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Abstract 
 

System verification is an ever-lasting system engineering challenge. The increasing complexity in system 

simulation requires some level of expertise in handling the idioms of logic and discrete mathematics to 

correctly drive a full verification process. It is recognized that visual modeling can help to fill the knowledge 

gap between system experts and analysis experts. However, such an approach has been used in one hand to 

specify the behavior of complex systems, and on the other hand to specify complex requirement properties, 

but not simultaneously. This paper proposes a framework that is unique in supporting a full system 

verification process based on the graphical modeling of both the system of interest and the requirements to 

be checked. Patterns are defined to transform the resulting models to formal specifications that a model 

checker can manipulate. A real-time crossing system is used to illustrate the proposed framework. 

 

Keywords: High Level Language for Systems Specification (HiLLS), Discrete Event System Specification 

(DEVS), formal verification, temporal logic, model transformation, UPPAAL. 

 

 

1. Introduction 
 

The continuous growth of systems of various kinds through human activities and the increasing 

complexities of the activities themselves lead to the continuous development of formal techniques to ensure 

safe and secure systems. The evolution of a system's functional requirements is often inevitably 

accompanied by a corresponding evolution of its complexities in structure and behavior, hence more efforts 

are required to monitor this evolution process to ensure that the resulting system is reliable and safe. This 

may involve a combination of scientific techniques such as simulation, prototyping and formal analysis to 

carefully investigate the model before the implementation of the emerging system. Significant efforts and 

advances have been made towards making these techniques accessible individually. However, not much 

success has been recorded in unifying the various formalisms, thus, different models of different aspects of 

a system have to be treated. This is characterized by communication gaps between the different experts and 

consequently reduced efficiency of the entire process. 

 

Simulation models are usually represented by different domain specific modeling languages (DSML) most 

of which have no precise semantic definition. The semantics of simulation models are left to model 

simulators and translators; these are defined by general-purpose programming languages, which is 

unacceptable for formal analysis [1]. Although the syntax of some recent DSML is formally described with 

metamodel, generally, the lack of formal model transformations contributes to the challenges of formal 



analysis at the model level. It is, therefore, a challenge to describe simulation models and its requirement 

specification formally to improve formal verification and analysis of models. 

 

The High-Level Language for System Specification (HiLLS) has been proposed to fill such a gap [2]. 

HiLLS is a scalable visual modeling language that serves as a one-stop reference point through a 

harmonious combination of modeling paradigms from system theory and software engineering to integrate 

the different aspects of a system in one coherent whole. As such, it is a pivotal visual language that allows 

model simulation, enactment, and formal analysis. In order to ensure these combined features, concepts 

have been borrowed from three formalisms that are universal, each in one of these three analysis domains, 

and seamlessly integrated through formalism weaving techniques, namely DEVS, UML and first-order 

logic. DEVS, which is recognized as a universal simulation modeling formalism [3], provides the semantic 

domain for HiLLS-specified models simulation. Similarly, a UML-specified pattern provides the 

architecture for HiLLS-specified models enactment [4], while first-order logic is used as the semantic 

domain for formal verification of HiLLS-specified models [5]. 

 

However, while the objectives of having a highly communicable graphical concrete syntax and multiple 

semantic domain mappings for simulation, enactment, and accessibility to formal analysis, have been 

achieved, there is a major concern in making such an approach effectively and easily usable. As illustrated 

by Figure 1, such a concern stands for each of the analysis methods (i.e., simulation, enactment, and model 

checking) in that a complete framework is needed to allow users to drive a whole process from visual 

modeling of a system to its analysis. Indeed, while a DEVS model can be automatically derived from a 

HiLLS specification, the full simulation process of such a model entails the specification of additional 

aspects (such as the experimental frame, simulation initialization, parameter tuning, etc.). Similarly, the full 

enactment process of the HiLLS-derived model entails the definition of additional aspects (such as real-

time concerns, human-in-the-loop interface, etc.). And so does the full formal verification process of the 

HiLLS-derived model. The latter is the focus of this paper, and we aim at achieving a supporting framework 

for such a process. 

 

 
Figure 1. From pivotal visual modeling to multiple analyses of complex systems 

 



The paper is organized as follows. Section 2 discusses related works. Section 3 presents the HiLLS 

formalism and its editor. Section 4 introduces patterns that will serve as the building blocks for defining 

HiLLS semantics in a way that it is amenable to formal checking. Section 5 extends HiLLS to the 

specification of system requirements and provides semantics for such an extension. Section 6 shows how 

both the HiLLS-based system modeling and HiLLS-based requirements specification fall within a full 

formal verification framework. Section 7 illustrates the application of the framework with a well-known 

study case. Section 8 concludes the paper, by summarizing the work done and by giving perspectives for 

future work. 

 

 

2. Related Works 
 

Related works have addressed the formal analysis of DEVS models. These proposals range from formal 

model-checking of sub-classes of DEVS, the transformation of DEVS into formal methods for verification 

purposes, generation of traces from DEVS models for testing, or introducing clock constraints to DEVS to 

conform to formal methods. We present some notable works in this area: 

• Hong and Kim [6] proposed a method of verification of DEVS models in the DEVSim++ 

environment. The approach was to specify the model in DEVS and use temporal logic to specify 

the properties and time constraints of the system. The authors use a projection technique to reduce 

the state space. The lifetimes of the states are not taken into account, but the temporal logic allows 

expressing constraints on sequences of states. The technique used by the authors is very similar to 

the technique of model-checking using Buchi automata [7]. 

• Zeigler et al. [8] used a subclass of DEVS models having finite sets of states, inputs, and outputs, 

named FD-DEVS [9] to map the system representation onto a non-deterministic automaton that is 

subject to model checking using the SPIN/PROMELA model checker. 

• Several related works align on the principle combining DEVS with Timed Automata, and the use 

of the UPPAAL model checker [10-13]. 

 

Our work differs from all of the above in that we use a pivotal visual notation at both sides: one that has 

equivalent DEVS representation for system behavior and the other that has equivalent temporal logic 

representation for system requirements. Moreover, by building a full framework based on these visual 

notations, we provide a systematic verification approach, which most of the related works don’t, as they 

require to add a suitable verification component for checking specific properties of interest. 

 

 

3. HILLS-Based System Modeling 
 

HiLLS can be seen as a visual language for DEVS (see in annex a brief recall of DEVS), with specific 

features for formal analysis and direct prototyping [2], [4], [14]. This is the point of view adopted here, 

although any of the two other formalisms and their underlying paradigms could be used as the entry point. 

 

 

3.1. HiLLS Syntax 
 

A template of how HiLLS represents a DEVS model is shown in Figure 2. A HiLLS-specified system is 

represented by an HSystem, which is denoted by a box similar to the UML class with an additional 

horizontal compartment and two vertical compartments. The left (respectively right) hand side vertical 

compartment has input (respectively output) ports attached to it. The concept of a port is defined as in 

DEVS. All declarations in HiLLS (whether ports or any other variables or functions) are done in first-order 

logic. The top horizontal compartment contains the name of the model and the declaration of its parameters. 

The immediate compartment below contains the declaration of state variables. The third compartment from 



the top contains the definitions of operations that use and manipulate all variables, including parameters 

and ports. Therefore, while a message received on some given input port causes a change of the internal 

state of the model, a call to some given modifier operation causes a change of the value of some given 

parameter. The bottom compartment contains the system's behavior described by the configuration 

transition diagram (i.e., the HiLLS automaton), an automaton in which nodes are configurations and which 

edges are configuration-to-configuration transitions that can occur in the system. A configuration is defined 

by the assignment of specific values or constraints to state variables. 

 

 
Figure 2. Template for HiLLS representation of a DEVS model 

 

One can notice that the assignment of a specific value to each of the state variables gives a state in the sense 

of DEVS (i.e., a particular configuration), while the assignment of constraints (rather than specific values) 

to some or all of the state variables gives a configuration that corresponds in DEVS to a family of states 

(instead of a single one). As such, a configuration depicts a set of properties that several states share. 

Configurations are a way to cluster a DEVS state set (whether finite or not) into a finite partition [5]. Figure 

3 shows how the syntactic elements are visually captured by graphical elements. 

 

A configuration has three visual representations: finite, passive and transient configurations. A finite 

configuration (Figure 3.a) is a 4-compartments box, which respectively contains the label of the 

configuration, the logic specification of its properties (such as the assignment of values and constraints to 

state variables), its sojourn time (which corresponds in DEVS to the value of the time advance function at 

states falling within this configuration), and the description of activities to be carried out when the system 

is in this configuration (which has no equivalence in DEVS but serves for the purpose of enactment). An 

infinite configuration (Figure 3.b) is a configuration in which sojourn time is +∞; therefore, its visual 

representation is reduced to a 3-compartments box, the compartment related to sojourn time being replaced 

by a double line at the right-hand edge of the box. A transient configuration (Figure 3.c) is the one in which 

sojourn time is 0; therefore, its visual representation is reduced to a 3-compartments circle. A black circle 

(Figure 3.g) allows to make reference to the initial configuration of the model. 

 

The three kinds of configuration transitions are denoted by different labeled arrows with the operations 

accompanying the transitions (for the update of state variables, when needed) as part of the labels. For 

internal transition (Figure 3.d), the value sent on the output port is also part of the label. For external 

transition (Figure 3.e), the label includes the triggering condition on the receipt of a value on a port and the 

time elapsed by the model in its current configuration. The label for confluent transition (Figure 3.f) is 

similar, except that there is no condition on the elapsed time (since it is known to be the sojourn time in this 

case). Decision nodes (Figure 3.h) can be used to define various possible routes during a transition, 

depending on conditions to be met by state variables. 

 



An HClass (Figure 3.j) denotes a software component that does not represent the model of a dynamic 

system, as opposed to an HSystem (Figure 3.i). As such, it is a simple resource manipulated by model 

components and corresponds to a “regular” class in UML with attributes and methods specified by logical 

predicates. Both HSystem and HClass can be parameterized. The HSystem and HClass components can be 

linked by relationships such as aggregation, composition, generalization, and reference, with cardinalities 

attached to, as described by the UML metamodel (indeed HClass and HSystem are specializations of the 

UML Classifier mother class). 

 

Consequently, an HSystem can be composed of other HSystems, and such a description corresponds to a 

DEVS coupled model. Interestingly, DEVS atomic and coupled models are visually described in HiLLS 

the same way. 

 

Moreover, while a traditional coupled model will have in HiLLS a single configuration specifying the 

coupling information between its sub-components, a dynamic structure coupled model will have a 

configuration transition diagram with more configurations, each of them specifying a given architecture of 

the coupled model, and the transitions specifying the rules for the dynamic change of structure. 

 

a) Finite configuration 

 
 

b) Passive configuration 

 
 

c) Transient configuration 

 
 

d) Internal transition 

 
 

e) External transition 

 
 

f) Confluent transition 

 
 

g) Initial configuration reference 

 

h) Decision node 

 
 

i) HSystem 

 

j) HClass 

 

Figure 3. HiLLS concrete syntax 

 

 



3.2. HiLLS Editor 
 

An editor has been developed for HiLLS modeling, using the Graphical Modeling Framework (GMF) of 

the Eclipse IDE. As HiLLS model specification requires both graphical and textual representations, Xtext 

was used to capture the textual aspects of the model (such as labels, properties, and activities) and EuGENia, 

a plugin that overlays GMF, was used to process the geometric shapes that compose the model. The HiLLS 

Editor allows the drag and drop modeling of complex systems, as shown in Figure 4. The editor displays a 

workspace, with a central area where the model is drawn. To the left of the workspace is the Model view, 

where appears the hierarchy tree of the model, which provides easy navigation throughout the model 

components. On the right side of the workspace, are three panels for modeling. The upper palette contains 

all the basic elements of the HiLLS concrete syntax (Configuration, Declaration, Activity, HSystem, etc.). 

The middle panel displays all connectors (Transition, Aggregation, Reference, and Composition). The 

bottom panel displays the temporal logic items for requirement specification. 

 

 
Figure 4. HiLLS Graphical Editor 

 

 

3.3. HiLLS-DEVS Relation 
 

Details of the correspondence between a DEVS model and a HiLLS automaton are given in [5]. The idea 

of HiLLS automaton is that a DEVS model (whether with finite or infinite state set) can be represented 

graphically with a finite HiLLS automaton for the purpose of formal analysis, without any loss of behavioral 

property, while still being adequate for simulation and enactment. Multiple states of an atomic DEVS model 

are mapped onto a single configuration in the corresponding HiLLS automaton. A Coupled DEVS model 

is mapped onto a composed HiLLS automaton, which uses its configuration(s) to specify the coupling 

information between the sub-components of the corresponding DEVS model. The focus of this paper not 

being the HiLLS-DEVS relation, we avoid here the provision of unnecessary details and refer interested 

readers to [5] for more on that aspect. We rather focus on providing a full formal verification framework to 

HiLLS. However, Figure 5 shows a DEVS model (a patient) and its HiLLS counterpart. 

 



DEVSPatient = X, Y, S, δint, δext, λ, ta, with 

X = {(in, x) / x ∈ Viruses} 

Y = {(out, x) / x ∈ Viruses}∪ {(status, y) / y ∈ {S, E, I, D} 

S = {1, 2, 3, 4, 5} × ℜ0
+∞ 

ta : S → ℜ0
+∞ 

ta(s, σ) = σ ∀ s ∈ {1, 2, 3, 4, 5} 

δint : S → S 

δint(2, σ) = (3, tINC)  ∀ σ ∈ ℜ0
+∞ 

Prob(δint(4,σ)=(5,+∞))=σFAT and Prob(δint(4,σ)=(1,+∞))=1-σFAT, ∀ σ ∈ [0, tINF] 

 Prob(δint(3,σ)=(3,tINC))=σINF and Prob(δint(3,σ)=(1,+∞))=1-σINF, ∀ σ ∈ [0, tINC] 

λ : S → Y 

λ(2, σ) = (status, E), ∀ σ ∈ ℜ0
+∞ 

Prob(λ(3,σ)={(status,I),(out,vir)})=σINF and Prob(λ(3,σ)=(status,S))=1-σINF, ∀ σ∈[0,tINC] 

Prob(λ(4,σ)=(status,D)) = σFAT and Prob(λ(4,σ)=(status,S)) = 1-σFAT, ∀ σ ∈ [0, tINF] 

δext : Q × X → S, with Q = {((s,σ), e) / (s,σ) ∈ S, 0 ≤ e< σ} 

δext((1, σ), e, (in, vir)) = (2, 0)   ∀ σ ∈ ℜ0
+∞ ∀ e ∈ [0, σ) 

δext((3, σ), e, (in, vir)) = (3, σ-e)  ∀ σ ∈ [0, tINC] ∀ e ∈ [0, σ) 

δext((4, σ), e, (in, vir)) = (4, σ-e)  ∀ σ ∈ [0, tINF] ∀ e ∈ [0, σ) 

 

 
Figure 5. DEVS model example and its HiLLS counterpart 

 

A larger illustration of the concepts introduced in this section is given through the application presented in 

Section 7. As the application is meant to demonstrate the entire methodology proposed in the paper, it is 



presented after all theoretical aspects of the methodology are introduced. However, at this stage, in order to 

get an illustration of HiLLS modeling on the application, the reader can get the application presentation in 

Section 7, and the expression of the corresponding system models in Section 7.1 (which refers to Annex D 

for complements). Going to Section 7’s introduction and Section 7.1, and then coming back to Section 4 is 

a way to match Section 3 with the application and possibly improve the readability of this section, while 

keeping the general structure of the paper from theory and methodology to application. 

 

 

4. HiLLS-to-UPPAAL Patterns 

 

Timed automata are among the most widely used models for the verification of real-time systems. To 

semantically map HiLLS to one of the formal method tools available (namely UPPAAL), we define patterns 

that provide building blocks to building the HiLLS formal method-based semantics. The subsequent sub-

sections present these patterns. 

 

Similar to matching Section 3 with the application presented in Section 7, reader can switch between sub-

sections of Section 4 at one hand, and Section 7.1 and Annex E at the other hand, to better match the 

concepts introduced in Section 4 with the application. 

 

 

4.1. Semantic pattern for configuration 
 

The pattern shown in Figure 6 expresses the formal semantics of a HiLLS model in a given configuration, 

using a Timed Automaton (TA) composed of four types of locations, namely Ccurse, Cend, Cinterrupt and Cdilemma, 

and a unique clock. 

 

In this pattern, the lifetime of a configuration C starts at Ccurse, where the property of the configuration is (e 

< ta) AND (mail =∅), with mail representing the input bag of the system. To overcome the fact that model 

checking tools often restraint on time representation as limited to integer values only, we represent a real-

time value, such as e (elapsed time) and ta (time advance), as a pair of integer values (tint, tdec), where tint is 

the integral part of the time value, and tdec is its decimal part. That way, t = t’ is translated into ((tint-t’int=0) 

AND (tdec-t’dec=0)), while t < t’ translates to ((tint-t’int<0) OR ((tint-t’int=0) AND (tdec-t’dec<0))), with AND 

(respectively OR) being the conjunction (respectively disjunction) logical operator. Pairs of integer values 

(tint, tdec) are implemented in UPPAAL as 2D arrays, where t[0] implements tint, and t[1] implements tdec. 

Such a representation of time is one of the possible forms of superdense time as introduced in [15] and 

brought to discrete event simulation in [16] within a very formal framework. 

 

When the system enters the Ccurse location, e is set to 0.0 (hence e[0] = 0, and e[1] = 0), and ta is determined 

by update(ta). Ccurse means that the system is in the curse of C, and no input has been received yet by the 

system, nor the lifetime of C has elapsed yet. The TA takes a transition from Ccurse to Cend when (e = ta) 

AND (mail = ∅), but if before that condition is met, a message ?x is received at elapsed time e, the TA 

transits to Cinterrupt(x). There are as many locations Cinterrupt(x) as the number of possible values of x that the 

system can receive in the C configuration. From each Cinterrupt(x), the TA will do as many external transitions 

as the number of possible values for e. From a theoretical point of view, there is a potential of combinatorial 

explosion for the number of locations of type Cinterrupt(x), as well as for the number of external transitions 

that can be taken from each location Cinterrupt(x). However, in practice, models have very limited number of 

different cases for an external transition. In any case, this aspect is intrinsically a limitation of our approach. 

 

at the Cend location, an internal transition takes place and an output !y is sent, unless a message is received 

exactly at that moment, leading then to a transition to Cdilemma(X) where a confluent transition takes place 

and an output !y is sent. Internal, external and confluent transitions taken from any location of the C 



configuration lead, each to the location corresponding to the curse of another configuration. Then the same 

pattern applies to that new configuration, and so on. 

 

 
Figure 6. Semantics pattern for HiLLS active configuration 

 

Figure 7 illustrates how the semantics of a HiLLS model is given by a TA, using the pattern. Figure 7a 

shows the HiLLS automaton, and Figure 7b shows how its semantics is built in TA (but only the translation 

for the C1 configuration is shown). 

 

 
 

(a) (b) 

Figure 7. Illustration of (partial) semantics mapping from HiLLS to UPPAAL 

 



From C1curse of Figure 7b, two types of external transitions are possible based on the type of message 

received. If ?start is received then a transition to C1interruptStart (for C1interrupt(Start)) will happen and if ?stop 

is received, then a transition to C1interruptStop (for C1interrupt(Stop)) will happen. The external transition from 

each of the C1interrupt(x) can go to different other configurations’ curses, depending on the elapsed time, as 

stated by the HiLLS model. 

 

 

4.2.  Pattern variants 
 

From the general configuration pattern previously presented, we derive the variants presented by Figure 8. 

 

 
a) Interruptless configuration pattern 

 
b) Conflictless configuration pattern 

c) Passive configuration pattern 

d) Interruptless conflictless active configuration 

 
e) Interruptless passive configuration 

Figure 8. Variants of the semantics pattern for HiLLS configurations 

 

These variants, together with the general pattern, form the building blocks for a complete translation of 

any HiLLS model into its UPPAAL TA counterpart: 

• Figure 8a presents the interruptless configuration pattern, where only internal and confluent 

transitions are possible, as no input is received by the corresponding HiLLS model in the 

corresponding configuration (therefore no external transition happens). 



• Figure 8b presents the conflictless configuration pattern, where only internal and external transition 

are possible (no confluent transition). 

• Figure 8c presents the interruptless and conflictless configuration pattern, where an only internal 

transition happens. 

• Figure 8d presents the passive configuration pattern, where only external transitions are possible. 

• Figure 8e presents the interruptless passive configuration, no transition (whether external, internal 

or confluent) is possible. 

 

 

4.3.  Patterns for Hierarchical Composition 
 

None of the patterns defined in the previous section takes care of the case of HiLLS composed automata. 

In order to handle this case, we proceed as follows: 

(1) A feedback loop location transition is used in UPPAAL to semantically translate the DEVS 

simulation protocol, according to which, when a HiLLS component sends a message, the composed 

model is the one to first receive that message, before it forwards it to the appropriate recipients of 

the message. 

(2) Messages are systematically labeled in UPPAAL with the name of the sender/receiver components. 

That way, when a message is sent by a HiLLS component, its encapsulating HiLLS model identifies 

the origin of the message, and with the composition information, transforms it to be a message 

tagged with the name of the recipient. 

 

The composition steps described above is illustrated in Figure 9. The interruptless passive configuration 

pattern corresponding to a composed HiLLS model translates into a single location in UPPAAL, in 

conformance with the pattern of Figure 8e. Assuming this composed model has a component named sender 

(therefore, all messages sent from or received by any location that corresponds to a configuration of the 

sender component is tagged in UPPAAL with <sender>), and a component named receiver (therefore, all 

messages sent from or received by any location that corresponds to a configuration of the receiver 

component is tagged in UPPAAL with <receiver>). The location of the composed HiLLS has a feedback 

loop such that if a message is sent by the sender component, it is intercepted by this location, which in turn 

will emit a message with the same content but tagged with the identity of the receiver component (we know 

that the composition information is defined in the configuration’s property). 

 

 
Figure 9. Semantic pattern of message transmission between two components by the composed model 

 

Another way to address the case of HiLLS composed automata is to apply the “closure under composition” 

property of DEVS, which establishes that any coupled DEVS model has a corresponding atomic model. 

That way, any coupled model can be translated into an equivalent atomic model, and doing this would avoid 

the need to use the pattern introduced here. However, such an approach can be error-prone if not automated, 

as well as time-consuming for very complex systems hierarchies. In a given situation, the choice of either 

using the pattern introduced here or flattening the HiLLS composed automata before translating it into 

UPPAAL depends on how practical would be the application of the closure under composition property. 

 

 



4.4. HiLLS to UPPAAL Transformation with Atlas Transformation Language (ATL) 
 

We automate the HiLLS-to-UPPAAL transformation by implementing the general configuration pattern 

and its variants as ATL (Atlas Transformation Language) rules. ATL [17] is a model transformation 

language specified as both a metamodel and a textual concrete syntax. ATL follows the model 

transformation process that takes a source model in a specific form as inputs and outputs another form of 

the target model according to a set of predefined rules. ATL snippets of HiLLS-to-UPPAAL rules are 

detailed in Annex B. 

 

 

5. HILLS-Based Requirement Specification 
 

In the context of a HiLLS-based systems engineering, the sequence of configurations visited during 

execution describes the behavior of a system. Hence, a temporal logic can be used for the specification of, 

and reasoning with, the behavior of an ideal system. This behavior of the ideal system can serve as the 

metamodel that specifies the required behavioral properties of the real system. Therefore, with the help of 

verification techniques such as model checking [18], we can verify whether or not a given model of the real 

system satisfies the required properties. 

 

Good candidates for the description of temporal property requirements exist, such as Linear Temporal Logic 

– LTL [19], or Computation Tree Logic (CTL) also known as branching temporal logic [20]. However, it 

is common knowledge that dealing with such formalism is usually non-trivial. It takes some level of 

expertise in handling the idioms of logic and discrete mathematics to correctly read and/or write complex 

requirement properties. Lack of this expertise has been widely acknowledged by formal methods 

researchers as one of the main inhibitors to the wide adoption of formal verification tools. 

 

In an effort to proffer a solution to this problem, Dwyer et al. [21] hypothesized that the experience base of 

experts in specification formalisms could be captured in parameterized patterns in formalism-independent 

formats to allow for systematic mapping to equivalent representations in some known specification 

formalism. They argued that this could be an easy way to transfer the experiences of experts in the domain 

to emerging practitioners and potential users. 

 

Dwyer et al. were inspired by the successes that had been recorded with the use of design patterns to provide 

guidance on the best ways to language features to solve recurring problems by documenting tested solutions 

to such problems in patterns that can be easily reused to solve similar problems. With this, they envisioned 

the success of a pattern-based approach to the formal specification of properties of finite-state systems for 

verification. The output of their research was the recognition of some commonly occurring requirement 

property patterns from a collection of over five hundred property specifications they collected about thirty-

five sources comprising academia and industry. They then proposed parameterized templates for the 

recognized property patterns in five property specification formalisms, including LTL, CTL, and LCTL, 

which some other researchers later reproduced in additional formal methods’ languages [22-23]. 

 

We propose to use variants of the elements of HiLLS for expressing graphically the templates suggested 

by [21]. We believe that uniformity of notations in both system and requirement models, due to the use of 

a pivotal language, will aid the user's specification and understanding of required temporal properties for 

complex systems. Similar benefits have motivated Meyers et al. [24] and Klein & Giese [25] to propose a 

framework to support the use of domain-specific notations for specifying properties in Domain-Specific 

Languages (DSLs). 

 

To express the temporal properties, we propose basic notations (Figure 10) as the building blocks to specify 

temporal properties based on Dwyer's property patterns: 



• The universal existence configuration notation (Figure 10.a) is a generic representation for any 

configuration that matches the set of information given by the notation (name, or/and predicates). 

In addition, this pattern specifies that all configurations visited during the lifetime of a system 

within a given scope (to be defined) must match the set of information given by the pattern. 

• The eventual existence configuration notation (Figure 10.b) is a similar generic representation, with 

the difference that it only requires at least one of the configurations visited within a given scope (to 

be defined) must match the set of information given by the pattern. 

• The absence configuration notation (Figure 10.c) is also defined similarly, with the difference that 

it requires that any of the configurations visited within a given scope (to be defined) must match 

the set of information given by the pattern. 

• The bounded configuration notation (Figure 10.d) is defined the same generic way, with the 

difference that it requires the configurations visited within a given scope (to be defined) must match 

the set of information given by the pattern only a bounded number of times. The lower (respectively 

upper) bound is indicated in the lower (respectively upper) compartment of the circle at the right-

hand side of the generic configuration. The default value (i.e., when not indicated) for the lower 

(respectively upper) bound is 1 (respectively +∞). 

• The implication notation (Figure 10.e) relates two generic configuration notations in that the 

matching of the first one implies the matching of the second. 

• The immediate implication notation (Figure 10.f) is similar, with the difference that the implied 

configuration must be matched at the next transition of the system. 

• The concurrency notation (Figure 10.f) corresponds to the logical AND between two generic 

configurations. 

 

a) Universal existence 

 
 

b) Eventual existence 

 
 

c) Absence 

 
 

d) Bounded existence 

 
 

e) Implication 

 

f) Next 

 

g) Concurrency 

 

Figure 10. Building blocks for property patterns representation in HiLLS 

 

 

5.1. Property Scope Notations 
 

Table 1 presents the graphical notations introduced in HiLLS to support the property scopes defined in [21]. 

Since a temporal property specification is an abstract assertion on a segment of the execution of a system; 

we denote the entire execution by the elements between the initial configuration (solid ball) and final 

configuration (bull's eye) symbols. Each of the scopes describes the segment of the entire execution within 

which the specified property pattern (represented by dotted lines) must hold. Thus, to use any of the scope 

templates, we replace the dotted lines with the property pattern to be checked. 

 

The scopes are: 

• "Globally" scope, as the name implies, specifies that a property should hold throughout the 

execution of a system. 



• "Before R" (respectively "After R") scope specifies that a given property must hold before 

(respectively after) the occurrence of a specified property R. 

• "Between Q and R" implies that a given property must hold after the occurrence of Q and before 

R where it is certain that R will eventually occur. 

• "After Q until R" has a similar implication with "Between Q and R" except that, in the former, it 

is not certain whether R will occur or not. 

 

Note that the transitions between the generic configurations are abstract transitions without specific 

operations, triggers or output events. Hence, they do not specifically indicate any of the three kinds of 

configuration transition. 

 

Table 1. Property scope notations in HiLLS 

Property scope notations Descriptions 

 
Globally 

The property pattern (to replace the dotted lines) 

must be satisfied in every configuration throughout 

the execution between the initial and final 

configuration. 

 
Before R 

The property pattern (to replace the dotted lines) 

must be satisfied before a transition into a 

configuration matching R. 

 
After R 

The property pattern (to replace the dotted lines) 

must be satisfied after a transition into a 

configuration matching R. 

 
Between Q and R 

The property pattern (to replace the dotted lines) 

must be satisfied after a transition into a 

configuration matching Q and before a transition 

into a configuration matching R. 

 
After Q until R 

The property pattern (to replace the dotted lines) 

must be satisfied after a transition into a 

configuration matching Q, and continue to hold until 

a configuration matching R occurs. If R does not 

occur, then the scope of the specified pattern 

continues until the end of execution. 

 

 

5.2. Property Pattern Notations 
 

Dwyer et al. have classified property patterns into two categories: occurrence and order, to describe 

properties on the occurrences or non-occurrence of properties, and relative order of properties respectively 

within the segment of execution defined by the associated scopes. 

 

Occurrence patterns include: 

• Absence (which specifies properties that must never occur within the specified scope); 

• Universality (which specifies properties that must continuously occur within the specified scope); 

• Existence (which specifies properties that must occur at least once within the specified scope); and 



• Bounded existence (which specifies the maximum possible number of occurrences of certain 

properties within the specified scope). 

 

Order patterns include: 

• Precedence (which specifies a cause and effect relationship between two properties such that the 

occurrence of one must always have been preceded by the occurrence of the other within the 

specified scope); 

• Response (which specifies a stimulus and response relationship between two properties such that 

the occurrence of one must always eventually be followed by the occurrence of the other within the 

specified scope); 

• Chain precedence (which specifies a variant of the precedence pattern with m-cause to n-effect 

where m, n ∈N); and 

• Chain response (which specifies a variant of the response pattern with m-stimulus to n-response 

where m, n ∈N). 

 

Table 2 presents graphical notations introduced in HiLLS to support these patterns. The basic notations 

support directly the Absence, Universality, Existence and Bounded existence patterns. They are combined 

with additional symbols to support the remaining property patterns. Notice that the circle used in the 

precedence patterns can be seen as a mnemonic indication of the required property in an implication 

relationship (e.g., in S precedes R, S is required anytime R occurs, while in R responds to S, R is required 

anytime S occurs). 

 

Table 2. Property pattern notations in HiLLS 

 
Always R 

 

 
Never R 

 

 
Eventually R 

 

 
R at least twice 

 

 
S precedes R 

  
S precedes T, R 

 

 
S, T precede R 

 

 
R responds to S 

 
T, R respond to S 

 
R responds to S, T 

 

 



5.3. Patterns and Scopes for Composed Models 
 

In order to extend these notations to composed HiLLS models, we allow the requirements specification of 

such models to make reference to the generic configurations of their components by tagging them with the 

name of the corresponding components, as indicated by Figure 11. The relationships defined in Table 2 still 

hold for the elements of Figure 11. Consequently, requirements can be specified for HiLLS composed 

models, either by using generic configuration notations derived from its configuration transition diagram 

or by using the ones derived from the configuration transition diagrams of its component models. 

 

h) Universal existence for 

component property 

 

i) Eventual existence 

(for idem) 

 

j) Absence (for 

idem) 

 

Bounded existence (for 

idem) 

 

Figure 11. Generic configuration specification of a HiLLS composed model 

 

 

5.4. Mapping to TCTL 
 

The requirements specifications can be mapped onto TCTL (and many other temporal formalisms), such 

that once the user has a HiLLS-specified requirement model, the corresponding logic-based queries can be 

generated. There exist tools to automatically check such queries against the system model. We use the 

UPPAAL tool for that purpose [26-27]. Annex C gives for each of the property patterns, the corresponding 

TCTL/CTL specifications in the context of the scope patterns. 

 

 

6. HILLS-Based Verification Framework 
 

Systems properties can be expressed at different levels of abstraction. At higher levels, requirements 

resemble general principles and global expectations, for which there is no tool for automated verification. 

At the lower levels, requirements are detailed such that formal tools can be used, but this entails 

mathematical skills that are not commonly shared. We suggest a layered approach to bridge the gap between 

these extremes, as shown by Figure 12’s right-hand side. In this organization, properties at a given level 

can be expressed in terms of properties at the immediate lower level. We consider three levels of abstraction: 

(1) At the higher level are conceptual properties, such as fairness (also known as starvation-freedom), 

deadlock-freedom (also known as progress), termination, real-time correctness… 

(2) The medium level is where the user needs to reduce a higher-level property to either a safety 

property, or a liveness property, or a combination of both properties. In a generic way, Safety 

specifies that “Something bad will never happen”, while Liveness specifies that “Something good 

will eventually happen” [28]. For example, deadlock-freedom can be expressed either as repeated 

liveness [29] or safety [30]; termination can be expressed as liveness to some desired end [31-32], 

and fairness can be expressed either as repeated liveness or safety [18] – e.g., in the mutual 

exclusion property, having always at most one process in its critical section is a typical safety 

property, where the bad thing is that more than one process is in its critical section. 

(3) The lowest level is where Safety and Liveness are expressed as Reachability properties. A 

reachability property states that some particular situations can be reached. If P is the something in 

Safety, then “Something bad will never happen” translates to “Never P”. If Q is the something in 

Liveness, then “Something good will eventually happen” translates to “Eventually P”. 



Consequently, both are reachability problems. The user needs to place them within a given scope 

(e.g., the entire lifetime of the system, or a given lifetime window). The resulting requirement can 

be graphically captured using the notations we have introduced and automatically translated to 

logic queries that a formal tool can check. 

 

Figure 12 depicts the full process of HiLLS-based visual modeling and the UPPAAL-based verification 

framework. On one side, HiLLS offers visual modeling means to capture the structure and behavior of the 

system. The patterns defined allow us to translate such a model into a UPPAAL TA. On the other side, the 

user can start with a high-level elicitation of requirements, then reduce it to an intermediate level of property 

analysis, and then a low level of reachability. Then the extended notations to HiLLS offer a visual means 

to capture the resulting requirements model. Rules defined in Annex translate such a model into TCTL 

statements, which can directly be expressed as UPPAAL queries. The UPPAAL tool allows to check the 

queries against the TA model. 

 

 
Figure 12. HiLLS-based formal verification framework 

 

 

7. Application 
 

To illustrate the application of our framework, let us capitalize on the well-known automated unmanned 

railway level crossing system described in Figure 13. 

 

 
Figure 13. Automated unmanned railway level crossing system 

 



The crossing is guarded by a gate, which is used to close the road when a train is crossing. Two sensors, 

one located upstream of the crossing, and the other downstream, are used to detect the arrival and exit of a 

train. The two sensors communicate the entrance and the exit of a train to the controller. The control system 

receives remote signals from the sensors, and remotely closes and opens the gate. 

 

 

7.1. HiLLS-based System Modeling 
 

Figure 14 shows the HiLLS model of the Crossing system as drawn in HGE. The entire system is a 

composition of 5 system components. These components are individually detailed in Annex D. 

 

The entire system has a unique passive configuration labeled Network which depicts the relationships 

between components, and which translates the static nature of the composition. The predicate of the 

Network configuration provides the coupling information between the components, i.e., the Train’s output 

port “Out” is connected to both the sensors’ and the Controller’s input ports “In”, while the Controller’s 

output port “Out” is connected to the Gate’s input ports “In”. 

 

 
Figure 14. HiLLS model of the crossing system 

 

Figure 15 presents the corresponding UPPAAL Timed Automata, using the semantic pattern defined in 

Figure 9. Semantic translations of all the HiLLS component models into corresponding UPPAAL automata 

using the configuration pattern variants previously defined are displayed in Annex E. 

 

 
Figure 15. UPPAAL Timed Automata of the Crossing System 

 



The composed system, while in its unique location Networkcurse, receives signals from some components 

and translates them into signals to other components: 

• If approachTRAIN is received from Train, then approachENTRANCESENSOR is sent to 

Entrance_Sensor and approachCONTROLLER is sent to Controller. 

• If openCONTROLLER is received from Controller, then openGATE is sent to Gate. 

• If closeCONTROLLER is received from Controller, then closeGATE is sent to Gate. 

• If exitTRAIN is received from Train, then exitEXITSENSOR is sent to Exit_Sensor and 

exitCONTROLLER is sent to Controller. 

 

 

7.2. HiLLS-based Requirements Specification 
 

Our high-level requirements knowledge is that such a system has security concerns (among others), as 

regards to vehicles and pedestrians crossing the level by the road. We do not want users to be crushed by a 

high-speed train. We then reduce this security concern to “something bad will never happen” (mid-level 

Safety requirement), where something bad is “gate open while train crossing”. The corresponding low-level 

requirements (i.e., scope and properties elucidated) are given by Figure 16. 

 

a) The gate eventually open 

 

b) The train never crosses the level 

 

c) The gate passivates at least twice 

 

d) Always, a train approaching eventually crosses 

 

e) Whenever a train is crossing, the gate is closed 

 

f) Gate closing always precedes train crossing 

 

Figure 16. HiLLS-based requirements specifications for the crossing system 

 

As shown by Figure 16, three cases can be considered: 



(1) The requirement is expressed as a specific configuration of a model. While Figure 16.a requires 

that the gate must eventually open, Figure 16.b requires that the train must never cross the level.  

(2) The requirement is expressed as a predicate that one or more configurations can satisfy. Figure 16.c 

requires that the gate must be in a passive configuration at least twice, while Figure 16.d requires 

that whenever a train approaches, it crosses eventually. 

(3) The requirement is defined over multiple components of a composed model. Figure 16.e requires 

that always the gate must be closed when a train is crossing, while Figure 16.f requires that always 

the crossing of a train must be preceded by the closing of the gate. 

 

 

7.3. HiLLS-based System Verification and Validation 
 

Figure 17 shows how the requirement “Whenever a train is crossing, the gate is closed” translates to 

UPPAAL query, and the failure of the checking. This result reveals that the system is not safe since there 

exist cases where the train is crossing and the gate is open, which violates the safety property. 

 

 
Figure 17. “Whenever a train is crossing, the gate is closed”: Not satisfied 

 



A known solution to this crossing system is to protect the crossing level by a traffic light that receives 

information to turn red or green from the controller. The controller also controls the opening and the closing 

of the gate. This solution has easily been modelled, verified and validated in the HiLLS framework. 

 

 

8. Conclusion 
 

This paper proposes a framework to support a full system verification process, using the High Level 

Language for Systems Specification (HiLLS) as a visual pivotal formalism. The process comprises the 

specification of both the discrete-event behavior of the system of interest and the temporal requirements to 

be checked against it. As HiLLS provides a graphical concrete syntax to the well-known DEVS formalism, 

the latter provides the semantic domain for the discrete-event simulation of HiLLS-specified models. To 

extend HiLLS capabilities to requirements specification, we adopted concepts from a pattern-based 

classification of Temporal Logic specifications of commonly occurring temporal requirements, for which 

we provided graphical notations using HiLLS syntactical elements. Well-defined transformation patterns 

allow to make HiLLS specifications amenable to UPPAAL checking, where at one side the system model 

is turned to a UPPAAL Timed Automaton and the requirements model is turned to UPPAAL queries. 

 

We agree with the belief that the definition and use of high-level abstractions in writing formal specification 

is an important factor in making automated formal methods, specifically finite-state verification tools, more 

suitable. Therefore, providing graphical notations to describe systems and their requirements is a step 

towards bridging the gap between system experts and analysis experts. Moreover, having a highly 

communicable concrete syntax and multiple semantic domain mappings achieves the aim of providing a 

pivotal formalism for multiple analysis approaches, including the formal analysis of system properties 

without the need to run time-consuming experiments. 

 

The proposed framework is unique in supporting a full system verification process based on the graphical 

modeling of both the system of interest and the requirements to be checked, using a drag and drop editor.  

 

Much remains to be done for large-scale adoption, which we target as future work, including: 

• The distribution of the HiLLS editor as an Eclipse plugin; 

• The development of automated transformation engines for more temporal logic formalisms (other 

than TCTL), in order to allow the use of model checking tools other than UPPAAL; and 

• The development of connectors from the HiLLS editor to existing DEVS tools (see 

http://www.sce.carleton.ca/faculty/wainer/standard/tools.htm, last accessed on 28/02/2020). 
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ANNEX A: DEVS formalism 
 

An atomic DEVS model is defined by the n-uple: X, Y, S, δint, δext, δconf, λ, ta, where 

• X, Y, and S are respectively the input set, output set, and state set (at any time, the system modeled 

is in one of the possible states) 

• ta : S → ℜ0
+∞ is the time advance function (i.e., it gives the lifespan of each state), with ℜ0

+∞ 

designating the set of non-negative real numbers, including +∞ 

• δint : S → S is the internal transition function (i.e., it is triggered only when the elapsed time in the 

system’s current state scurr has reached ta(scurr) without the system being disturbed by any receipt of 

input) 

• λ : S → Y is the output function (i.e., it computes the output of the system, each time an internal 

transition is occurring) 

• δext : Q × X → S is the external transition function (i.e., it is triggered only when the system receives 

an input, while the elapsed time in the system’s current state scurr has not reached ta(scurr)), and Q = 

{(s,e) / s ∈ S, 0 ≤ e < ta(s)} is called the total state 

• δconf : S × X → S is the confluent transition function (i.e., it is triggered only when the system 

receives an input at exactly the time that the elapsed time in the system’s current state scurr has 

reached ta(scurr)) 

 

The operational semantics of an atomic DEVS model is informally described as follows: at the start, the 

systems are in an initial state and remain there until the time specified by ta is exhausted or until input event 

is received. In the former case, an internal transition function occurs then the system switches to another 

state after sending output event as defined by the output function λ. In the latter case if an input event is 

received before the specified time, then the external transition function is applied. When a collision occurs 

i.e., an external event is received concurrently with the elapsed time equal to the time specified by the time 

advance function, the confluent function is applied in such a way that the system sends output value and 

changes to a new state. 

 

A coupled DEVS model is a structure: Xself, Yself, {Md}d∈D, {Id}d∈D, {Zi,j}i∈D∪{self},j∈Ii, where 

• Xself and Yself are defined the same way X and Y are for atomic models (self being here a reference 

to the coupled model, while component models are referred to using indices such as i, j or d) 

• D is the set of component references (thus, not including self) 

• Md is the component model referenced by d, an atomic or a coupled model, with Xd and Yd as 

respectively its input and output set 

• Id is the influence set of component model d, i.e., all other models sending input to d 

• Zself,d∈Iself : Xself → Xd are the external input transfer functions, which determine how inputs received 

by self are translated into inputs to component models influenced by self 

• Zd/self∈Id,self : Yd → Yself are the external output transfer functions, which determine how outputs sent 

by component models influencing self are translated into outputs of self  

• Zi∈D,j∈D-{i} : Yi → Xj are the internal transfer functions, which determine how outputs sent by 

component models are translated into inputs to component models they influence 

  



ANNEX B: ATL snippets of HiLLS to UPPAAL transformation 

 

rule HSystemPorts2UPPAALCha { 

 from 
  hillsPort : HiLLS!Port 

 to  
  uppaalcha: UPPAAL!Channels ( 

   Inchannel <- hillsPort.portName.input, 

   Inchannel <- hillsPort.portType.portName.toString(), 

   Ochannel <- hillsPort.portName.output, 

   Ochannel <- hillsPort.portType.concat(uppaalcha) 

) 

 

rule HiLLSDec2UPPAALDec{ 

 from  
  hillsDecl : HiLLS!Variable 

 to --HiLLS Declaration -> UPPAAL Delaration 

  uppaalDec :UPPAAL!Declaration( 

  name <- hillsDecl.variableName, 

  type <- hillsDecl.variableType 

  ) 

} 

 

rule HiLLSConfig2UPPAALLocation{ 

 from 
  hillsConfig : HiLLS!Configuration 

  to --HiLLS Configuration -> UPPAAL Location 

  uppaalLoc : HiLLS!Configuration ( 

  stateID <- hillsConfig.label, 

  property <- hillsConfig.properties, 

  timeAdvance <- hillsConfig.sojournTime 

  ) 

} 

 

rule HSystemPorts2UPPAALCha { 

 from 
  hillsPort : HiLLS!Port 

 to  
  uppaalcha: UPPAAL!Channels ( 

   Inchannel <- hillsPort.portName.input, 

   Inchannel <- hillsPort.portType.portName.toString(), 

   Ochannel <- hillsPort.portName.output, 

   Ochannel <- hillsPort.portType.concat(uppaalcha) 

   ) 

} 

 

rule InitialConf2InitialLoc{ 



 from 
  hillsIni : HiLLS!InitialConfiguration 

 to  
  uppaalIni : UPPAAL!InitialLocation ( 

   name <- hillsIni.startingCong.label 

  ) 

} 

 

rule Configuration2Location { 

 from 
  hillsConf : HiLLS!Configuration 

 to  
  uppaalLoc : UPPAAL!Location ( 

   name <- hillsConf.label, 

   invariant <- hillsConf.sojournTime, 

   guard <- hillsConf.properties, 

   update <- hillsConf.activities 

  ) 

} 
  



ANNEX C: TCTL/CTL templates for occurrence property patterns 
 

Variables p, q, and r, are user-defined properties. The ◊, □, and ○ operators are respectively the eventually, 

always and next operators. The w operator is the weak until operator which may be related to the strong 

until operator (Y) using any of the following equivalences: 

pwq = (□p) ∨ (pΥq) 

pwq = ◊(¬p) ⇒(pΥq) 

pwq = pΥ(q ∨□p) 

 

In addition to the logical and temporal operators used in LTL, CTL supports the use of the existential path 

quantifier ∃ (resp. universal path quantifier ∀) for the specification of properties that must be satisfied by 

some (resp. all) computations starting in a state of interest. For example, ∀◊p requires that ◊p holds in all 

paths of executions starting from the state of interest, while ∃◊p requires that ◊p holds in at least one path 

of executions starting from the state of interest. 

 

Readers may refer to [18] for more details on basic temporal operators, as well as a good introduction to 

LTL and CTL. 

 

Absence (p is false) 

Globally ∀□(¬p) 

Before r ∀[(¬p∨ ∀□(¬r))w r] 

After q ∀□( q ⇒ ∀□ (¬p)) 

Between q and r ∀□(q∧¬r⇒ ∀ [(¬p∨ ∀□(¬r)) w r]) 

After q until r ∀□(q∧¬r⇒ ∀ [¬pw r]) 

Existence (p becomes true) 

Globally ∀◊p 

Before r ∀[¬rw ( p∧¬r)] 

After q ∀[¬qw ( q∧ ∀□( p))] 

Between q and r ∀□(q∧¬r⇒ ∀[¬rw ( p∧¬r)]) 

After q until r ∀□( q∧¬r⇒ ∀[¬r ( p∧¬r)]) 

Bounded Existence (p occurs at most n times) 

Globally ¬∃◊(¬p∧ ∃○( p∧ ∃◊(¬p∧ ∃○( p∧ ∃◊(¬p∧ ∃○( p))))) 

Before r ¬∃[¬r (¬p∧¬r∧ ∃○( p∧ [¬r (¬p∧¬r∧ ∃○( p∧ ∃[¬r (¬p∧¬r∧ ∃○( p∧¬r))]))]))] 

After q ¬∃[¬q ( q∧ ∃◊(¬p∧ ∃○( p∧ ∃◊(¬ p∧ ∃○( p∧ ∃◊(¬p∧ ∃○( p))))))] 

Between q and r 
∀□( q⇒¬∃[¬r (¬p∧¬r∧○( p∧ ∃[¬r (¬p∧¬r∧ ∃○( p∧ ∃[¬r (¬ p∧¬r∧ ∃○( p∧¬r∧ 

∃◊(r)))]))]))]) 

After q until r 
∀□( q⇒¬∃[¬r (¬p∧¬r∧ ∃○( p∃[¬r (¬p∧¬r∧ ∃○( p∧ ∃[¬r (¬ p∧¬r∧ ∃○( 

p∧¬r))]))]))] 

Universality (p is true) 

Globally ∀□( p) 

Before r ∀[( p∨ ∀□(¬r)) wr] 

After q ∀□( q⇒ ∀□( p)) 

Between q and r ∀□( q∧¬r⇒ ∀[( p∨ ∀□(¬r)) wr]) 

After q until r ∀□( q∧¬r⇒ ∀[ pwr]) 

Precedence (s precedes p) 

Globally ∀[¬pws] 

Before r ∀[(¬p∨ ∀□(¬r)) w (s∨r)] 

After q ∀[¬qw (q∧ ∀[¬pws])] 



Between q and r ∀□(q∧¬r⇒ ∀[(¬p∨ ∀□(¬r)) w (s∨ r)]) 

After q until r ∀□(q∧¬r⇒ ∀[¬pw (s∨r)]) 

Response (s responds to p) 

Globally ∀□(p⇒ ∀◊(s)) 

Before r ∀[((p⇒ ∀[¬r(s∧ ¬r)]) ∨ ∀□(¬r))wr] 

After q ∀[¬qw (q∧ ∀□( p⇒ ∀◊( s))] 

Between q and r ∀□(q∧ ¬r⇒ ∀[((p⇒ ∀[¬r (s∧ ¬r)]) ∨ ∀□(¬ r)) wr]) 

After q until r ∀□( q∧ ¬r⇒ ∀[(p⇒ ∀[¬ r(s∧ ¬r)])wr]) 

Precedence chain (p precedes s, t) 

Globally ¬∃[¬pU (s∧¬ p∧ ∃○(∃◊(t)))] 

Before r ¬∃[(¬p∧ ¬r) U (s∧ ¬ p∧ ¬r∧ ∃○(∃[¬rU (t∧¬r)]))] 

After q ¬∃[¬qU (q∧ ∃[¬pU (s∧ ¬ p∧ ∃○(∃◊(t)))])] 

Between q and r ∀□(q⇒ ¬∃[(¬p∧ ¬r) U (s∧ ¬p∧ ¬r∧ ∃○(∃[¬rU (t∧ ¬r∧ ∃◊(r))]))]) 

After q until r ∀□(q⇒ ¬∃[(¬p∧ ¬r) U(s∧ ¬p∧¬r∧ ∃○(∃[¬rU (t∧ ¬r)]))]) 

Precedence chain (s, t precedes p) 

Globally ¬∃[¬sUp] ∧ ¬∃[¬pU (s∧ ¬p∧ ∃○(∃[¬tU (p∧ ¬t)]))] 

Before r ¬∃[(¬s∧¬ r) U (p∧ ¬r)] ∧¬∃[(¬p∧ ¬r) U (s∧ ¬p∧ ¬r∧ ∃○(∃[(¬t∧ ¬r) U (p∧¬t∧ ¬r)]))] 

After q ¬∃[¬qU(q∧ ∃[¬sUp] ∧ ∃[¬pU(s∧ ¬p∧ ∃○(∃[¬tU (p∧ ¬t)]))])] 

Between q and r 
∀□(q⇒ ¬∃[(¬s∧ ¬r)U(p∧¬r∧ ∃◊(r))] ∧¬∃[(¬p∧¬r)U(s∧¬p∧ ¬r∧ ∃○(∃[(¬t∧¬ r)U(p∧¬ 

t∧ ¬ r∧ ∃◊(r))]))]) 

After q until r 
∀□(q⇒ ¬∃[(¬s∧ ¬r)U(p∧ ¬r)] ∧ ¬∃[(¬p∧ ¬r) U (s∧ ¬p∧ ¬r∧ ∃○(∃[(¬t∧¬r) U (p∧¬t∧ 

¬r)]))]) 

Response chain (s, t respond to p) 

Globally ∀□(p⇒ ∀◊(s∧ ∀○(∀◊(t)))) 

Before r ¬∃[¬rU (p∧ ¬r∧ (∃[¬sU r] ∨∃[¬rU (s∧ ¬r∧ ∃○(∃[¬tUr]))]))] 

After q ¬∃[¬qU (q∧ ∃◊( p∧(∃□(¬s) ∨ ∃◊( s∧ ∃○(∃□(¬t))))))] 

Between q and r ∀□(q⇒ ¬∃[¬rU (p∧ ¬r∧ (∃[¬sUr] ∨ ∃[¬rU (s∧¬r∧ ∃○(∃[¬tUr]))]))]) 

After q until r 
∀□(q ⇒ ¬∃[¬rU (p∧¬r∧(∃[¬sUr] ∨ ∃□(¬s∧¬r) ∨ ∃[¬rU (s∧¬r∧ ∃○(∃[¬tUr] ∨ 

∃□(¬t∧ ¬r)))]))]) 

Response chain (p responds to s, t) 

Globally ¬∃◊( s∧ ∃○(∃◊( t∧ ∃□(¬ p)))) 

Before r ¬∃[¬rU (s∧¬r∧ ∃○(∃[¬ rU(t∧ ¬r∧ ∃[¬pUr])]))] 

After q ¬∃[¬qU(q∧ ∃◊( s∧ ∃○(∃◊(t∧∃□(¬p)))))] 

Between q and r ∀□(q⇒ ¬∃[¬rU (s∧¬ r∧ ∃○(∃[¬ rU (t∧¬r∧ ∃[¬pUr])]))]) 

After q until r ∀□(q⇒ ¬∃[¬rU (s∧ ¬r∧∃○(∃[¬rU (t∧¬r∧ (∃[¬pUr] ∨∃□(¬p∧¬r)))]))]) 

  



ANNEX D: HiLLS model components for the crossing system study case 
 

The Train has five configurations. The initial one is Approaching and is finite. As such an internal transition 

takes place after 5.8 seconds, and takes the Train to Before_Crossing while outputting the Approach signal. 

The Train stays there for 8.6 seconds as this is the travel time from being detected to entering the crossing 

area. Then, the Train takes an internal transition to Crossing where it spends 5.2 seconds and then transits 

to After_Crossing. An internal transition from After_Crossing will output Exit after 2.0 seconds and transits 

the Train to Moving_Away where the Train spends reasonably longer time (generated by a random 

function) before returning to its initial Approaching configuration. Such a loop in the Train’s behavior 

translates the frequent passing of trains in real world, with the assumption that the inter-arrival times of 

trains to the crossing are distributed according to the random law indicated. 

 

 
 

The sensor models (i.e., Entrance_Sensor and Exit_Sensor) function the same way, and have, each, two 

configurations: Waiting and Detecting. Initially, the Sensor is Waiting, and it keeps doing so until it detects 

the signal Approach. It will then take an external transition to a transient configuration Detecting where it 

spends no time. Therefore, an internal transition immediately takes place from Detecting back to Waiting. 

 

 
 



The Gate is initially open (configuration Up) and it remains so until it receives an input signal Close, which 

will cause an external transition to Lowering, a finite configuration with sojourn time of 2.3 seconds. From 

there, the Gate takes an internal transition to Down, where it stays until it receives an input signal Open. 

The Open signal transits the Gate to Raising. The Gate stays in this configuration for 2.3 seconds, the time 

required to open the Gate before transiting internally to Up. 

 

 
 

The Controller model has 3 configurations: Inactive (initial configuration), Closing and Opening. The 

Controller remains in a passive configuration until it receives a signal. Once the signal is received, the 

Controller takes an external transition to Closing (if the signal received is Approach), or to Opening (if the 

signal received is Exit). No time is spent at the transient configurations (Closing and Opening respectively), 

and an internal transition takes the Controller back to Inactive while outputting or sending Open and Close 

signal respectively. 

 

 
  



ANNEX E: UPPAAL Timed Automata of the crossing system’s components 
 

Train TA 

 
 

Entrance sensor TA 

 
 

Exit sensor TA 

 
 



Gate TA 

 
 

Controller TA 

 
 


