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Consistent time discretization for a
dynamical frictional contact problem and
complementarity techniques

Didier Vola, Elaine Pratt, Michel Jean and Michel Raous

Laboratoire de Mécanique et d’Acoustique
31, Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France

RÉSUMÉ. Le problème dynamique de contact unilatéral avec frottement de Coulomb en

viscoélasticité linéaire est formulé de manière à prendre en compte avec précision les

éventuelles discontinuités des vitesses relatives lors d’un impact. Plusieurs schémas

numériques implicites du premier ordre sont proposés pour l’approximation en temps

et ils sont comparés à un schéma standard d’ordre plus élevé. Le problème discret,

formulé en vitesse, est écrit en terme de complémentarité et résolu par la méthode de

programmation mathématique de Lemke.

ABSTRACT. The dynamical problem of a viscoelastic body involving unilateral con-
tact and Coulomb friction is set so as to take into account accurately eventual dis-
continuities of the relative velocities when impacts occur. Several first order implicit
numerical schemes for the time discretized equations of the problem are proposed.
The results are compared to those of a higher order standard numerical scheme. The
discrete problem, with the velocity as unknown, is set in terms of a complementarity
problem which is solved by Lemke’s mathematical programming method.

MOTS-CLÉS : contact unilatéral, impact, frottement de Coulomb, dynamique des

structures, θ-méthode implicite, éléments finis, problème de complémentarité linéaire,

programmation mathématique, méthode de Lemke.

KEY WORDS : unilateral contact, impact, Coulomb friction, sructure dynamics, im-

plicit θ-method, finite elements, linear complementarity problem, mathematical pro-

gramming, Lemke’s method.



1. Introduction

Dynamical problems involving frictional contact are not regular because rel-
ative velocities are liable to become discontinuous when impulses are exerted
between contacting bodies during impact. In this paper, only finite dimen-
sional systems are considered. A finite element method, for instance, can be
used to obtain a finite dimensional model of the continous dynamical prob-
lem, however, such a discretization is not within the scope of this paper. The
discrete model consists of a second-order differential equation with respect to
time governing the displacement of the mesh nodes and of the frictional contact
relations. Since impacts are expected, such a differential equation should be
understood in the sense of distributions or of measure differential equations.
Any velocity v is chosen as a function with bounded variation, v− is the left
limit representing the velocity before some possible impact time t whereas v+

is the right limit representing the velocity after the impact time. This implies
that the acceleration is a differential measure. The reaction is represented by
some positive measure involving, for instance, the Dirac measure at impact
time. Several numerical schemes for the time discretization of this measure
differential equation may be adopted, each one depending on different choices
for the approximation of the displacement and of the terms representating in-
ternal and external forces. To the dynamical equation are added the frictional
contact relations involving impulses and the relative velocities at the impact
time. The unilateral condition appears as a complementarity condition, involv-
ing the gap and the reaction force, referred to as the Signorini condition. The
Coulomb friction law is written using the right sliding velocity and the density
of impulse. The use of the right sliding velocity, is motivated by numerical
experiments on simple examples.

Most authors apply standard schemes, for instance, Newmark’s scheme,
to integrate the dynamical equation, as if relative velocities were sufficiently
regular. Hughes et al. have proposed to correct the solution obtained with
Newmark’s scheme when an impact (or a release) occurs using a wave prop-
agation analysis [?]. More recently, Taylor and Papadopoulos have preferred
to add a rate and a second rate form of the displacement impenetrability con-
dition [?] and add two Lagrange multipliers to enforce these new conditions
(augmented lagrangien formulation).

As the time discretized problem for each time iteration is very similar to a
stationary frictional contact problem, except that the primary unknown here is
the velocity, the Lemke’s mathematical programming method is used to solve
at each time step the complete set of equations, the approximated dynamical
equation, together with the complementarity frictional contact equations, [?].

Though the ideas developed in this paper may be applied straightforwardly
to general large deformation dynamical problems with frictional contact (see
section 6), for simplicity’s sake, the case of linear viscoelasticity under small
perturbations is developed. The simple example of the impact of two bars is
presented [?], and used as a benchmark: the results obtained by the different
numerical schemes proposed by the authors to solve the dynamical equation are
compared to those obtained by using Newmark’s method and with the exact
solution. The results suggest that the proposed numerical schemes are quite



effective in coping with the discontinuities of the velocity. Other less academic
examples are also presented showing the feasability of this approach on large
deformation problems.

2. Space Discretization

The configuration of a continuous medium is represented by a n dimen-
sional vector q(t) whose components are the co-ordinates of the mesh nodes
obtained by a finite element discretization (P1 in our case). The local gap
g(t), the relative velocity V (t) and the local impulse reaction R(t) exerted at
some point candidate for contact, for instance a mesh node, are components
of some 2nc or 3nc dimensional vectors where nc is the number of candidates.
Contact and friction conditions are expressed through relations between g(t),
V (t) and R(t). Normal (respectively tangential) components are noted with a
subscript N (respectively T). The discrete problem to be solved is the following:

Problem Pn : Find q such that ∀t ∈ [0, T ], q(0) = q0, q̇(0) = V0 and:

Mdq̇ + Kqdt + Cq̇dt = Fdt + rdν, [1]

and for the contact nodes:

g(t) ≤ 0, RN (t) ≤ 0 and g(t) RN (t) = 0,

‖RT (t)‖ ≤ µ|RN (t)|,

if V +
T (t) 6= 0 then ‖RT (t)| = −µ|RN (t)| V +

T (t) / ‖V +
T (t)‖,

[2]

where dt is the Lebesgue measure, dq̇ is a differential measure representing the
discretized acceleration, dν is a non-negative real measure relative to which dq̇
happens to possess a density function, and r is a representative of the local
density of impulses exerted where contact occurs.

3. Time Discretization of the Measure Differential System

It may be useful here to remind the reader that a differential measure
dv can be associated to any function v with bounded variation, and that
∫

[a,b]
dv = v+(b)−v−(a) and

∫

]a,b]
dv = v+(b)−v+(a) where v+ and v− refer re-

spectively to the right-limit and left-limit of v. For more details on the subject
see J.J. Moreau [?]. We shall consider that the velocity is a right continuous
function of time, so that v = v+. A study of such measure differential sytems
as [1] can be found in [?]. The authors show that [1] may be written in the
following equivalent form: for all t in ]0, T ]

M(q̇(t) − q̇(0)) =

∫ t

0

(F − Kq − Cq̇)ds +

∫

]0,t]

rdν, [3]

where ds represents the Lebesgue measure, and also: for all τ in ]0, t[

















M(q̇(t) − q̇(τ)) =

∫ t

τ

(F − Kq − Cq̇)ds +

∫

]τ,t]

rdν,

q(t) = q(τ) +

∫ t

τ

q̇ds.

[4]

In order to obtain a numerical approximation of the solution of [3], the
time interval [0, T ] is divided into sub-intervals. Considering some sub-interval
]ti, ti+1] of length h, [4] yields the following relations:















M(q̇(ti+1) − q̇(ti)) =

∫ ti+1

ti

(F − Kq − Cq̇)ds +

∫

]ti,ti+1]

rdν,

q(ti+1) = q(ti) +

∫ ti+1

ti

q̇ds.

[5]

The next step consists in choosing a numerical scheme to approximate the

two integrals
∫ ti+1

ti

q̇ds and
∫ ti+1

ti

(F−Kq−Cq̇)ds. A different numerical method

is obtained for each different choice of an integral approximation scheme. How-
ever, bearing in mind the fact that the velocity may be discontinuous, the use
of high-order approximations should be avoided since they are accurate only
for the integration of sufficiently regular functions. Therefore, the classical θ-

method is proposed in this paper (i.e.,
∫ ti+1

ti

fds ≈ h(θf(ti+1)+ (1− θ)f(ti)) ,

θ=1 yields the implicit Euler method). This method is unconditionally stable
for θ ≥ 1

2 . The mean value impulse ri+1 = 1
h

∫

]ti,ti+1]
rdν appears as a primary

variable. Setting q̇i, qi, q̇i+1, qi+1, as approximations of respectively q̇(ti),
q(ti), q̇(ti+1), q(ti+1), the following three methods to compute the unknowns
q̇i+1, qi+1 and ri+1 at each time step may be obtained from expression [5].

θ-Method: both integrals are approximated by the θ-method, so that one has:










M(q̇i+1 − q̇i) = h[θ(F i+1 − Kqi+1 − Cq̇i+1) + (1 − θ)(F i − Kqi − Cq̇i)]
+hri+1,

qi+1 = qi + h[θq̇i+1 + (1 − θ)q̇i],

or


































M̃ q̇i+1 = F̃ i+1 + hri+1, qi+1 = qi + h[θq̇i+1 + (1 − θ)q̇i],

M̃ = M + hθC + h2θ2K,

F̃ i+1 = [M − h(1 − θ)C − h2θ(1 − θ)K]q̇i − hKqi + h[θ F i+1

+(1 − θ)F i].

[6]

θ-Euler-Method: the first integral is approximated by the θ-method and the
other by the implicit Euler method, so that one has:













M(q̇i+1 − q̇i) = h[θ(F i+1 − Kqi+1 − Cq̇i+1) + (1 − θ)(F i − Kqi − Cq̇i)]
+hri+1,

qi+1 = qi + hq̇i+1,

or






















M̃ q̇i+1 = F̃ i+1 + hri+1, qi+1 = qi + hq̇i+1,

M̃ = M + hθC + h2θK,

F̃ i+1 = [M − h(1 − θ)C]q̇i − hKqi + h[θ F i+1 + (1 − θ)F i].

[7]

modified θ-Method: both integrals are approximated by the θ-method, but
in the contact relations, the displacement qi+1 is replaced by q̂i+1 = qi+1 +
h(1 − θ)q̇i+1. So that this method shall only differ from the θ-method when
the contact relations are added.

In section 6.1, these three methods have been compared to the exact solution
of a simple test example and to the results obtained by Newmark’s method for
which similar relations to [6] and [7] are obtained.

4. Discretization of the Frictional Contact Conditions

The relative velocities V (t) are related to q̇(t) by kinematic relations,

V (t) = H∗(q(t)) q̇(t) .

The densities of impulse r(t) and R(t) satisfy,

r(t) = H(q(t))R(t) ,

where H∗(q(t)) is the transpose of the linear mapping H(q(t)).
The following approximations may be adopted,

V i+1 = H∗(qi) q̇i+1 ,

ri+1 = H(qi)Ri+1 ,

where V i+1 shall represent an approximation of V (ti+1). The approximation
of the gap is crucial for the behaviour of the algorithm. It is based on the
following property: the time derivative of the gap function t 7→ g(t) is the
normal component of the relative velocity VN (t),

d

dt
g(t) = VN (t) .

Using the above property and the different expressions obtained in Section
3 according to the discretization method adopted, the gap at ti+1 is approxi-
mated by gi+1 and given by the following expressions:



for the θ-method:

gi+1 = gi + hθV i+1
N + h(1 − θ)V i

N ,

1

hθ
gi+1 = V i+1

N − G̃i ,

G̃i = (1 −
1

θ
)V i

N −
1

hθ
gi , [8]

for the θ-Euler-method:

gi+1 = gi + hV i+1
N ,

1

h
gi+1 = V i+1

N − G̃i ,

G̃i = −
1

h
gi , [9]

and for the modified θ-method (as the displacement is estimated from the
relation q̂i+1 = qi+1 + h(1 − θ)q̇i+1 whereas we still have qi+1 = qi + hθq̇i+1 +
h(1 − θ)q̇i):

ĝi+1 = ĝi + hV i+1
N ,

1

h
ĝi+1 = V i+1

N − G̃i ,

G̃i = −
1

h
ĝi . [10]

In the modified θ-method, the estimated gap is not the gap at the end of the
time step but at some near future time ti+1+h(1−θ). For the first two methods,
the unknowns involved in the discretized Signorini condition are gi+1, Ri+1

N ,

whereas, for the modified θ-method the unknowns are ĝi+1, Ri+1
N . In all

three cases, the discretized Signorini condition is written as:

V i+1
N − G̃i ≤ 0, Ri+1

N ≤ 0 and (V i+1
N − G̃i) Ri+1

N = 0. [11]

The advantage of the θ-Euler-method and of the modified θ-method
over the θ-method, is the compatibility between gap and velocity approxima-
tions. It can easily be observed from the above relations that if some contact
occurs at ti, i.e., if gi = 0 (or ĝi = 0), then G̃i = 0 so that if gi+1 = 0 (or
ĝi+1 = 0) then V i+1

N = 0 also. This is not the case for the θ-method where, if

gi = 0, G̃i is different from zero so that if the approximated gap at ti+1 is equal
to zero, i.e. gi+1 = 0, one has V i+1

N = (1 − 1
θ
)V i

N − 1
hθ

gi, which is different
from zero and this introduces some sort of restitution energy.

Finally, the discretized Coulomb’s law involves the unknowns V i+1
T , Ri+1,

and is written as:

‖Ri+1
T ‖ ≤ µ|Ri+1

N |,

if V i+1
T 6= 0 then Ri+1

T = −µ|Ri+1
N | V i+1

T / ‖V i+1
T ‖ .

[12]

The advantage of expressing the contact conditions in this manner is that in
both conditions [11] and [12] the velocity appears as a primary unknown.



5. Complementarity Formulation and Resolution

5.1. The Complementarity Formulation

The unilateral Signorini condition appears naturally as a complementarity
relation. Klarbring has shown that the Coulomb friction conditions can also be
expressed in these terms (see [?]). In the two-dimensional case, it is natural to
introduce four new variables, λ1 and λ2 (respectively the positive and negative
parts of the tangential velocity for the contact nodes) and, Φ1 and Φ2 with
Φ1 = −RT + µRN and Φ2 = RT + µRN (the three inequations Φ1 ≥ 0, Φ2 ≥ 0
and −RN ≥ 0 define the Coulomb cone). For each node in contact, the friction
conditions [2] are then equivalent to [14]. When three-dimensional cases are
considered the Coulomb cone has to be approximated by a polygonal cone and
the number of new variables introduced depends on the number of facets of the
polygon. The two complementarity conditions [14] are replaced by a number
of similar conditions involving all the new variables introduced.

After having adopted one of the three integration methods of Section 3
and their corresponding approximations of the contact conditions introduced
in Section 4, we obtain:

Problem Pd : Find q̇i+1 and ri+1 such as:

M̃ q̇i+1 = F̃ i+1 + h ri+1, [13]

and for the contact nodes:














−Ri+1
N ≥ 0,

G̃i − VN
i+1 ≥ 0,

−Ri+1
N .(G̃i − VN

i+1) = 0,

{

Φ1
i+1 ≥ 0, λ1

i+1 ≥ 0 and Φ1
i+1.λ1

i+1 = 0,

Φ2
i+1 ≥ 0, λ2

i+1 ≥ 0 and Φ2
i+1.λ2

i+1 = 0.
[14]

The matrix M̃ and the vectors F̃ i+1 and G̃i depend on the integration method
one has adopted and have been defined in the preceeding sections. The θ-
method corresponds to [6] and [8], the θ-Euler-method to [7] and [9] and
the modified θ-method corresponds to [6] and [10].

Finally, in order to formulate the problem in terms of complementarity,
the linear system [13] is condensed on all the degrees of freedom of the contact
nodes (see [?]). The linear complementarity problem is solved using the piv-
oting method of Lemke (see [?]). The dimension n̄ of this problem is equal to
3nc in the two-dimensional case. The solution of the linear complementarity
problem is then introduced into the linear system [13], thus reducing the di-
mension of the system to the total number of degrees of freedom minus n̄. The
resulting system is solved by a standard method for linear systems.



5.2. Mathematical Programming Solver

After condensation, problem Pd is written as a linear complementarity prob-
lem of the following general form:

Problem Pc: Let f be a given vector ∈ lRn̄, find w and z ∈ lRn̄ such that:

{

w − Az = f

wi ≥ 0, zi ≥ 0, wizi = 0 ∀i=1,..,n̄

There are several methods to solve this sort of problem. All are based on
the following remark: if fi ≥ 0, ∀i=1,..,n̄, then the solution is wi = fi and
zi = 0 ∀i=1,..,n̄. We have chosen the method introduced by Lemke (see [?]).
A pivoting algorithm is used to construct, by linear combinations, a sequence
of non-negative vectors z. Details of this algorithm can be found in [?] and [?].
Due to the change of variables (introduction of the new variables λ1, λ2, Φ1 and
Φ2), the matrix A is non-symmetrical and depends on the friction coefficient.
From a mathematical point of view, the copositivity of the matrix A ensures the
convergence of the pivoting algorithm. In practice, no convergence problems
have been observed. Chabrand et al. (see [?]) have shown the efficiency of
the Lemke algorithm in the quasistatic case and compared it to the augmented
lagrangien method and the Gauss-Seidel method accelerated by the Aitken
procedure.

6. Numerical Examples

6.1. Impact of Elastic Bars

6.1.1.One Dimensional Test

This is a simple test example [?] modeling the impact of two identical elastic
bars (see Figure 1). The material properties are given in Table 1.

Vo Vo

L L

Figure 1. Impact of two bars

Figure 2 represents the evolution of the contact velocity for each of the four
methods together with the exact solution which is known in this very simple
case. The Newmark method with γ = 0.5 and β = 0.25 generates undesir-
able oscillations of the contact velocity during the contact phase. The same
oscillations would have appeared if we had used the θ-method with θ = 0.5.



Young’s modulus 0.20684.1012Pa initial velocity 5.13588m/s

density 0.78957.104Kg/m3 evolution time 0.2.10−3s

length L 0.254m time step 0.2226.10−5s

Table 1. Data for the impact of two bars

These oscillations are damped out by using coefficients that introduce dissipa-
tion (see the results obtained here by the θ-Method with θ = 0.55). For the
θ-Euler-method, the transition from the zero velocity of the contact phase to
the negative velocity is much too slow. The modified θ-method seems to be the
most efficient in this simple case but this shall not be so in the two-dimensional
case.
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Figure 2. Contact velocity



6.1.2.Two-Dimensional Test

The data for this example is the same as for the previous one, except for
the Poisson coefficient which was then equal to zero and which is now equal
to 0.45. No exact solution is avalaible, in this case, to compare the numerical
results to. Figure 3 represents the normal velocity, computed by the three
methods of Section 3, at the centre of the contact zone of both bars, the dotted
line representing the velocity of the impacting bar. In this case, the θ-Euler-
method seems a good compromise between the θ-method, where the velocity is
too smooth and does not reach the value minus one, and the modified θ-method
which generates improbable oscillations.
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Figure 3. Normal velocity at the centre of the contact zone for both bars

6.2. Impact of a Cylinder

This is a two-dimensional frictionless impact test proposed by Taylor and
Papadopoulos [?]. The plain strain hypothesis is adopted and the gravity effects
are neglected. The geometrical and material properties are given on Figure
4. The mesh has 613 nodes (576 four-node finite elements). The results for



1

2

8 Young’s modulus 5.102

Poisson’s ratio 0.3

density 1

total evolution time 6

Figure 4. Geometry of the cylinder and data

this example were computed with the θ-Euler-Method. Figure 5 depicts the
evolution of the deformed shapes until the release. The total contact force
is plotted on Figure 6 for two time-steps (∆t = 0.02 and ∆t = 0.15). For
the smaller time-step, the results are similar to those obtained by Taylor and
Papadopoulos. Moreover, when a larger time-step is used, the θ-Euler-Method
produces a smoother solution than theirs. The computation lasted about 1400s
on an IBM RS/6000 590 system.

Figure 5. Deformed shapes at t=0, t=2.1, t=3.3 and t=4.3

6.3. Frictional Oblique Impact

This is a two-dimensional example proposed by Kim and Kwak [?] dealing
with the oblique impact of a plate with a round side against a rigid surface. The
initial horizontal and vertical velocities are Vh = 3m/s and Vv = −5m/s, the
material properties and the geometric data are given in the following table. The
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Figure 6. Evolution of the total contact force

mesh (see Figure 7) is composed of 99 nodes (80 four-node finite elements). The
plane stress hypothesis is adopted. Figures 8 and 9 present the nodal normal

54321 6 7 8 9

Young’s modulus 107Pa

Poisson’s ratio 0.25

density 103Kg/m3

friction coefficient 0.1

lenght 0.08m

width 0.04m

depth 0.01m

radius of the round side 0.101m

time step 10−5s

total evolution time 3.10−3s

Figure 7. Geometry of the plate and data

reactions and the evolution of the deformed shapes obtained with the modified
θ-Method with θ = 0.55. Kim and Kwak have used the Newmark method
associated to a correction procedure when impact occurs. The curves of Figure
8 have the advantage of not presenting the oscillations obtained by Kim and
Kwak (p.4621 of [?]) during the contact time. Indeed, these oscillations cannot
be explained by the propagation of an acoustic wave in the plate. For this test,
the computing time on an IBM RS/6000 590 system was of about 300s.
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Figure 8. Evolution of the nodal normal contact forces

Figure 9. Deformed shapes at t=10
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s, t=2.10
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s and t=2.2510
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6.4. Impact of an Elastoplastic Cylinder

In order to show the feasability of our approach in the context of large de-
formation problems, we present in Figure 10 the final shape obtained after the
impact of an elastoplastic cylinder against a rigid surface. This is a classical
benchmark [?] which is often treated by replacing the contact conditions by
bilateral ones. A forthcoming article by Dubois et al. shall present the gener-
alization of our approach to large deformation dynamical problems.

Figure 10. Initial mesh and final deformed shape of the elastoplastic cylinder
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