc3) are
therefore two alternative ways of solving the quasistatic frictional problem at each step
ti+1 of the loading. Numerical methods on these lines will be presented in the next
chapter.
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2.4 Mathematical results

2.4.1 Properties and hypotheses

The following results are based on the basic properties of the bilinear form a(u, v):

- symmetry
a(u, v) = a(v, u) ∀u, v ∈ U (48)

- coerciveness
∃α > 0 such that a(u, u) ≥ α‖u‖2

H1 v ∈ U (49)

- continuity

∃M > 0 such that | a(u, v) |≤ M‖u‖H1‖v‖H1 u, v ∈ U (50)

and of the loadings assumed to be regular

Φ1 ∈ W 1,2(0, T ;
[
L2(Ω)

]2
) Φ2 ∈ W 1,2(0, T ;

[
L2(ΓF )

]2
) (51)

2.4.2 The Signorini problem

Theorem : The Signorini problem has a unique solution.

Proof: see [Lions-Stampacchia, 1967] [Fichera, 1972]

2.4.3 The static Tresca problem

Theorem : The Tresca problem has a unique solution.

Proof: see [Duvaut-Lions, 1972] where the normal contact force is given.

2.4.4 The static unilateral problem with Coulomb friction

a - The static problem with local friction
Since the contact forces are defined only as a linear form, no results have been obtained
in the usual functional framework. Rather than the difficulty of defining | FN |, it is
the lack of compactness which constitutes the main obstacle.

By introducing non classical functional spaces, Necas-Jarusek-Haslinger have estab-
lished some results on simple geometries in [Necas et al, 1980], and in a more general
case in [Jarusek, 1983].
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b - The regularized problem (non local friction)
To overcome this difficulty, a regularized problem has been proposed by Duvaut [44].
As introduced in chapter 1, the contact force is then defined at each point by a convo-
lution acting on a small set surrounding this point. This introduces the notion of non
local friction. Apart from of its mathematical value, this hypothesis also has tribolog-
ical relevance, since it introduces local interactions between the asperities.

Using this regularization procedure, various authors have established an existence re-
sult for this non local friction problem and an uniqueness result if the friction coefficient
µ is small (see [Cocu, 1984] [Oden-Demkowicz, 1982]). For systems with a finite num-
ber of degrees of freedom (springs and mass systems), Klarbring [71] has shown the
existence of several simultaneous solutions when the friction coefficient is larger than
a given limit.

Results of the same kind were obtained by Klarbring-Mikelic-Shillor [70] using the
compliance model.

Theorem : For regularized problems (either non local friction or compliance mod-
els), the existence of the solutions is proved but uniqueness is obtained only under
the assumption that the friction coefficient µ is small enough (this limit depends on
mathematical constants which make it difficult to estimate this limit mechanicaly).

This weakness of the mathematical results for the Coulomb problem has to be kept
in mind because it is also of interest to engineers undertaking computations. Large
friction coefficients may lead to bad conditioning and numerical problems may arise.
Nevertheless, within the classical range of mechanical estimations of the friction coef-
ficient, the problem is generally well posed.

On the contrary, if we take a variable friction coefficient (one depending on the sliding
velocity, for example), the lack of mathematical results means that great care should be
taken with the computations and with the physical significance of the results. When
variable friction is used, it is easy to obtain different solutions for a same problem
simply by changing some of the parameters in the computations.

The loss of uniqueness, when the friction coefficient becomes large, shows that :
- if µ tends towards 0, the problem will tend towards a frictionless contact (free bound-
ary conditions), as mechanical intuition suggests,
- but if µ tends towards infinity, the problem will tend towards an ill-posed problem,
and not towards a problem with clamped boundary conditions, as mechanical intuition
might have suggested.

On the other hand, it can be shown that the possibility of instabilities occurring with
friction is enhanced by large values of the friction coefficient (see [84] [105] [106] [7]).
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c - The discretized problem with local Coulomb friction

Theorem : For the finite element problem PvPvPv (triangles P1 with 3 nodes), existence is
proved and uniqueness obtained if the friction coefficient is small enough (µ ≤ µ0(h),
where h characterizes the meshsize of the finite element discretization). In addition,
the fixed point process defined by (38) converges if µ ≤ µ0(h).

Proof: see [Licht-Pratt-Raous, 1991]

No result on the continuous problem can be deduced from this because µ0(h) tends to
zero when h tends to zero.

2.4.5 The quasistatic problem with a non local friction or compliance

model

Theorem : If the friction coefficient is small enough, the existence of a solution of the
quasistatic problem is proved.

Proof for non local friction: see [Cocu-Pratt-Raous, 1996]
With the incremental solution (for which existence, and uniqueness can be established
when the friction is small), we can construct a solution to the quasistatic problem by
proving the weak convergence of a subsequence of mappings interpolating the incre-
mental solution.

Proof for compliance model : see [Klarbring-Mikelić-Shillor, 1991].
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3 Numerical methods for the Signorini

problem with Coulomb friction

3.1 Introduction

A large panel of methods has been developed for solving friction contact problems.
Some of them involve a regularization of the contact conditions. Without attempting
to give an exhaustive list, the following methods can be mentioned.

a - Penalty methods [55] [65] [21] [51]
These are widely used in the standard finite element codes dealing with contact prob-
lems. They tolerate a penetration of one solid into the other, which can be convenient
when an accurate contact solution is not needed. When penetration occurs, a high
normal contact force is introduced to push the node out of the obstacle. This penetra-
tion can be greatly reduced with a good choice of the penalty parameters, but in that
case, the computational time may increase drastically.

b - Lagrangian formulations and especially the augmented Lagrangian
method [110] [55] [119] [120] [21]
After introducing the contact force as a Lagrange multiplier (mixed formulation), a
saddle point problem is obtained. It can be solved with the Uzawa algorithm. By
combinating this with a penalty method, an augmented Lagrangian formulation is ob-
tained. This is a powerful method, the accuracy of which depends on the number of
augmentations. The case with only one augmentation corresponds to a penalty method.

c - Complementarity formulations and mathematical programming method
[12] [19] [21] [66] [68] [69] [77] [100] [76]
This kind of method is widely presented by A. Klarbring in the present volume. The
problem has first to be set under a complementarity form. This is a natural way
of formulating the unilateral conditions but new variables have to be introduced to
write the friction law under this form. In addition, the problem has to be condensed,
i.e. reduced to the contact variable alone by inversing the linear part. Mathematical
programming methods, which are direct pivoting methods, can then be used. These
methods are very powerful (fast and accurate). They can be used on 3D problems by
polygonalizing the Coulomb cone [66].

d - Projection techniques [51] [100] [76] [74] [21]
These methods are associated with the constrained minimization problem introduced
in the previous section. They do not require any regularization of the contact condi-
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tions (except for one of them, the conjugate gradient method). They constitute very
robust iterative methods : no specific difficulties arise when the friction coefficient be-
comes large and they yield an accurate determination of the contact forces and contact
displacements.

e - Newton methods [32]
As in finite plasticity, a Newton method combined with radial return mapping can be
used. This would be a good choise when treating contact problems in finite plasticity.
[20] [21]

f - interior point methods [6] [30]
These are efficient optimization methods which were recently introduced for solving
contact problems.

g- Successive approximation methods [48]
The solution is obtained through iterates on boundary conditions on the contact zone.
At each iterate, the next boundary conditions are defined by writing the unilateral and
the frictional conditions deduced from the previous solution. This algorithm is fast and
deals accurately with linear problems. For non linear problems, the algorithm may not
converge.

In this paper, we have focused on projection and mathematical programming meth-
ods. Both methods involve Signorini conditions (strictly unilateral conditions) and the
Coulomb law. They are both presented for 2D problems but the second one can be
extended to 3D formulations.

The projection technique is used in three methods : Successive Overrelaxation (SSOR),
Gauss-Seidel with Aitken acceleration and Preconditioned Conjugate Gradient (which
needs a regularization in order to obtain differentiability). With the second of these,
there is no need to determine an optimum acceleration parameter as it is the case with
SSOR. A characteristic of the two last methods is that they do not require determining
any computational or convergence parameters. This is a significant advantage. Among
the various mathematical programming methods avalaible, the Lemke algorithm will
be presented here.

Comparisons will be made between these methods by giving several examples. The
problem of the identification of the friction coefficient is discussed and illustrated in
the case of an industrial problem.

In this section, the various numerical methods are implemented on the Signorini prob-
lem with static Coulomb friction. In the previous section, we saw that this can be
easily extended to the real Coulomb friction, by using the incremental formulation.
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3.2 Projection methods

3.2.1 Sequence of minimization problems under constraint

As stated previously, by using a fixed point iterate on the sliding threshold, we have
to solve a sequence of minimization problems under constraints (v ∈ K) of a non dif-
ferentiable functional (the absolute value in the friction term j(v)). Let us first recall
this problem.

Problem (PfPfPf ) : Find the fixed point of the mapping S :

S(g) = −µFN(ug) with g ∈ G (52)

where ug is the solution of the following Problem (PmPmPm) :

Problem (PmPmPm) : For a given g, find ug ∈ K such that

J(ug) ≤ J(v) ∀ v ∈ Kh (53)

with J(v) =
1

2
a(v, v) + j(v) − L(v) (54)

3.2.2 Resolution of the fixed point problem (PfPfPf)

a - Local coordinates for the contact variables
Rather than evaluating the normal and tangential components from the values of these
variables in the Cartesian coordinates, we perform an initial rotation of coordinates
in the finite element matrix at the beginning. The normal direction is given for each
contact node (to deal with curve boundaries) and the finite element matrix is adjusted
by multiplying it with the elementary rotation matrix.

b - Evaluation of the contact forces
The contact forces are not computed from the stress field by using σ.n = F , but directly
from the equilibrium residues :

(F (ug), v) = L(v) − a(ug, v). (55)

This increases the accuracy, because they are not computed by using the (rough) ap-
proximation of the stresses.

c - Diagonal algorithm
In order to reduce the computational time, the first iterates of g are obtained by solving
problem PmPmPm roughly, i.e. little accuracy is demanded. The accuracy of the solution of
PmPmPm is increased progressively for the following iterates. The accuracy is tested on the
relative variation of g according to a norm L∞ (ε = 10−3 is used for the final iterates).
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This diagonal process reduces the computational time by two.

d - Result of convergence
In [79] for the discretized problem, we proved that S is a contraction on condition that
µ is small, therefore the iterates g converge to a solution of PfPfPf . This condition is the
same as the one which ensures uniqueness of the continuous problem. In practice about
6 to 8 iterations on g are necessary.

3.2.3 Discretization of Problem (PmPmPm) (minimization under constraints)

a - The approximate problem
In order to give an approximate form of the problem (PmPmPm), we introduce the classical
finite dimensional space Uh generated by the shape functions associated with a finite
element approximation. The presentation is restricted here to linear elements (P1 or
Q1) because the approximation is internal in that case. The following algorithms can
of course be extended to high order finite elements. The space Uh is the space of linear
piecewise functions and h characterizes the meshsize of the discretization. We have
proposed the following approximate problem in [Licht et al, 1991] [79].

Problem (P h
gP h
gP h
g ) : Find uh ∈ Kh such that :

a(uh, vh − uh) + 〈g, Πh(|vh
T | − |uh

T |)〉 ≥ L(vh − uh) ∀vh ∈ Kh (56)

The mapping Πh is the projector on the space Uh. Taking the extra projection of the
term |vh

T | − |uh
T | on Uh, we can write the friction term as follows :

∑
i gi|vi| (see [Licht

et al, 1991]). It greatly simplifies the discrete problem.

The convex Kh is defined by :

Kh =
{
vh ∈ Uh/ vh

N ≤ 0
}

(57)

b - The discrete problem

Problem (PdiscretPdiscretPdiscret) : Find u ∈ K̃h such that :

J(u) ≤ J(v) ∀ v ∈ K̃h (58)

with :

J(v) =
1

2

2Nh∑

i=1

2Nh∑

j=1

aijvivj −
2Nh∑

i=1

fivi +
∑

i∈IT

gm
i |vi| (59)
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with :
aij = a(ωi, ωj) (60)

fi = (f, ωi) (61)

gm
i =

∫

ΓC

gm ωidl (62)

K̃h =
{
vh ∈ R2Nh/ (vh

N)i ≤ 0 if i ∈ IN

}
=

2Nh∏

i=1

Ki (63)

with,

Ki = R if i 6∈ IN

= R− if not
(64)

where IN and IT are the sets of numberss defined by 2i − 1 ∈ IN (normal component)
and 2i ∈ IT (tangential component) if i is a contact node number.

Three algorithms are presented in the next subsection for solving Problem (PdiscretPdiscretPdiscret).

3.2.4 Successive Over Relaxation with Projection (SSORP)

a - The algorithm
This method belongs to the class of punctual relaxation methods. The minimization
is conducted on one component after the other. As it is a sequence of one dimensional
minimizations, it is very simple to cope with the absolute value (as can be seen below).
A punctual relaxation method is an iterative method where the step n + 1 is written :

for i = 1, . . . , 2Nh,




Find un+1
i ∈ Ki such that ∀ v ∈ Ki

J(un+1
1 , . . . , un+1

i , un
i+1, . . . , u

n
2Nh

) ≤ J(un+1
1 , . . . , v, un

i+1, . . . , u
n
2Nh

)
(65)

The relaxation algorithm (Gauss-Seidel method accelerated by the relaxation coefficient
ω ∈]0, 2[) is adapted to the constraint v ∈ K̃h and to the treatment of the absolute
value in

∑

i∈IT

gm
i |vi| in the following way :





u
n+ 1

2

i =
1

aii


fi −

i−1∑

j=1

aiju
n+1
j −

2Nh∑

j=i+1

aiju
n
j − sgn(u

n+ 1

2

i ) gm
i




if u
n+ 1

2

i ∈ R∗

u
n+ 1

2

i = 0 if not

un+1
i = PKi

(
(1 − ω)un

i + ωu
n+ 1

2

i

)

(66)
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where :

• If i 6∈ IN and i 6∈ IT (not a component of a contact node), we have the classical
relaxation algorithm :





u
n+ 1

2

i =
1

aii


fi −

i−1∑

j=1

aiju
n+1
j −

2Nh∑

j=i+1

aiju
n
j




un+1
i = (1 − ω)un

i + ωu
n+ 1

2

i

(67)

• if i ∈ IN (normal component of a contact node), a projection PKi
is performed

on the convex K̃h (this is very simple because it is a projection on R−) [51]:





u
n+ 1

2

i =
1

aii


fi −

i−1∑

j=1

aiju
n+1
j −

2Nh∑

j=i+1

aiju
n
j




un+1
i = PKi

(
(1 − ω)un

i + ωu
n+ 1

2

i

) (68)

• if i ∈ IT (tangential component of a contact node), the absolute value is simply
treated with two trials on the sign of un+1

i [100] :





u
n+ 1

2

i =
1

aii


fi −

i−1∑

j=1

aiju
n+1
j −

2Nh∑

j=i+1

aiju
n
j − sgn(u

n+ 1

2

i ) gm
i




if u
n+ 1

2

i ∈ R∗

u
n+ 1

2

i = 0 if not

un+1
i = (1 − ω)un

i + ωu
n+ 1

2

i

(69)

As the residue (defect in the equilibrium) does not vanish in our case because of the
constraints (it gives the contact forces), no convergence test on the residue is available.
The convergence test is therefore written on the relative variation in norm L2 of ui

(with ε = .5 10−5).

1

2Nh

∑2Nh

j=1 (un+1
j − un

j )
2

∑2Nh

j=1 (un+1
j )

2 < ε (70)

b - Advantages and disadvantages
This method is very easy to implement. In a finite element code, the classical solver
(Cholesky, Crout, ...) has to be replaced by the SSOR solver in which slight modifica-
tions (68) and (69) have to be carried out.

As shown taking the examples at the end of the section, this method give an accurate
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determination of the contact conditions (as regards both displacements and forces).
Moreover, the algoritm is robust : in [79], examples with very large friction coefficients
are presented.

However the number of iterates (fixed point iterates included) can be large : usually of
the same order as the size of the finite element matrix, it can even be larger when the
matrix is ill-conditioned. Nevertheless, the cost of one iterate is small, especiall when a
sparse matrix storage is used (well adapted to evaluating sums). Computational times
will be presented in the examples.

Another disadvantage is the need to estimate an optimum relaxation coefficient to
ensure a rapid convergence, and no theoretical results are available for this estimate
(mainly because of the projection). A dichotomic evaluation of this coefficient is worth
while only in cases where several loading cases or an incremental problem are to be
treated. To avoid this estimate, the Gauss-Seidel algorithm with an Aitken accelera-
tion, which will be described in the next subsection, can be used.

d - Convergence results
The following theoretical convergence results have been proved.

a) - Frictionless contact
In this case, J is differentiable and the constraints are separate (K is a product
set). Convergence has been proved by [Glowinski et al, 1976].

b) - Bilateral contact with Tresca friction
Here, J is non-differentiable but is written

∑

i

αi|ui|, αi ≥ 0 and there are no con-

straints. Because of the specific form of the nondifferentiable part, convergence
is also established in [Glowinski et al, 1976].

c) - Unilateral contact with Coulomb friction
The functional J is still non-differentiable and the minimization is conducted
with separate constraints. Convergence is proved in Grégo’s thesis [54].

3.2.5 Gauss-Seidel with Aitken acceleration and projection

a - The method
The Aitken acceleration procedure [1] was developed to accelerate the Gauss-Seidel
algorithm by Irons and Tuck [58]. We have extended this method by dealing with the
projection and the absolute value. A new implementation increases the convergence
rate.

Given a convergent sequence of real numbers {xi}, the so-called Aitken-∆2 process
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transforms this sequence into another one, which in general converges faster than the
original one. The {x′

i} sequence is given by :

x′
i = xi −

(xi+1 − xi)
2

xi+2 − 2xi+1 + xi

(71)

We generally do not want to compute the sequence {xi} to determine the sequence
{x′

i} ; we want to accelerate the convergence of the sequence {xi} by directly calculat-
ing a sequence {x∗

i } which differs from what sequence {x′
i} would have been. Various

alternatives can be used. In what follows, the sequence {x∗
i } will be denoted {xi}

because we build only one sequence. In the sequel, T (xi) will denote the term xi+1 of
the Gauss-Seidel sequence.

Starting with an iterative process xi+1 = T (xi), (i = 0, 1, 2 . . .), an accelerated one,
proposed by Irons and Tuck [58], can be written as a relaxation procedure as follows:

xi = T (xi−1) + Ri (xi−1 − T (xi−1)) (72)

where Ri is a relaxation factor that can be defined by the recurrence relation

Ri = Ri−1 + (Ri−1 − 1)
(xi−1 − T (xi−1))

(xi−2 − T (xi−2)) − (xi−1 − T (xi−1))
(73)

with the starting value R0 = 0 (no acceleration). This version requires only one addi-
tional vector for storage. The vector case will be dealt with below.

After testing various forms of Aitken acceleration, the Irons and Tuck procedure was
adopted as a basis, in the constrained minimization problem of the non-differentiable
functional J(v). The Aitken procedure has turned out to be efficient provided a few
precautions are taken. In this respect, let us now make a few comments about the
implementation of the procedure for the non linear problem presented here.

First of all, when is the projection on the convex set K to be made? The two alter-
natives consist of either projecting after the Aitken acceleration or projecting twice :
once during the Gauss-Seidel iteration and again after the Aitken procedure. After
testing both possibilities, the second one was found to be preferable. The Gauss-Seidel
procedure with projection is first applied to all degrees of freedom. The Aitken accel-
eration is then performed followed by an extra projection. In that way, the solution
never leaves the convex set K.

When using this method, either chaotic behaviour was observed or the convergence
tests were satisfied but the solution was incorrect. Irons and Tuck suggested a weight-
ing procedure between Ri and Ri−1 in order to smooth the convergence process. We
propose another technique which consists of applying Aitken’s acceleration only once
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every k Gauss-Seidel iterations. The idea is to combine the smooth convergence of the
Gauss-Seidel process (which is known to efficiently reduce the high error frequencies)
and the acceleration properties of the Aitken procedure : the acceleration is applied
only when the iteration counter i is a multiple of k.

The iteration is written in (14) and (15) for the N -dimensional case. The variable is
the N dimensional component displacement vector V , operator T denotes the Gauss-
Seidel procedure with Projection (GSP) and consequently T (V ) and ∆, the difference
between V and T (V ), are also N dimensional vectors, and R is still a scalar :

∆i−2 = Vi−2 − T (Vi−2) (74)

∆i−1 = Vi−1 − T (Vi−1) (75)

Vi = T (Vi−1) + Ri∆i−1 (76)

Ri = Ri−1 + (Ri−1 − 1)
(∆i−2 − ∆i−1)

T ∆i−1

(∆i−2 − ∆i−1)
T (∆i−2 − ∆i−1)

(77)

As given in relations (76) and (77), the Aitken acceleration is applied using the previ-
ous values Vi−2 and Vi−1. The number k must be larger than two, because for k = 1
or k = 2, the acceleration is computed using a combination of a previous Aitken ac-
celerated iterate and a regular Gauss Seidel one. This is an important difference with
respect to the Irons and Tuck algorithm : these authors calculated the acceleration
using the previously accelerated iterates. Here we compute the acceleration every kth

iteration of the regular Gauss Seidel iterates. In all the cases studied so far, the value
k = 5 has proved to be a good choice. Because of the non-smooth convergence of the
Aitken acceleration, the convergence test (70) can be satisfied although the solution is
not correct. To avoid this, where the convergence tests are satisfied for the accelerated
procedure, m additional Gauss-Seidel iterations are performed. The value of m is cho-
sen so be equal to 2% or 3% of the total number of degrees of freedom.

b - Convergence
Despite the lack of convergence results for the Aitken procedure, we can that our it-
erates converge because the Aitken iterations can be viewed as just providing a very
good starting vector for the final Gauss-Seidel iterations for which convergence has
been proved. In practice, the projected Gauss-Seidel method with Aitken acceleration
turns out to be as fast as the SSOR with projection previously presented, without
having to estimate an optimum coefficient. This is a great advantage.

3.2.6 Projected Conjugate Gradient with Preconditioning [102]

Two difficulties arise when using conjugate gradient methods to solve Problem (PdiscretPdiscretPdiscret) :
how to treat the constraint (∈ K) and the non differentiable term (J(v). To implement
an algoritm based on the conjugate gradient, a specic projection has been introduced
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to preserve the conjugate property between the successive descent directions, and the
differentiability is obtained by a regularization as described in section 1.4.4. . Details
of the method presented in this section can be found in Raous-Barbarin [102]. It is a
variant of the methods proposed by May [86], Dilintas et al [39], and Marks-Salamon
[82] for frictionless problems, extended to the frictional case.

Preconditioning is essential to improve the efficiency of the conjugate gradient method.
Four preconditioning procedures are tested here. Two of them are specific to friction
problems and take the regularization into account ; this is an important point because
the conditioning of the problem depends on the regularization parameters.

a - Treatment of the constraint v ∈ K.
With a conjugate gradient method, it is not possible to use a simple projection as
was done previously with the Gauss-Seidel method, because the conjugate property
between two successive directions would be lost in that case. In order to preserve
the fundamental property of the conjugate gradient, the solution will be sought for
in the subspace RN−p, where p is the number of saturated constraints. This means
that whenever a penetration occurs, the system will lose a degree of freedom so that
the next directions and the conjugation will be defined relative to the new subspace.
The convergence in a finite number of iterates is therefore preserved in each subspace,
where the conjugation is now written. The condition of compressive normal tension
is naturally tested, and a constraint can be relaxed if necessary. There exist various
ways ot carrying out this process. May [86] introduces evolutive boundary conditions
into the matrix itself. The conjugation is still written with the current matrix, but
these modifications are costly. Dilintas et al [39] and Jeuzette-Sonzogni [61] project
the gradient direction. This means that, for a descent direction which would induce
penetration, the solution is stopped on the boundary of the convex, and will keep going
in the tangential direction, i.e. on the boundary of the convex. We use this process,
and we check if the normal force is a tension, we relax the constraint.

The main steps in the algorithm are as follows :
- regular gradient conjugate iterate with evaluation of the optimal coefficientρOpt for
the descent,
- for all the contact nodes, in the case of penetration, computation of the maximum
value ρi of the descent coefficient which ensures that the solution stays in the convex,
- the final descent coefficient is the minimum between ρopt and the ρi,
- when a new contact is obtained, thecorresponding normal component is eliminated.
The next conjugate gradient iteration is then started with a regular gradient direction,
- the dual condition FN ≤ 0 has to be checked over the whole the contact zone. If the
condition is not fulfilled, the constraint uN = 0 is relaxed and the descent direction is
computed again.

A diagonal process is developed : the condition on FN is checked after partial con-
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vergence of the conjugate gradient (in the convergence test, the final accuracy required
is taken to be 10−3 instead of .5 10−5).

b - Treatment of the friction term
In order to compute the gradients, the non differentiable term

∑

i∈IT

gm
i |vi| of (59) has

to be regularized. The four regularizations introduced in chapter 1 will be compared.
The functional (59) becomes :

Jε(x) =
1

2
xT .A.x − fT .x +

m∑

i=1

giϕε(xnum(i)) (78)

where the three regularizations, tested in the next section, are denoted by :

• Square root : ϕ1
ε(x) =

√
x2 + ε2 ,

• Hyperbolic : ϕ2
ε(x) = ε ln

(
cosh

(
x

ε

))
,

• Piecewise polynomial : ϕ3
ε(x) =





−x − ε

2
, if x < −ε

x2

2ε
, if − ε ≤ x ≤ ε

x − ε

2
, if x > ε

.

c - Conjugate Gradient for the non quadratic case
The classical conjugate gradient algorithm can be found in [75]. After regularization,
the conjugation between the successive directions vk (k denotes here a conjugate gradi-
ent iterate) should be written relatively to the Hessian J ′′

ε of (78). To avoid the compu-
tation of the Hessian, J ′′

ε is approximated with a Taylor development of J ′
ε(x

k) = −rk.
This gives the new conjugate direction (where P (.) denotes the projection previously
defined):

V k+1 = P (rk+1) + γk.V k with γk =
< rk+1 − rk, P (rk+1) >

< rk, P (rk) >
(79)

The optimal descent coefficient is then computed by solving :

< J ′
ε(x

k + ρk.V k), V k >= 0 (80)

This non linear problem can be solved in two different ways :

- either by using a Taylor development of J ′
ε(x

k + ρk.V k)

ρk =
< rk, V k >

< J ′′
ε(xk).V k, V k >

(81)

- or by conducting a few iterations of the false position method to avoid having to
computate J ′′

ε (with a prescribed acuracy test on the relative variation of ρk equal to
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10−4, the number of iterates is about twenty).

The two procedures have been tested and the first one is preferable because it requires
no iterates and it yields nearly the same number of gradient iterates. The computa-
tional time is therefore shorter.

d - Preconditioning
It is well known that the convergence can be considerably improved by applying a
preconditioning procedure (see [75]). In this case, a change of variable is made in the
algorithm and an extra resolution is needed :

C(xk).zk+1 = rk+1 (82)

where C(xk) is the preconditioning matrix.

Let us decompose the finite element matrix A = D− (E +Et) where D is the diagonal
and E the opposite of the lower triangular part. Four preconditioning procedures have
been tested. In the first two only the matrix A is used for the preconditioning, and the
last two the Hessian J ′′

ε(x
k) is used, thus accounting for the terms resulting from the

regularization (a few extra diagonal terms):

(J ′′
ε(x

k))ii = Aii + gi.φ”ε(xi
k) if i ∈ I (83)

(J ′′
ε(x

k))ij = Aij if i 6= j or i = j 6∈ I (84)

In this case, the preconditioning is related to the regularization parameter ε.

The four preconditioning procedures tested were :

• C = D = diag(A),

• Evans preconditioning (with ω = 1) : C = [D + E] D−1 [D + E]t

• C = D = diag(J ′′
ε(x

k)),

• Evans preconditioning (with ω = 1) with J ′′
ε(x

k) :

C(xk) =
[
J ′′

ε(x
k) + E

]
(J ′′

ε(x
k))

−1
[
J ′′

ε(x
k) + E

]t

In conclusion, the various tests conducted in [Raous-Barbarin, 1992] have shown that :
- the piecewise polynomial regularization (or the hyperbolic one) is the most accurate
using ε = 10−7 (comparisons were made with the results obtained using methods with
no regularization),
- the Evans preconditioning methods applied to the Hessian J ′′

ε is the most efficient.
In the numerical results presented, these choices will be used.
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3.3 Mathematical programming - Lemke method

(see ([Lemke, 1980], [Klarbring, 1986, 1987, 1988], [Raous-Chabrand-Lebon, 1988],
[Chabrand-Dubois-Raous, 1995, 1998])

In the present volume, A. Klarbring gives a wide presentation of this kind of method.
We will only briefly recall these formulations and give the Lemke algorithm used in the
next section, where we compare it with the other methods presented in this chapter.
These mathematical programming methods are convenient for solving complementarity
problems written as follows.

Problem (P1P1P1) : Find w ∈ Rp, z ∈ Rp such that

w − Mz = q (85)

wi ≥ 0, zi ≥ 0 i = 1 . . . p (86)

wizi = 0 i = 1 . . . p (87)

3.3.1 Complementarity formulation of the friction

Let us first write the frictional contact problem as a complementarity one. Unilateral
contact conditions are already written as a complementarity problem. New variables
have to be introduced in order to friction as a complementarity problem.

- unilateral contact





uN ≤ 0

FN ≤ 0

uNFN = 0

(88)

- friction (introduction of an extra variable)
The tangential displacement uT is divided into a positive sliding component λ1 and a
negative sliding component λ2, and we set :

φ1 = −FT + µFN (89)

φ2 = +FT + µFN (90)
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The friction problem can then be written :




uT = λ2 − λ1

FT = (φ2 − φ1)/2

λi ≤ 0

φi ≤ 0 i = 1, 2

λiφi = 0

(91)

Important notes

- the matrix A∗ is full-sized,
- the matrix A∗ is not symmetric and depends on the friction coefficient.

3.3.2 Condensation

In order to write the problem in the same form as problem (P1), condensation is per-
fomed to reduce the problem to the contact variables alone. This consists of performing
partial inversion on the linear equations of the system. This is possible without invers-
ing any large matrix. In what follows, the subscript c denotes the degrees of freedom
involved in the contact and l the other ones. The matrix A is written as follows.




All Alc

Acl Acc







ul

uc


 =




fl

0


 +




0

Fc


 (92)

We can then write the problem as follows :

A∗uc = Fc + f ∗ (93)

uc ≤ 0 (94)

Fc ≤ 0 (95)

ucFc = 0 (96)

Allul = fl − Alcuc (97)

where A∗ et f ∗ are given by :

A∗ = Acc − AclA
−1
ll Alc (98)

f ∗ = −A−1
ll Alcfl (99)

To calculate A−1
ll Alc, we solve:

AllXi = Yi (100)
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where Xi denotes the ith column of A−1
ll Alc and Yi the ith column of Alc.

The reduced discrete problem (the size of which is only twice the number of contact
nodes) can then be written :

A∗ uc = f ∗ + Fc (101)

3.3.3 The Lemke method

Problem (P1P1P1) can now be written as Problem (P2P2P2) by taking :

z = −uc, w = −Fc, q = f ∗ (102)

The method is a pivoting technique based on the following remark :

if qi ≥ 0 ∀ i = 1 . . . pqi ≥ 0 ∀ i = 1 . . . pqi ≥ 0 ∀ i = 1 . . . p, the solution is zi = 0zi = 0zi = 0 et wi = qiwi = qiwi = qi.

When a subscript ”j” is such that qj < 0, a new real variable z0 is introduced. Problem
(P1P1P1) becomes :

Problem (P2P2P2) :





Find w ∈ Rp, z ∈ Rp et z0 ∈ R such that

Iw − Mz − 1Iz0 = q

z0 ≥ 0

wi ≥ 0, zi ≥ 0, wizi = 0 i = 1 . . . p

where I is the identity matrix in Rp, 1IT = (1,1,1, ...,1,1) .

Let A0 = [ I,−M, 1I ] be the matrix with p lines and 2p+1 columns, X and q0 the
vectors of R2p+1 and Rp defined by :

X =




w

z

z0




et q0 = q

Introducing the variable z0 enables us to get a positive second member, but z0 is
then introduced into the basis (see presentation of the algorithm (i)). The goal of the
algorithm is to eliminate z0 from the basis by pivoting, preserving at the same time
the positivity of the second member.
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Presentation of the algorithm (see [12] [54] for details)

(i) Starting : Let s be the subscript such that :

qs = min
i=1...p

qi

The matrix A1 and the second member q1 are then defined by :





A1
ij = A0

ij − A0
sj j = 1 . . . 2p = 1, i 6= s

A1
sj = −A0

sj j = 1 . . . 2p + 1

q1
i = q0

i − q0
s pour i 6= s

q0
s = −q0

s

And the system to be solved becomes :

A1X = q1

with the complementarity conditions of Problem (P2P2P2).

(ii) Step k+1 : Let t be the column subscript of the variable which is complementary
to the one eliminated from the basis during the previous step and r the line
subscript such that :

qk
r

Ak
rt

= min
i=1...p

qk
i

Ak
it

, Ak
it > 0

The matrix Ak+1 and the second member qk+1 are then :





Ak+1
ij = Ak

ij −
Ak

it

Ak
rt

Ak
rj j = 1 . . . 2p + 1, i 6= r

Ak+1
rj =

Ak
rj

Ak
rt

j = 1 . . . p

qk+1
i = qk

i − Ak
it

Ak
rt

qk
r i 6= r

qk+1
r =

qk
r

Ak
rt

Xt therefore replaces the rth basis variable in the basis. If r = s, z0 is eliminated
from the basis and the solution is reached : the p variables of the basis will then be
equal respectively to the p components of qk+1 and their complementary variables
and z0 will be zero.

(iii) Stop : Go to (ii) until z0 is eliminated from the basis.
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3.3.4 Convergence

- theory
Matrix M has to be copositive (it depends on the friction coefficient) : it is not easy
to give an explicit condition on µ.

- in practice :
. fails when the number of contact degrees of freedom is very large (full-sized matrix,
accumulated round-off errors when the numbers of pivoting is very large, ...) ; but in
this case, we can still use the Lemke method by introducing multigrid methods (see
[Raous et al, 1993] [Grego, 1995]) because the solver works then only on the coarse
grid.
. sometimes fails on medium-sized problems, if zeros occur on the diagonal (line per-
mutations can eliminate this problem, but this increases the computational time).

3.4 Presentation of the examples used in the next section

In the last part of this chapter, we will describe some tests performed on the above
methods, comparing of the computational times, the accuracy of the contact solutions
and making some comments about the problem of how to identify the friction coeffi-
cients when dealing with industrial cases. Let us first present the various examples.

3.4.1 Dovetail assembly

Details of this dovetail assembly can be found in [Raous, 1988]. The geometry is given
in Fig.15 and the mesh in Fig.16 (4345 nodes, 49 contact nodes). The topology of the
mesh is related to multigrid tests which have been conducted on this example.

�
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Figure 15: Geometry
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Figure 16: Mesh of the dovetail (4345 nodes, 49 contact nodes)

3.4.2 A block sliding on a plane

This example (see Fig.17) is a simulation of an experiment conducted by [Zeghloul-
Villechaise, 1996] : a polyurethane parallelepipedic block is pressed on an araldite plate
on which a tangential displacement is prescribed. Studies on stability analysis have
been applied to this example : details can be found in [Raous et al, 1995] [Raous-
Barbarin, 1996] [Barbarin, 1997] [Martins et al, in preparation] [Vola et al, in press].
The mesh is given in Fig.18 (4193 nodes, 65 contact nodes). The problem is quasista-
tic and 200 time steps have been used to closely follow the evolution in the contact
conditions.

Polyurethane

Prescribed displacement

Prescribed displacement and
tangential force measurement

and normal force measurement

Air Pad

L = 80 mm

Araldite

H = 40 mm

Figure 17: Experimental assembly scheme
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Figure 18: Mesh of the block (4193 nodes, 65 contact nodes)

3.4.3 Structure assembly : pressure vessel

This is an industrial example of a multibody contact problem which has been studied
in [Raous et al, 1988] and [Lebon-Raous, 1992]. The geometry of the closure of the
pressure vessel is given in Fig. 19 where there are three contact zones with three
different friction coefficients. The mesh is given in Fig.19 (674 nodes, 54 contact nodes).

  Central plate

Figure 19: Geometry and mesh of the closure of the pressure vessel (674 nodes, 54

contact nodes)
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3.4.4 High pressure screw-press

Details about this example can be found in [Grégo, 1995]. The geometry and the mesh
are given in Fig.20 (11933 nodes, 250 contact nodes).

F

Figure 20: Geometry and mesh of the screw-press

3.4.5 Indentation of an elastoplastic block by a cylinder (finite plastic de-

formations)

Details about the following two examples can be found in [Chabrand et al, 1998]. The
mesh (using Q4/P0 elements) is given in Fig.21 (441 nodes, 21 contact nodes).

Figure 21: Indentation test
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3.4.6 Extrusion of an aluminium cylinder

The mesh (with Q4/P0 elements) is given in Fig.22 (105 nodes, 21 contact nodes).

Figure 22: Extrusion of an aluminium cylinder

3.5 Comparison between the numerical methods

In this section, the numerical methods previously introduced in this chapter are tested
and compared on the examples presented in section 3.4 in terms of the number of iter-
ates and the computational times required. These computational times are essentially
given to be compared to one another. They are quiet long because these tests were
conducted by using a CISM processor (VAX 6310). The CPU times are actually about
one hundred times smaller with a CISC processor (DEC 4100).

3.5.1 The dovetail assembly

Method Nber of iterates CPU time

Lemke – 32s

SSORP ω = 1.95 2543 45s

AITKEN 1726 35s

Conjugate Gradient 422 25s

Table 1: Comparison of the CPU time for the dovetail
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3.5.2 The block sliding on a plane

Method Mean iterate CPU time

number-each step (Total)

Lemke – 18mn23s

SSORP ω = 1, 93 621 37mn33s

AITKEN 654 41mn58s

Conjugate Gradient

Table 2: Comparison of the CPU times for the block (200 time steps)

3.5.3 The pressure vessel assembly

Method Nber of iterates CPU time

Lemke – 3s

SSORP ω = 1.85 342 8s

GS+Aitken 373 8s

Conjugate Gradient 425 9s

Table 3: Comparison between the CPU times for the pressure vessel

3.5.4 The high pressure screw-press

Method Nber of iterates CPU time

Lemke - -

SSORP ω = 1.9 1273 86s

GS+Aitken 998 76s

Conjugate Gradient 541 109s

Table 4: Comparison between the CPU times for the screw-press
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3.5.5 The plastic indentation test

The following two problems are dealt with in the context of finite plastic deformations
(see [Chabrand et al, 1998] [Dubois, 1994]. The SSOR with projection and the Lemke
methods have been extended to this non linear behaviour (they operate on the tan-
gent matrix), and they are compared here with augmented Lagrangian and penalty
methods. The penalty method corresponds to the augmented Lagrangian with only
one augmentation, but the solution is less accurate.

Method GS+Aitken Lemke Augm.Lag. Penalization

CPU time 1h17mn 9mn 28mn 11mn

Table 5: CPU times for the indentation test

3.5.6 Extrusion of an aluminium cylinder

Method GS+Aitken Lemke Augm. Lag. Penalization

CPU time 8mn30s 2mn 6mn30s 1mn45s

Table 6: CPU times for the extrusion of the cylinder

3.6 Accuracy of the contact solution

Solving a Signorini problem (no regularization of the unilateral conditions) with a non
regularized Coulomb friction law (except for the conjugate gradient) lead to an accu-
rate determination of the contact condition (in terms of both the displacements and
the stresses). In order to illustrate this, let us take the evolution of the displacements
and the forces on the contact zone in the case of the block sliding on a plate when the
prescribed tangential displacement of the plate increases.

Table 7 gives the contact forces and the contact displacements at a given step dur-
ing the loading. Three zones can be clearly identified :
- a separate part where uN < 0 and FN = FT = 0 with good accuracy (10−6),
- a sliding part where uN = 0, uT 6= 0, FT = µFN (with an accuracy of less than 0.1
per cent, µ = 0.9 here),
- and an adhesive part where uN = 0, uT = 0, and FT = µFN .

In Fig.23, the changes in the contact forces during the loading are presented. The curves
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FN and FT /µ are plotted. Three zones can be observed : no contact (FN = FT = 0),
sliding (the zone where the two curves are superposed), and adhesion (the zone where
the curves are separated). It is possible to see how the sliding begins : a separated
part occurs on the right, and a central sliding region extends progressively until the
steady sliding solution is reached.

N0 uN uT FN FT

1 0.000E+00 -0.281E-08 0.296E+01 0.137E+01

2 0.000E+00 0.140E-09 0.321E+01 0.816E+00
...

...
...

...
...

17 0.000E+00 -0.723E-10 0.948E+00 0.812E+00

18 0.000E+00 -0.133E-09 0.931E+00 0.823E+00

19 0.000E+00 -0.240E-03 0.917E+00 0.825E+00

20 0.000E+00 -0.775E-03 0.905E+00 0.815E+00

21 0.000E+00 -0.134E-02 0.897E+00 0.808E+00
...

...
...

...
...

55 0.000E+00 -0.541E-01 0.329E+00 0.296E+00

56 0.000E+00 -0.604E-01 0.231E+00 0.208E+00

57 0.000E+00 -0.661E-01 0.747E-01 0.672E-01

58 -0.354E-02 -0.692E-01 0.531E-06 -0.166E-06

59 -0.113E-01 -0.697E-01 0.539E-06 -0.156E-06
...

...
...

...
...

64 -0.795E-01 -0.658E-01 0.552E-06 -0.112E-06

65 -0.952E-01 -0.657E-01 0.200E-06 0.508E-07

Table 7: Contact conditions for the sliding block at a given time step (µ = 0.9)
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Figure 23: Evolution of the contact stresses and of the contact conditions along the

contact zone.

3.7 Some comments about the validation of the model and

the identification of the parameters

A few comments need to be made about the validation of the computational code, the
identification of the parameters and the validation of the model.

It is clear that the validation of a numerical method is not conducted by making
comparisons with experimental results. Although it is not very easy to validate a com-
putational code for non linear problems (and especially for unilateral problems with
friction), there exist various ways, which consist of comparing the numerical results
with :
- exact analytical solutions (Hertz solution of the indentation of an infinite plane by a
cylinder, for example),
- other numerical results obtained on classical Benchmarks (a few of which can be
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found in [99]),
- results obtained with a linear procedure for limit cases (frictionless problem with
persistent contact for example).

On the contrary, a model has to be validated by comparing experimental results with
the numerical simulation, once the computational code has been validated, and once
the parameters of the model have been identified. It turns out that in the case of fric-
tion problems, the identification of the friction coefficients is somewhat difficult. On
the one hand, tables giving the friction coefficients of various materials can be found
in technical handbooks, and on the other hand, specific measurements can be carried
out on samples of the constitutive material of the structure. Several difficulties arise,
however :
- a contact involves two bodies and the friction coefficient is not a characteristic of one
of the materials but of both,
- the measurement of a friction coefficient (tribometer, Inland test, etc.) is very deli-
cate : parallelism of the tools, influence of the experimental conditions (velocity, normal
force, temperature, hygrometry, presence of a third body such as oil residue or micro-
scopic fragments, etc.),
- the surface condition of the sample may be different from that of the same material
in the manufactured structure.

Moreover, depending on the geometry, the solution can be very sensitive to a slight
variation in the friction coefficients, which means that an accurate determination is
necessary.

It is recommended, when identifying the friction coefficients, to be as close as pos-
sible to the real situation. One procedure consists of conducting the identification on
a significant step of the loading by comparing the results of the experiment with those
of the simulation. Then, keeping these parameters constant, the comparison between
theory and experiment on the other steps of the loading will either validate the model
or not, depending on the agreement between these results.

We have illustrated this in [76], taking the example of a scale structure of the clo-
sure of a pressure vessel (which was presented in section 3.4.3). In this structure, the
three contact parts have been treated differently (different coatings, different polish-
ings). The three friction coefficients were identified by comparing the experimental
results with those of the simulation during the first step of the loading (bolt tight-
ening). Solutions obtained with various friction coefficients can be found in Tab. 8.
The comparison involves four quantities, denoted : deflection (at the center of the
plate), rotation (at the level of the closure), upper part/plate (sliding length) and
thrust (sliding length). It can be noted that the value of the various friction coeffi-
cients greatly affects the solution (experimental values are given at the bottom of the
table). The selected friction coefficients where µ1 = 0.2, µ2 = 0.1, µ3 = 0.1. For these
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values, the differences between experimental and theoritical results are given in Tab. 9.

µ1 µ2 µ3 Deflection Rotation Up. part/plate Thrust

0. 0. 0. -0.209 1.45 0.34 -0.23

0.2 0.1 0.1 -0.121 0.58 0.21 -0.21

0.1 0.1 0.15 -0.141 0.56 0.11 -0.26

0.1 0.15 0.1 -0.126 0.38 0.25 -0.16

0.15 0.1 0.1 -0.132 0.61 0.21 -0.22

0.1 0.1 0.1 -0.144 0.65 0.21 -0.22

0.2 0.2 0.2 -0.082 -0.11 0.12 -0.32

∞ ∞ ∞ -0.045 -1.28 0. -0.01

Experiment -0.120 0.55 0.20 -0.24

Table 8: Parameter identification

Difference

Deflection 1%

Upper rotation 5%

Sliding upper part/plate 5%

Thrust displacement 14%

Table 9: Theory/experiment difference for the 1st loading step (identification)

Then, with these coefficients, the simulations of the next two loading steps were com-
puted (lower part pressure and upper part pressure). Conclusions as to the validity of
the model can then be drawn, based on comparisons between theory and experiment
as regards the new loading (see Tab. 11). The large difference observed between the
”deflection” values was due to another strong approximation concerning the geometry
of the plate, which also has some influence on the ”rotation”. Taking this fact into
account and in view of the sensitivity of the system to the value of the parameters and
the experimental accuracy, the Coulomb model has been considered to be an appro-
priate model here. Note that in the case of some other friction coefficients, differences
of 300% were observed in Tab. 8.
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Experiment Model Difference

Deflection 0.157 0.218 28%

Upper rotation 0.655 0.847 23%

Sliding upper part/plate 0.19 0.21 9%

Thrust displacement -0.20 -0.20 0%

Table 10: Theory/experiment difference for the 2nd loading step (lower part pressure)

Experiment Model Difference

Deflection 0.044 0.034 29%

Upper rotation 0.536 0.480 12%

Sliding upper part/plate 0.21 0.21 0%

Thrust displacement -0.21 -0.25 16%

Table 11: Theory/experiment difference for the 3rd loading step (upper part pressure)
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4 Model coupling adhesion to unilateral con-

tact and friction

4.1 Introduction

We now consider a problem where the contact is initially adhesive, which means that
it can admit normal traction (FN > 0) and shear force with neither loss of contact nor
sliding. When the forces are large enough, the adhesion can be progressively broken
and classical unilateral contact with friction will have to be considered.

A model ensuring a continuous transition from a total adhesive condition to a uni-
lateral frictional problem is proposed. It is based on the formulation of adhesion,
introduced by M. Frémond (see [49], [114], [50]), using an intensity of adhesion β on
the interface (which is similar to a damage function). This approach is described in
details by M. Frémond in the present volume. Here we will focus on the coupling to the
friction. An extensive presentation of the model can be found in Raous-Cangémi-Cocu
[108] [28] and in other works [107] [15] [16] [17].

In the framework of continuum thermodynamics, the contact zone is taken to be a
material boundary and the local constitutive laws are obtained by choosing two specific
surface potentials : the free energy and the dissipation potential. Since these poten-
tials are not regular, convex analysis is used to obtain the local behavior laws from the
state and the complementary laws. The continuous transition from a total adhesive
condition to a possible purely frictional one is enforced by using elasticity coupled with
damage on the interface. The variational formulation for quasistatic problems is writ-
ten as the coupling between an implicit variational inequality, a variational inequality,
and a differential equation. The model will be used to simulate a micro-indentation
experiment conducted in order to characterize the behavior of a fiber/matrix interface
in a ceramic composite.

4.2 The model

We will first present the model and then specify the thermodynamic basis in the next
section. Contact between two deformable solids is considered and sligtly different no-
tations are introduced. Let Ω1 and Ω2 be two domains of Rd (d = 2, 3) occupied by two
continuous bodies, the boundary of each domain being separated into three separate
parts : ∂Ωα = Γα

U ∪ Γα
φ ∪ Γα

C , α = 1, 2 . Let Γ1
φ, Γ2

φ denote the parts of the boundary
where external forces φ1, φ2 are respectively applied (see Fig.24). Likewise, Γ1

U and Γ2
U
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Figure 24: Contact between two elastic bodies

are the parts of ∂Ω1, ∂Ω2 where the displacements are prescribed and f 1 and f 2 de-
note the imposed volume force densities. Let Γ1

C , Γ2
C denote the parts of the boundary

where the two solids are initially in contact. Assuming small displacements hypothesis,
we have n1 = −n2, where nα denotes the outward normal unit vector to ∂Ωα, α = 1, 2.
Each particle of Γ1

C is therefore coupled to a particle of Γ2
C in a single valued correspon-

dence. Consequently, the two material boundaries Γα
C ⊂ ∂Ωα (α = 1, 2) define at the

beginning a common contact zone denoted ΓC : Γ1
C ≃ Γ2

C ≃ ΓC . The relative displace-
ment between the two bodies is defined on ΓC by u = u2 − u1 where u1 and u2 are the
displacements of two corresponding points. The vector n1 is chosen (n = n1 = −n2)
for the normal/tangential decomposition : u = uNn+uT with uN = u.n. According to
this choice, the non penetration condition will be written uN ≥ 0 (which is convenient
for a gap condition). When the second solid is rigid (u2 = 0), the usual Signorini
condition uN = u1.n = u1.n1 ≤ 0 is obtained. The internal force on ΓC is denoted
R. Using the principle of virtual power, we obtain : R = σ1n1 = −σ2n2, according to
the previous choice of u. The contact force is separated into reversible and irreversible
parts : R = Rr + Rir.

The kinematic variables on the contact boundary are :
• u, jump of displacement on an interface,
• β, intensity of adhesion (surface damage variable) where β = 1 means total adhe-
sion, 0 < β < 1 partial adhesion, and β = 0 breakdown. The interface law coupling
adhesion, friction and unilateral contact is then written as follows.
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Unilateral conditions with adhesion

−RN + CN uNβ2 ≥ 0 , uN ≥ 0 , (−RN + CN uNβ2) uN = 0 (103)

Coulomb friction with adhesion

Rr
T = CT uT β2

‖RT − Rr
T‖ ≤ µ |RN − CN uNβ2|

‖RT − Rr
T‖ < µ |RN − CN uNβ2| ⇒ u̇T = 0

‖RT − Rr
T‖ = µ |RN − CN uNβ2| ⇒ ∃λ ≥ 0 , u̇T = λ(RT − Rr

T )

(104)

Evolution of adhesion intensity

β̇ = −
[
(1/b) (w h′(β) − (CN u2

N + CT ‖uT‖2)β )
−

]1/p
if β ∈ [0, 1[

β̇ ≤ −
[
(1/b) (w h′(β) − (CN u2

N + CT ‖uT‖2)β )
−

]1/p
if β = 1 .

(105)

The contact variables are uN , uT , β, RN , RT . The six parameters involved in the model
are :
- CN , CT , the initial normal and tangential stiffness of the interface if the adhesion is
complete,
- µ is the friction coefficient,
- b the viscosity of the adhesion evolution,
- w the limit of decohesion energy (Dupré energy),
- p a power coefficient for β evolution,
- h(β) is given (in the fiber/matrix example, h(β) is taken to be equal to β.

Let us now analyze the interface behavior for a 2D case. The initial conditions are
assumed to be complete adhesion (β = 1) and zero displacement (uT = uN = 0).
Dealing first with the normal behavior (see Fig.25), under compressive action, the non
penetration condition is strictly fulfilled (uN = 0). Under traction (uN ≥ 0), an ad-
hesive resistance (RN = CN uNβ2) is active (elasticity with damage). The intensity of
adhesion starts to decrease when the displacement is sufficiently large for the elastic
energy to become larger than the limit of the adhesion energy w. The evolution of the
adhesion is then governed by equation (105). When the adhesion is completely broken,
the classical Signorini problem is obtained.

Looking now at the shear behavior (see Fig.26), note first that friction acts only if
a normal compression is applied ; if a normal traction is applied (uN > 0), the slid-
ing limit (µ |RN − CN uNβ2|) is zero because of (103) and the tangential behavior is
elastic with damage (RT = CT uT β2). Under compression, the sliding limit is (µ |RN |)
(because uN = 0). As long as the norm of the tangential force ‖RT‖ is smaller than
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the sliding limit, no sliding occurs (uT = 0 as initial condition and u̇T = 0 in relation
(104)). When the sliding limit is reached, an elastic tangential displacement occurs.
The adhesion begins to decrease when the adhesive limit is reached and the evolution
of β is then governed by (105). When adhesion is lost (β tends toward zero), the usual
Coulomb friction conditions are obtained.
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If the loading remains constant (when the adhesion limit is overcome), the adhesion
keeps decreasing (by relaxation). If the tangential loading is now backward, an opposite
tangential displacement occurs only when the other side of the Coulomb cone is reached.

4.3 Thermodynamic framework

The general framework has been presented by M. Frémond. It is based on considering
the contact area as a material boundary. Let us focus here on the specific aspects,
namely the choice of the free energy and the dissipation potential.

4.3.1 Free energies and state laws

Onto ΓC , the surface density of free energy Ψ is chosen as follows :

Ψ(uN , uT , β) =
CN

2
u2

Nβ2 +
CT

2
‖uT‖2β2 − w h(β) + I

K̃
(uN) + IP (β) (106)

where K̃ = {v / v ≥ 0} and P = {γ / 0 ≤ γ ≤ 1}.

Introducting of the indicator functions I
K̃

and IP imposes the unilateral condition
uN ≥ 0 and the condition β ∈ [0, 1]. The interfacial forces induced by the adhesion
are introduced under the form of a compliance law depending on the current state of
adhesion β and characterized by the initial stiffness CN and CT . The term w h(β) is a
general form of the energy of decohesion, which is assumed to be differentiable. With
h(β) = β, w corresponds to the Dupré’s energy. Other forms of h(β) could be adopted.

The pseudo-potential Ψ has a part (the first three terms) that is differentiable but
not convex and a part (the last two terms) that is convex but not differentiable. To
write the state laws, the two difficulties (lack of convexity and lack of differentiability)
are overcome by using local or partial subdifferentiation (see [108] [107] [17] [49]). The
state laws can then be written as follows :

Rr
N ∈ ∂uN

Ψ(uN , uT , β) (107)

Rr
T ∈ ∂uT

Ψ(uN , uT , β) (108)

−Gβ ∈ ∂βΨ(uN , uT , β) (109)

where ∂u and ∂β denote the subdifferential with respect to the variables u and β respec-
tively, and where R (contact force) and Gβ are the thermodynamic forces associated
with the jump of contact displacement u and with the adhesion intensity β, respectively.
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The following relation (110) can be easily deduced from (108). By making the subdif-
ferentials ∂uN

and ∂β explicit in (107) and (109), we obtain the following relations on
the normal components (111) and on the thermodynamic force Gβ (112).

Rr
T = CT uT β2 (110)

uN ≥ 0 −Rr
N + CN uNβ2 ≥ 0

(
−Rr

N + CN uNβ2
)

uN = 0 (111)





Gβ ≥ w h′(β) if β = 0

Gβ = w h′(β) − (CN u2
N + CT ‖uT‖2) β if β ∈ ]0, 1[

Gβ ≤ w h′(β) − (CN u2
N + CT ‖uT‖2) if β = 1.

(112)

The state laws show that :

- the reversible (elastic) part of the tangential force depends on the square of the
adhesion β,

- the reversible parts of the normal components of R and u satisfy a generalized
Signorini condition (unilateral contact),

- the thermodynamic force Gβ, if β ∈]0, 1[, is composed of the adhesive energy
minus the elastic energy of the interface.

4.3.2 Dissipation and complementary laws

We choose the following form for the pseudo-potential of dissipation which can be
shown to agree with the Clausius Duhem inequality :

Φ
(
u̇T , β̇; χN

)
= µ

∣∣∣RN − CN uNβ2
∣∣∣ ‖u̇T‖ +

b

p + 1

∣∣∣β̇
∣∣∣
p+1

+ IC−(β̇) (113)

with C− = {γ ∈ W/γ ≤ 0} and p ≤ 1. A power law is used to account for the
evolution of the adhesion. The indicator function imposes that β̇ ≤ 0 : the adhesion
is allowed only to decrease and cannot be regenerated (it is not reversible). This is
in agreement with our application, but other choices could be made for other situations.

The complementary laws are then written :

Rir
N = 0 (114)

(Rir
T , Gβ) ∈ ∂Φ(u̇T , β̇; χN) (115)

and (115) can be written as :

Rir
T ∈ ∂u̇T

Φ(u̇T , β̇; χN) (116)

Gβ ∈ ∂β̇Φ(u̇T , β̇; χN) (117)

59



The normal behavior has been assumed to be elastic. Making explicit the subdifferen-
tials in (116) and (117), we obtain on ΓC :

∥∥∥RT − CT uT β2
∥∥∥ ≤ µ

∣∣∣RN − CN uNβ2
∣∣∣ (118)

with :
∥∥∥RT − CT uT β2

∥∥∥ < µ
∣∣∣RN − CN uNβ2

∣∣∣ ⇒ u̇T = 0
∥∥∥RT − CT uT β2

∥∥∥ = µ
∣∣∣RN − CN uNβ2

∣∣∣ ⇒ ∃λ ≥ 0 ,

u̇T = λ(RT − CT uT β2)

β̇ = −
(
G−

β /b
)1/p

, (119)

where G−
β denotes the negative part of Gβ.

These relations give rise to the model given in section 4.2.

4.4 The variational formulation

The complete problem can be then written as follows :

Problem PAdh.
Find the displacements uα , the stresses σα (α = 1, 2), the strains ǫ, and the
contact force R such that :

ǫ = grads uα in Ωα (120)

div σα + fα = 0 in Ωα (121)

σαnα = φα on Γα
φ (122)

uα = 0 on Γα
U (123)

u = u2 − u1 = uN n + uT on ΓC (124)

σ1n1 = −σ2n2 = RN n + RT on ΓC (125)

σα = Kα : ǫ in Ωα (126)

and on ΓC :

−RN + CN uNβ2 ≥ 0 , uN ≥ 0 ,
(
−RN + CN uNβ2

)
uN = 0 (127)

Rr
T = CT uT β2

‖RT − Rr
T‖ ≤ µ

∣∣∣RN − CN uNβ2
∣∣∣ (128)

‖RT − Rr
T‖ < µ

∣∣∣RN − CN uNβ2
∣∣∣ ⇒ u̇T = 0

‖RT − Rr
T‖ = µ

∣∣∣RN − CN uNβ2
∣∣∣ ⇒ ∃λ ≥ 0 , u̇T = λ(RT − Rr

T ) ,
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β̇ = −
[
(1/b)

(
w h′(β) − (CN u2

N + CT ‖uT‖2)β
)−

]1/p

if β ∈ [0, 1[ , (129)

β̇ ≤ −
[
(1/b)

(
w h′(β) − (CN u2

N + CT ‖uT‖2)β
)−

]1/p

if β = 1 .

In what follows, we make the simplest hypothesis of a linear dissipation for the adhe-
sion evolution (case p = 1).

The variational formulation is similar to that presented in chapter 3 for the quasi-
static problem. Nevertheless, the functional j associated with friction depends also on
β, and the problem is now coupled with a differential equation. We obtain the cou-
pling of an implicit variational inequality, a ”variational inequality” and a differential
equation. Details can be found in [108].

We denote V α =
{
vα ∈ [H1(Ωα)]

d
; vα = 0 a.e. on Γα

U

}
, (α = 1, 2), V = V 1 × V 2, and

K = {v = (v1, v2) ∈ V ; vN ≥ 0 a.e. on ΓC}. We shall adopt the following notations :

• a : V × V −→ IR,
a(u, v) = a1(u1, v1) + a2(u2, v2) ∀u = (u1, u2), v = (v1, v2) ∈ V,

where aα(uα, vα) =
∫

Ωα
Aα

ijklǫij(u
α)ǫkl(v

α)dx, α = 1, 2 .

• j : H × V × V −→ IR ,

j(β, u, v) =
∫

ΓC

µ|RN(Pu1) + CNβ2uN | ‖vT‖ds,

• cN , cT : H × V × V −→ IR ,

cN(β, u, v) =
∫

ΓC

CNβ2uNvNds and cT (β, u, v) =
∫

ΓC

CT β2uT .vT ds.

• y(β, u) = −1

b

[
w − (CN u2

N + CT ‖uT‖2)β
]−

.

• (F, v) =
∑

α=1,2

[∫

Ωα
fα.vαdx +

∫

Γα
φ

φα.vαds

]
∀v ∈ V.

The local problem PAdh then admits the following variational formulation (see [108]
[28] [107] [17]).
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Problem PV ar.
Find (u, β) ∈ W 1,2(0, T ; V ) × W 1,2(0, T ; H) such that u(0) = u0,
β(0) = β0 and for almost all t ∈ [0, T ], u(t) ∈ K and

a(u, v − u̇) + j(β, u, v) − j(β, u, u̇) + cT (β, u, v − u̇) ≥
(F, v − u̇) + 〈RN(u1), vN − u̇N〉 ∀ v ∈ V

(130)

〈RN(u1), zN − uN〉 + cN(β, u, z − u) ≥ 0 ∀ z ∈ K, (131)

β̇ = y(β, u) a.e. on ΓC , (132)

where the initial conditions u0 ∈ K, β0 ∈ H, β0 ∈ [0, 1[ a.e. on ΓC and satisfy the
following compatibility condition :

a(u0, w − u0) + j(β0, u0, w − u0) + cT (β0, u0, w − u0) ≥
(F (0), w − u0) ∀w ∈ K.

(133)

4.5 Incremental formulation and mathematical results

As done in Chapter 3 for the quasistatic problem, an incremental formulation is ob-
tained by operating a time discretization of problem PV ar, taking n ∈ IN∗ and setting
∆t = T/n, ti = i ∆t and F i = F (ti) for i = 0, ..., n. For the differential equation, we use
an implicit scheme. We obtain the following sequence of problems (P n

i ), i = 0, ..., n−1,
defined for a given (u0, β0) ∈ K × H .

Problem P n
i .

Find (ui+1, βi+1) ∈ K × H such that :

a(ui+1, v − ui+1) + j(βi+1, ui+1, v − ui) − j(βi+1, ui+1, ui+1 − ui)

+c(βi+1, ui+1, v − ui+1) ≥ (F i+1, v − ui+1) ∀v ∈ K
(134)

βi+1 − βi = ∆t y(βi+1, ui+1) a.e. on ΓC , (135)

where c(·) = cN(·) + cT (·).

The equation(135) is solved using a fixed point method on βi+1 where the problem
(134) has to be solved at each step.
The existence and uniqueness are established for the incremental solution if friction is
small in [28]. The proof is based on the work on the quasistatic problem presented in
Chapter 2 [26]. Because of the use of an implicit integration of the differential equation,
a fixed point has been introduced to treat equation (135) on βk+1. The convergence of
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this fixed point method has been proved in [28].

As in the case of the quasistatic problem, it is possible to construct a piecewise poly-
nomial function with the incremental solution which converges weakly towards a con-
tinuous solution. This gives the existence for the solution of the quasistatic problem
on condition µ is small.

4.6 Numerical methods and algorithm

As seen before, the problem is very similar to the quasistatic problem treated in Chap-
ter 2. The main difference concerns the implicit integration of the differential equation.
An implicit Euler method was introduced in the previous section. The implicit or semi-
implicit character of the integration is important because the intensity of adhesion β
may decrease very fast during the loading. In the computations, a θ-method will be
used, which improves the accuracy of the solution. For the sake of simplicity, only the
Euler method is presented here.

In comparison with Problem (Pinc1Pinc1Pinc1) in Section 2.3.2, the main differences are :
- at each time step, successive approximation iterates have to be conducted on βk+1,
- extra terms have to be included in the stiffness matrix (because of the contact elas-
ticity),
- the friction term j(β, u, v) depends on β.

After introducing the fixed point on the friction threshold g, we obtain the follow-
ing discrete minimization problem (instead of Problem (PdiscretPdiscretPdiscret) of Section 3.2.3.

Problem P h
i .

Find u ∈ k such that :
J (u) ≤ J (v) ∀v ∈ k (136)

with

J (v) =
1

2
vT Av + GT

∣∣∣v − ui
h

∣∣∣ +
1

2
vT C(β)v − F i+1

h

T
v (137)

where :

- k = {ΠKi with Ki = R+ if i ∈ IN and Ki = R if not }

- IN is the set of the number of degrees of freedom concerning the normal compo-
nents of the contact nodes,

- A is the matrix of dimension N = dim(V ) : Aij = a(wi, wj),

- C is the diagonal matrix of dimension M (M is the number of contact nodes) :
Ckl = c(βh, wk, wl),
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- G is the vector of dimension M : Gj =
∫

ΓC

g wjds .

Any of the methods presented in Chapter 3 can be used to solve this problem. Schemat-
ically, the algorithm involving the various procedures can be presented as follows.




Loop : on time steps ti+1 : find (ui+1, βi+1ui+1, βi+1ui+1, βi+1)




Loop : on the fixed point : (βi+1)ν(βi+1)ν(βi+1)ν (implicit integration) :

(initial condition (βi+1)0 = βi)

• Solve the unilateral contact problem with friction (depending

on (βi+1)ν(βi+1)ν(βi+1)ν)using either the Lemke algorithm or the following :




Loop : on the friction threshold ((gi+1)
ν
)
α+1

• ((gi+1)
ν
)
α+1

= µRN(((gi+1)
ν
)
α
)

• Resolution of ProblemP h
i by using SSORP or Gauss-Seidel+Aitken

or Conjugate Gradient.

End

• Implicit integration of differential equation on βββ :

(βi+1)ν+1 = βi + ∆tf(βi+1)ν+1, (ui+1)ν(ui+1)ν(ui+1)ν)

End

End

4.7 Application to the behaviour of the fiber/matrix interface

for a composite

This exemple is part of an undergoing research on the interaction of a progressive crack
in the matrix with a fiber/matrix interface for a SiC/SiC composite. Here, the model
is used to simulate a microindentation experiment in order to identifiy the parameters
of the model. These experiments are conducted in the ONERA (Office National des
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Etudes et de la Recherche Aérospatiale). The results given by this model and those
given by some other recent interface models are compared in the case of an uniaxial
modelisation of the microindentation experiment in [Monerie et al, 1998].

The model of the experiment is given on Fig. 27 and the mesh on Fig.28 (1419 nodes,
300 contact nodes, triangle P 1). The radius of the fiber is Rf = 8.6µm. By analyzing
the volume density of fibers (Vf = 40%), the radius Rm = 12.6µm is chosen to define a
zone of pure matrix. The extra zone is defined as an equivalent homogeneous material
equivalent to the composite one by using a mixture rule. The domain is defined by
L = 200µm and h = 1600µm. The boundary conditions are given on Fig. 27. The
elasticity coefficients are : E=200GPA, ν=0.25 for the fiber, E=350GPa, ν=0.2 for the
matrix and E=290GPa; ν=0.22 for the equivalent composite. The characteristic length
l is taken equal to the fiber radius : l = 8.6µm. A vertical prescribed displacement is
applied on the indentor.

Rf 

i

Rm  

Indenteur

Composite

e
c

t
r

 a
M

h  

L 

Axisymmetrie

Fibre

Figure 27: Model of the experiment.
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Zoom

Figure 28: Mesh. Figure 29: Zooms.

parameters values

Friction coefficient µ 0.075

Contact stiffness C 0.0008 N/µm3

Dupré energy w 1 J/m2

Viscosity of adhesion b 25N.s/m

Table 12: Identification of the parameters.
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Results of the identification of the model parameters are given on Table 12 and on
Fig.30. The same contact stiffness was chosen for the normal and the tangential in-
terface behavior : CN = CT = C. Figure 30 shows the ability of the model to fit the
force/displacement evolution of the push-in experiment. Mechanical considerations
give a specified range of variations for each parameter. For the contact stiffness, the
range is evaluated by considering the composition and the thickness of the layer of
carbon and oxyde in the interface. On Fig.30, we have also plotted the results of the
simulation by making µ = 0 (no friction) and w = 0 (no adhesion) in the values of the
parameters given on Table 12. This is helpful to better understand the experimental
results : the change of the slope is strongly related to the lost of adhesion and the final
slope to the residual friction between the fiber and the matrix when adhesion is broken.

On Fig.31, the contact condition is presented for a given step of the loading. The val-
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Figure 30: Simulation and experimental results.
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ues of the ratio RT /RN (scale on the left), the adhesion intensity β, and the tangential
sliding uT (scales on the right) are plotted along the interface. Three zones are clearly
characterized :

• zone 1 : close to the indentor, adhesion is totally broken (β ≃ 0) and only friction
remains active (RT /RN = µ),

• zone 2 : in this transition zone, adhesion is partial (0 < β < 1) and the elasticity
acts (RT /RN > µ),

• zone 3 : on this part, the interface is still weakly affected, the adhesion is total
(β = 1).

The smooth evolution of the solution underlines the good property of the model, which
gives a continuous transition from total adhesion to pure frictional contact.
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Figure 31: Contact forces, adhesion intensity β and tangential displacement uT along

the interface for a given loading step.
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[14] Bouchitté G., Lidouh A., Suquet P., 1991, Homogénéisation de frontière
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[16] Cangémi L., Cocu M., Raous M., 1996b, Adhérence et frottement: une
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[28] Cocu M., Cangémi L., Raous M., in press, Approximation results for a class
of quasistatic contact problem including adhesion and friction, in Proceedings IU-
TAM’97 ”Variation of domains and free-boundary problems in solids mechanics”
(Paris, 22-25 Avril 1997), Kluwer.
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[70] Klarbring A., Mikelić A., Shillor M., 1988, Frictional contact problems with
normal cpmpliance, Int. J. Engng. Sci., Vol. 26, n0 8, pp. 811-832.

[71] Klarbring A., 1990, Examples of non-uniqueness and non existence of solutions
to quasistatic contact problem with friction, Ingenieur-Archiv., 56, pp. 529-541.

[72] Klarbring A., Mikelic A., Shillor M., 1991, A global existence result for the
quasistatic frictional contact problem with normal compliance, Int. Series Num.
Math., 101, pp. 85-111.

[73] Lagarde A., Raous M., Editeurs, 1996, Photomechanics - Contact Mechanics
and Tribology, Vol 4 of Proc. ESDA’96/Montpellier 1-4 July 1996, ASME eds,
New York.

[74] Latil J.-C., Raous M., 1991, Module Gyptis Version 1.0 : Contact unilatéral
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