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Abstract : The dynamic instability of steady sliding states of finite dimensional
frictional contact systems with non-linear elastic behavior is analyzed. An algorithm
for the computation of those steady sliding states and a sufficient condition for
their instability, based on the resolution of a generalized eigenvalue problem, are
presented. Flutter instabilities due to the non-associative character of the Coulomb
friction law are shown to occur for a finite element model of a rubberlike waist seal
sliding on a glass window that is known to generate squeal noise. The consequences
of those flutter instabilities are assessed by computing various finite element dynamic
solutions in the neighborhood of steady sliding.

1 INTRODUCTION

This work is part of a research effort devoted to the study of instability phenomena in
frictional contact problems. More specifically, it deals with the generation of noise during
the sliding of a deformable body on a rigid obstacle. The case of a rubber/glass contact
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between a waist seal and a car window is discussed.

In a previous work 15, the dynamic stability of a finite dimensional frictional con-
tact system with linear elastic behavior was discussed. The theory was applied to study
the possible origines for the occurrence of jumps on the time evolution of the friction
force and the propagation of stress waves along the contact zone, in the course of the
sliding of a polyurethane block on a flat araldite plate 15,22,26,27, . A generalization of
this work to finite dimensional nonlinear elastic systems in frictional contact with curved
obstacles may be found in 14.

In the present work, a nonlinear material behavior is considered (finite elasticity,
Mooney Rivlin strain energy), and stability analyses are performed for steady sliding
equilibrium states. A fixed point algorithm on the tangential contact stresses is used to
compute the steady sliding solutions in a range of values of the coefficient of friction,
which is the essential parameter in the stability analyses. The occurrence of dynamically
unstable steady sliding states (existence of smooth growing dynamic solutions with
perturbed initial conditions arbitrarily close to steady sliding) is predicted by solving
appropriate generalized eigenvalue problems. The two matrices in these problems are
finite element matrices depending on the frictional contact conditions. When a flutter
instability is detected, its consequences are studied by performing dynamic analyses of
the system behavior. The formulation of the finite dimensional dynamic problem is done
in terms of differential measures, leading to a numerical method that handles the velocity
jumps on the solution.

Finite dimensional stability analyses of steady sliding states were also performed
in 13,17, for some metallic bodies, under the assumption of rigid or linear elastic behavior,
and adopting a nonlinear compliance law for the normal behavior of the interface. Alt-
hough many aspects of the present work are quite distinct from those of 13,17 (geometry
and boundary conditions of the bodies, material and interface properties, and also the
computational algorithms) it is clear that the cause for the flutter instabilities detected
in 13,17 and in the present paper is the same : the non-symmetry (non-self-adjointness)
of Coulomb’s friction law. Furthermore, despite all those distinctions, the consequences
of the flutter instabilities found in the present paper have some qualitative features that
clearly resemble some of those discussed in 13.

In section 2, the continuum formulation of the dynamic problem in finite elasticity
with frictional unilateral contact is presented. Section 3 is devoted to formulate and
approximate the finite dimensional dynamical problem. Section 4 focuses on the direct
computation of the steady sliding solution, and the stability analysis is presented in
section 5. In section 6, an application to the waist seal/car window squeal (a rubber/glass
contact) is presented. Flutter instabilities with frequencies in the acoustic range, may
indeed occur in the studied system.
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2 THE FRICTIONAL CONTACT PROBLEM IN FINITE ELASTICITY

2.1 Finite elasticity for rubberlike materials

Having in mind the application to a rubberlike waist seal and neglecting the viscosity, an
incompressible hyperelastic isotropic material is considered. Let B be a deformable body
occupying the domain Ω at a reference configuration C. The motion of the body B is
given by the map ϕϕϕϕ : Ω̄ × IR → IR3, (X, τ) → x = ϕϕϕϕ(X, τ) = ϕϕϕϕτ (X). The material
constraint of incompressibility is classically written J = det(F) = 1, where F = ∇X(ϕϕϕϕτ )
is the deformation gradient and det denotes the determinant of a second order tensor. In
order to overcome locking effects, we choose, among the numerous formulations in the
literature 5, the three-field formulation for quasi-incompressibility proposed by J.C.Simo
and R.L.Taylor 24. This formulation was also used by G.Björkman et al. 1 for quasistatic
frictionless contact problems and is now applied to the present dynamical problem with
frictional contact. It is based on the split proposed by P.J.Flory 4 for the deformation
gradient F and, consequently, for the (right) Cauchy-Green tensor C, into isochoric and
volumetric parts :

F = J1/3F̃ C = J2/3C̃ Ĩ3 = 1, (1)

where Ĩ3 is the third principal invariant of C̃. The volume change is characterized by
using a separate field θ, and a third unknown field (a Lagrange multiplier p) enforces the
constraint :

θ = J. (2)

Moreover the volumetric effects on the strain energy and the deviatoric ones are supposed
to be uncoupled. This leads to the following expression for the strain energy :

W̄ (Ĩ1, Ĩ2, θ) = W̃ (Ĩ1, Ĩ2) + U(θ), (3)

where Ĩ1 and Ĩ2 are the first and second principal invariants of C̃. We have chosen the
Mooney Rivlin strain energy that is sufficient for studying the waist seal deformation (the
maximum strain numerically obtained for the waist seal is of 50%) :

W̃ = a1(Ĩ1 − 3) + a2(Ĩ2 − 3), (4)

where a1 and a2 are the material coefficients. Then the constitutive behavior of the
material is characterized by :

S = pJC−1 + 2J−2/3Dev(
∂W̃

∂C̃
), (5)

p = U
′

(θ), (6)

and θ satisfies the constraint (2). S is the second Piola-Kirshoff stress tensor,
Dev(A) = A − 1

3
(A : C)C−1 and ∂W̃/∂C̃ = (a1 + a2Ĩ1)ll − a2C̃.
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Figure 1: Deformable body in contact with a flat obstacle.

The volumetric part U is similar to a penalty function. It should verify the follo-
wing properties : U is non-negative over IR+, U(1) = 0 and limJ→0 U(θ) = ∞. That is
the case with the following choice (κ is the penalty parameter homogeneous to a bulk
modulus) :

U(θ) = κ[
1

2
(θ2 − 1) − ln(θ)]. (7)

2.2 Frictional contact conditions

We restrict this study to the two-dimensional problem of the contact between a deformable
body and a flat and rigid obstacle that moves with a constant velocity vobs = vobst along
a direction t of its surface (see figure 1). We denote by Γc the part of the boundary of
the reference configuration of the body that contains the particles that may eventually
establish contact with the obstacle. The gap between the obstacle surface and the current
position x of such contact candidate particles (x = ϕϕϕϕ(X, τ) for X belonging to Γc) is
represented by G(X, τ) or, equivalently, by g(x, τ) = G(ϕϕϕϕ−1(x, τ), τ). The component
along the direction tangent to the obstacle of the velocity of a contact candidate particle
relative to the obstacle is represented by V (X, τ) = ϕ̇ϕϕϕ(X, τ).t − vobs or, equivalently, by
v(x, τ) = V (ϕϕϕϕ−1(x, τ), τ). The contact reactions r on ϕϕϕϕτ (Γc) are related to the Cauchy
stress tensor σσσσ = 1/JFSFT by

r = σσσσnΓ, (8)

where nΓ is the normal to the boundary of the body in its current configuration, and the
decomposition in normal and tangential components to the obstacle is performed : r =
rnn + rtt, rn = r.n and rt = r.t. The contact is supposed to be unilateral :

g ≥ 0, rn ≥ 0 and rn g = 0, (9)

and the Coulomb law of friction is adopted :

|rt| − µrn ≤ 0, µrn|v| = −rtv, (10)

where µ is the friction coefficient. Unlike most of the classical analyses that associate
friction induced instabilities to variations of the coefficient of friction, µ is taken as a
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r (R) Cauchy (nominal) vector of reaction stresses on the contact surface,
g (G) Eulerian (Lagrangean) descriptions of the current gap,
vobs Absolute value of the tangential velocity of the flat obstacle,
v (V ) Eulerian (Lagrangean) descriptions of the current sliding velocity,
P Vector of dimension 2Nc containing the nodal contact reaction forces for

the finite element model,
G Vector of dimension Nc containing the gaps between the contact candi-

date nodes and the flat obstacle for the reference configuration of the f.e.
mesh,

Hn (Ht) Transformation matrices of dimension Nc × N that relate the normal
(tangential) displacements of the contact candidate nodes of the f.e. mesh
to the global vector of nodal displacements.

Table 1: Nomenclature for the main contact variables

constant in the present work. Using the framework of convex analysis 7, the friction
condition (10) becomes :

−rt ∈ ∂φrn
(v), (11)

where φrn
(y) = µrn|y| and ∂φrn

denotes the sub-differential of φrn
. The Coulomb friction

condition may also be written as a maximal dissipation principle :

|rt| ≤ µrn and ∀r∗t such that |r∗t | ≤ µrn, (r∗t − rt)v ≥ 0. (12)

Both contact and friction conditions can be expressed in the reference configuration by
using the nominal contact reactions :

R = FSNΓ, (13)

where NΓ is the normal to the boundary Γ of the reference configuration of the body, and
the decomposition R = Rnn +Rtt, Rn = R.n and Rt = R.t can also be used :

G ≥ 0, Rn ≥ 0 and RnG = 0, (14)

|Rt| ≤ µRn and ∀R∗

t such that |R∗

t | ≤ µRn, (R∗

t −Rt)V ≥ 0. (15)

A nomenclature for the main contact variables can be found in table 1.

3 THE DYNAMIC SOLUTION

3.1 Formulation and semi-discretization

In this subsection, we are interested in the computation of the dynamic behavior of the
solid B. The perfect unilateral contact and Coulomb friction conditions induce mathe-
matical difficulties that are still unresolved for continuum bodies. Thus the equations of
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elastodynamics and the corresponding variational problem are formally stated for suffi-
ciently regular solutions. After space discretization we will state a problem that takes
into account discontinuities of the contact velocity 7. At any instant τ , the equation of
linear momentum balance is :

ρ ϕ̈ϕϕϕ− Div(FS) = fv, (16)

where ρ is the density of the body in its reference configuration and fv is the external
force that acts on Ω. The boundary conditions are given by the prescribed configuration
on Γu

ϕϕϕϕτ = ϕϕϕϕimp on Γu, (17)

by the surface tractions f s on Γs,

(FS)NΓ = f s, (18)

where NΓ is the outward unit normal vector to Γ, and by the frictional contact conditions
on Γc (Γ = Γ̄u∪ Γ̄s∪ Γ̄c and Γu, Γs and Γc being disjoint). The initial conditions are given
by the initial positions and the initial velocities.

3.1.1 Weak formulation

Considering the specific form (7) of the volumetric part U of the strain energy W̄ , we
suppose that no violation of the kinematic constraint det(∇X(ϕϕϕϕτ )) > 0 is possible 6. The
set of admissible configurations is simply :

W = {ϕϕϕϕτ : Ω −→ IR2 such that ϕϕϕϕτ (X) = ϕϕϕϕimp ∀X ∈ Γu}. (19)

The set of admissible variations to the reference configuration is :

T 0W = { ηηηη : Ω −→ IR2 such that ηηηη(X) = 0 ∀X ∈ Γu}. (20)

The set of admissible hydrostatic pressures and volume changes is :

V = {θ∗ : Ω −→ IR}. (21)

Finally, the set of admissible normal contact stresses is :

Cn = {R∗

n : Γc −→ IR such that R∗

n ≥ 0}. (22)

Except for the inertia forces, all the non-dissipative effects can be put together in the
functional Π proposed by G.Björkmann et al. 1 :

Π(ϕϕϕϕτ , θ, p, Rn) = Πint(ϕϕϕϕτ , θ, p) − Πext(ϕϕϕϕτ ) −

∫

Γc

RnGdΓ, (23)

with (ϕϕϕϕτ , θ, p, Rn) ∈ W×V×V ×Cn; Πint denotes an augmented potential of the internal
forces :

Πint(ϕϕϕϕτ , θ, p) =

∫

Ω

[

W̃ (Ĩ1, Ĩ2) + U(θ) + p(J − θ)
]

dV , (24)
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and Πext denotes the potential of the external forces :

Πext(ϕϕϕϕτ ) =

∫

Ω

fv ϕϕϕϕτ dV +

∫

Γs

f s ϕϕϕϕτ dΓ. (25)

The following pseudo-potential represents the dissipation due to friction :

D(Rn, ϕ̇ϕϕϕτ − Φ̇Φ) =

∫

Γc

µRn|(ϕ̇ϕϕϕτ − Φ̇Φ).t| dΓ, (26)

where Φ̇Φ is an application that verifies Φ̇Φ ∈ W and Φ̇Φ(X) = vobs on Γc. Taking into
account the Coulomb friction condition (11) and using the notion of sub-differential of a
convex function (see 23), the variational problem can be written as an inclusion 7 :

−Π,ϕ(ϕϕϕϕτ , θ, p, Rn) −Fine ∈ ∂2D(Rn, ϕ̇ϕϕϕτ − Φ̇Φ), (27)

together with the following variational equations and inequality :

∀θ∗ ∈ V, Πint,θ θ
∗ =

∫

Ω

(Ú(θ) − p)θ∗ dV = 0, (28)

∀p∗ ∈ V, Πint,p p
∗ =

∫

Ω

(J − θ)p∗ dV = 0, (29)

∀R∗

n ∈ Cn,

∫

Γc

(R∗

n −Rn)GdΓ ≥ 0, (30)

where Fine denotes the inertia forces and ∂2D the sub-differential of D with respect to
its second argument. Using the definition of the sub-differential of a convex function, the
inclusion (27) may be replaced by the variational inequality :

∀ϕϕϕϕ∗ ∈ W,

− < Π,ϕ + Fine ; ϕϕϕϕ∗ − ϕ̇ϕϕϕτ >≤ D(Rn, ϕϕϕϕ
∗ − Φ̇Φ) −D(Rn, ϕ̇ϕϕϕτ − Φ̇Φ).

(31)

If the Coulomb friction condition is expressed in terms of the maximal dissipation principle
(12) and tangential nominal contact reactions Rt are considered as an additional unknown
field, then the variational inequality (31) is replaced by the following variational equation
(d’Alembert’s principle) :

∀ ηηηη ∈ W, (Πint,ϕ − Πext,ϕ + Fine). ηηηη −

∫

Γc

(Rnn +Rtt). ηηηη dΓ = 0, (32)

together with the variational inequality (Coulomb friction condition) :

∀R∗

t ∈ Ct(Rn),

∫

Γc

(R∗

t −Rt)V dΓ ≥ 0, (33)

with

Πint,ϕ. ηηηη =

∫

Ω

FS : (
∂ ηηηη

∂X
)dV , (34)
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Πext,ϕ. ηηηη =

∫

Ω

fv ηηηη dV +

∫

Γs

f s ηηηη dΓ, (35)

and where Ct(Rn) is the set of admissible tangential contact reactions :

Ct(Rn) = {R∗

t : Γc −→ IR such that |R∗

t | ≤ µRn}. (36)

Summarizing, the dynamical frictional contact problem P1 is governed at each time τ by
the set of variational equations and inequalities (28)-(31) involving the unknown fields
ϕϕϕϕ, θ, p and Rn or, equivalently, by the variational statements (28)-(30), (32) and (33)
involving the unknown fields ϕϕϕϕ, θ, p, Rn and Rt.

3.1.2 Space discretization

Many details about the space dicretization associated to the three-field formulation may
be found in 1,12,24. The number of unknowns may be reduced by eliminating the two
auxilary fields θ and p at the element level. Indeed the most important feature is that the
shape functions of θ and p are chosen to be discontinuous over the element boundaries.
That is the case of the finite element Q4P0 used in this study (four nodes for the dis-
placement interpolation and one node for the interpolation of the volume change and the
hydrostatic pressure). If θh

e and ph
e denote the discretized forms of the volume change and

of the pressure on some finite element Ωh
e , the equations (28) and (29) yield the following

relations :

θh
e =

V ol(ϕϕϕϕτ (Ω
h
e ))

V ol(Ωh
e )

, ph
e = Ú(θh

e ). (37)

Then, at the element level, θh
e and ph

e are replaced in the equations of motion by the
relations (37) 24.

The integrals over the boundary Γ are discretized by using the trapezoidal rule.
The integration points are the nodes of the displacement interpolation. We denote by
Pn the vector (of dimension Nc) of normal nodal contact forces (respectively Pt for the
tangential nodal contact forces) where Nc is the number of contact candidate nodes. The
vector P of dimension 2 ∗Nc puts together the components of Pn and Pt. We denote by
U the vector of dimension N of nodal displacements (N is the total number of degrees
of freedom). The normal and tangential components of the displacement of the contact
node number i are given by :

Uni
= Hni

U Uti = HtiU, (38)

where Hni
and Hti are two vectors of dimension N . The matrix Hn (respectively Ht) of

dimension Nc × N puts together the Nc vectors Hni
(respectively Hti). We denote also

by H the matrix of dimension 2 ∗ Nc × N such that HT =
[
HT

n ,H
T
t

]
. The sets Cn and

Ct(Rn) are discretized in Ch
n and Ch

t (Pn) :

Ch
n = {Pn ∈ IRNc such that Pni

≥ 0 ∀i = 1, .., Nc},
Ch

t (Pn) = {Pt ∈ IRNc such that |Pti| ≤ µPni
∀i = 1, .., Nc}.

(39)
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Using the previous notations, the discretized form of the variational inequality (30) of the
unilateral contact condition is :

∀P∗

n ∈ Ch
n (P∗

n − Pn)T (HnU + G) ≥ 0, (40)

where each component of the vector G (of dimension Nc) is equal to the corresponding
reference gap. The discretized form of the variational inequality (33) of the friction
conditions is :

∀P∗

t ∈ Ch
t (Pn) (P∗

t − Pt)
T (HtU̇ − Vobs) ≥ 0, (41)

where the components of the vector Vobs (of dimension Nc) are equal to vobs. The semi-
discrete equation of motion is :

MÜ + Fint(U) − Fext = HTP (42)

where M, Fint and Fext denote the consistent mass matrix, the internal forces and the
external forces, respectively. The semi-discrete Problem P2 is thus given by the equation

of motion (42), the initial displacements U0 and the initial velocities U̇
0

together with
the frictional contact conditions (40) and (41).

Finite dimensional dynamical contact problems are not regular because of the dis-
continuities of the gap velocity when impact occurs. In 7,8 the problem is set so as to
take into account those discontinuities. Following J.J.Moreau 7, we make the assumption

that the velocity has a variation bounded in time so as to define at any instant a left U̇
−

and a right U̇
+

velocity. We suppose also that the velocity is right-continuous and we

denote by U̇ = U̇
+

the velocity at any instant. The acceleration should be understood
as a differential measure dU̇ :

∫

]a,b]

dU̇ = U̇
+
(b) − U̇

+
(a) (43)

and the equation of motion (42) as a measure differential equation :

MdU̇ + Fint(U)dτ − Fextdτ − HTPdν = 0 (44)

where dν is some non-negative measure relative to which dU̇ possesses a density function
and P is the representative of the local density of impulses exerted when contact occurs.

3.2 Approximation in time

Following S.Pandit and S.Deo 18, one obtains :






M(U̇(τ) − U̇(0)) =

∫ τ

0

(Fext − Fint(U))dτ +

∫

]0,τ ]

HTPdν

U(τ) − U(0) =

∫ τ

0

U̇dτ
(45)
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After dividing [0, T ] into sub-intervals, several time approximations of (44) may be used,
see 25. We have chosen the following one :







∫ τm+1

τm

(Fext − Fint(U))dτ ≈∆t [θ1(F
m+1
ext − Fint(U

m+1))

+(1 − θ1)(F
m
ext − Fint(U

m))]
∫ τm+1

τm

U̇dτ ≈ ∆t[θ2U̇
m+1

+ (1 − θ2)U̇
m

]
∫

]τm,τm+1]

HTPdν ≈ ∆tHT P̄
m+1

(46)

where 2
m denotes the approximation of 2(τm), ∆t = τm+1 − τm, θ1 and θ2 are two

numerical coefficients in the interval [0,1] and P̄
m+1

is the mean value of the impulse
density in the time interval.

Using the second approximation of (46), the contact condition is written with the
velocity as unknown :







P̄
m+1
n ∈ Ch

n and

∀P∗

n ∈ Ch
n (P∗

n − P̄
m+1
n )T (HnU̇

m+1
+ G̃

m
) ≥ 0

G̃
m

= (1 − 1
θ2

)HnU̇
m

+ 1
∆tθ2

(HnU
m + G)

(47)

The discretized Coulomb condition involves the tangential relative velocity HtU̇
m+1

−
Vobs and the average contact force P̄

m+1
. Finally the discrete non-linear problem is the

following one :

Problem P3 :

find U̇
m+1

∈ IRN , P̄
m+1
n ∈ Ch

n and P̄
m+1
t ∈ Ch

t (P̄
m+1
n ) such that :







MU̇
m+1

+ ∆tθ1(Fint(l(U̇
m+1

)) − Fm+1
ext ) = ∆tFm

res + ∆tHT P̄
m+1

∀P∗

n ∈ Ch
n (P∗

n − P̄
m+1
n )T (HnU̇

m+1
+ G̃

m
) ≥ 0

∀P∗

t ∈ Ch
t (P̄

m+1
n ) (P∗

t − P̄
m+1
t )T (HtU̇

m+1
− Vobs) ≥ 0

(48)

with
l(U̇

m+1
) = 1

∆tθ2
(Um+1 − Um) − 1−θ2

θ2
U̇

m

Fm
res = 1

∆t
MU̇

m
+ (1 − θ1)[F

m
ext − Fint(l(U̇

m
))].

(49)

3.3 Resolution

In order to linearize the problem (48) which is constrained by variational inequalities, it
is formulated in terms of generalized equations. The variational inequality (C is a convex
set) :

z ∈ C and ∀z∗ ∈ C F(z)(z∗ − z) ≥ 0 (50)
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is equivalent to the generalized equation :

−F(z) ∈ ∂ψC(z) (51)

where ψC is the indicator function of the convex set C. Following A.Klarbring and
G.Björkmann 11, we suppose that implicit sets such as Ch

t (P̄
m+1
n ) may also be consi-

dered. For simplicity, the superscript m+1 is now omitted. In the case of the dynamical
problem, we consider : C = IRN × Ch

n × Ch
t (P̄n) and

z =





U̇
P̄n

P̄t



 , F(z) =





L(U̇, P̄n, P̄t)

G̃
m

n + HnU̇

Vobs − HtU̇



 , (52)

with L(U̇, P̄n, P̄t) = Fm
res + HT

n P̄n + HT
t P̄t −

1
∆t

MU̇
m
− θ1Fint(l(U̇)).

The Newton-Raphson algorithm may be applied to the generalized equations 3.
Considering the properties of H, the linearisation leads to the following problem.

Problem P4 : Assuming that the evolution is known until the instant

τm and that (U̇0, (P̄n)0, (P̄t)0), .., (U̇k, (P̄n)k, (P̄t)k) are known, find

(U̇k+1, (P̄n)k+1, (P̄t)k+1) ∈ IRN × Ch
n × Ch

t ((P̄n)k+1) such that :






K̂kdU̇k+1 = F̂k + HT
n (P̄k+1)n + HT

t (P̄k+1)t

P̄nk+1
∈ Ch

n and ∀P∗

n ∈ Ch
n

(P∗

n − (P̄n)k+1)
T (G̃

m

n + HnU̇k + HndU̇k+1) ≥ 0
(P̄t)k+1 ∈ Ch

t ((P̄n)k+1) and ∀P∗

t ∈ Ch
t ((P̄n)k+1)

(P∗

t − (P̄t)k+1)
T (HtU̇k + HtdU̇k+1 − Vobs) ≥ 0

(53)

with F̂k = θ1Fext + Fm
Res −

1
∆t

MU̇k+1 − θ1Fint(l(U̇k)) and dU̇k+1 = U̇k+1 − U̇k. K̂k is

the matrix of iterations : K̂k = 1
∆t

M + ∆tθ1θ2Kk where Kk = ∂Fint/∂U is the tangent
stiffness matrix which is described in details in 12.

The problem (53) is then formulated in terms of complementarity and, after a
condensation on the contact node variables, it is solved by using the Lemke method.
This process has been detailled by A.Klarbring and G.Björkmann 11 and by P.Chabrand
et al. 2 for a quasistatic problem. The Lemke mathematical programming method is a
direct pivoting algorithm which turns out to be very fast 3.

4 THE STEADY SLIDING SOLUTION

In the present case, as for disk brakes 16, we are interested in instabilities that may
occur when a steady frictional regime is desired. Therefore, we propose an algorithm
to determine directly that steady sliding solution. The steady sliding problem was
mathematically studied for a linear elastic body by P.Rabier et al. 20 (normal compliance
law) and by E.B.Pires et al. 19(non-local friction law). Finite dimensional coercive and

11



non-coercive versions of the steady sliding problem with classical unilateral contact
conditions were studied by A.Klarbring 9,10, .

In this section a method is proposed to find a steady sliding equilibrium configu-
ration of a non-linear elastic solid in contact with a flat obstacle that has a constant
tangential velocity vobs. The relative tangential velocity of the nodes in contact is equal
to −vobs and, consequently, the classical Coulomb friction law simplifies to :

rtvobs = µ|vobs|rn. (54)

For this particular case of frictional contact problems, the direction of the tangential
contact stress is known. Thus the problem becomes simpler because the non-smooth
character of the friction law is eliminated. We just get the extra relation (54) between the
normal and the tangential components of the contact stresses. A new problem is derived
from the problem P3, see (48) :

Problem P5 : find (U,Pn) ∈ IRN × Ch
n such that :

{
Fint(U) = Fext + HnPn + µsgn(vobs)HtPn

∀P∗

n ∈ Ch
n (P∗

n − Pn)T (HnU + G) ≥ 0
(55)

where sgn(x) = x/|x| if x 6= 0. One obtains a sequence of frictionless contact problems
by using a fixed point procedure on the frictional tangential contact forces. At each fixed
point iteration, the tangential contact forces are updated by using the normal contact
forces computed previously and the corresponding problem is :

Problem P6 : (U0,P0
n), .., (Ul−1,Pl−1

n ) being known,
find (Ul,Pl

n) ∈ IRN × Ch
n such that :

{
Fint(U

l) = Fext + HT
nPl

n + µ sgn(vobs)H
T
t Pl−1

n

∀P∗

n ∈ Ch
n (P∗

n − Pl
n)T (HnU

l + G) ≥ 0

(56)

where 2
l denotes the value of 2 obtained at the fixed point iteration l. This problem is

then linearized similarly to (48). At each iteration of the Newton-Raphson algorithm, the
following problem is solved :

Problem P7 : (Ul
0, (P

l
n)0), .., (U

l
k, (P

l
n)k) being known,

find (Ul
k+1, (P

l
n)k+1) ∈ IRN × Ch

n such that :
{

Kk dU
l
k+1 = Fext − Fint(U

l
k) + HT

n (Pl
n)k+1 + µ sgn(vobs)H

T
t Pl−1

n

∀P∗

n ∈ Ch
n (P∗

n − (Pl
n)k+1)(HnU

l
k + HndU

l
k+1 + G) ≥ 0

(57)

where 2
l
k denotes the value of 2 obtained at the fixed point iteration l and at the

Newton-Raphson iteration k and where dUl
k+1 = Ul

k+1 −Ul
k. The problem P7 (see (57))

is also formulated in terms of complementarity and solved by using the Lemke method.

The initial condition for the fixed point procedure is a steady sliding equilibrium
position obtained with µ = 0 or with a smaller value of µ.

12



The advantage of this method is to get the solutions for various friction coeffi-
cients. This is very interesting because the friction coefficient is a key parameter in the
occurrence of instabilities. An analysis of the sensitivity of the phenomenon relatively to
this parameter will be possible without extra computations.

5 INSTABILITY OF STEADY SLIDING STATES

In this section we are interested in the occurrence of dynamic instabilities of steady
sliding equilibrium states of finite dimensional systems. In other words, we will study the
possible existence of growing dynamic solutions in the neighborhood of those equilibrium
states. We will show in section 6 that, in the present case, oscillatory (flutter) instabilities
are found.

For any given non-vanishing velocity of the flat surface, the sliding velocity of all
the nodes in contact at a steady sliding equilibrium configuration is different from zero.
We assume, in addition, that the normal reactions of all those contact nodes are strictly
positive at the steady sliding state. Thus each contact node is either in (strict) sliding
contact (P 0

ni
> 0, U0

ni
+ Gi = 0, P 0

ti
= µsgn(vobs)P

0
ni

and U̇0
ti

= 0) or in (strict) separate
contact (P 0

ti
= P 0

ni
= 0 and U0

ni
+Gi > 0) where 2

0 denotes the value of 2 at the steady
sliding equilibrium configuration. Then we consider perturbed dynamic solutions in a
neighborhood of this steady sliding state, such that the contact state of each contact
candidate node is preserved : each node in sliding contact remains in sliding contact
(Uni

+ Gi = U̇ni
= 0, Pti = µsgn(P 0

ti
)Pni

and U̇ti 6= vobs), and each node not in contact
remains so with (Pti = Pni

= 0 and Uni
+ Gi > 0). Using the subscript f (free) for the

degrees of freedom that correspond to displacement components of node not candidate
to contact or not currently in contact, and the subscript n (respectively t) for those
that correspond to normal (respectively tangential) displacements of sliding nodes, the
dynamical problem may be written :





Mff Mfn Mft

Mnf Mnn Mnt

Mtf Mtn Mtt









Üf

0

Üt



 +





Fintf (Uf ,Ut)
Fintn(Uf ,Ut)
Fintt(Uf ,Ut)



 =





0
Pn

µsPn



 (58)

where s = sgn(vobs). Using the equations of motion corresponding to the normal degrees
of freedom of the sliding nodes (n) to eliminate the non vanishing reactions, the equations
that govern the smooth dynamic evolution of the structure in that neighborhood are :

[
Mff Mft

M∗

tf M∗

tt

]

︸ ︷︷ ︸

M∗

[
Üf

Üt

]

+

[
Fintf (Uf ,Ut)
F∗

intt(Uf ,Ut)

]

=

[
0
0

]

(59)

where F∗

intt = Fintt − µsFintn and M∗

t2 = Mt2 − µsMn2. If the matrix M∗ is non-
singular, the second order differential system (59) is regular and the normal displacements
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of the free contact candidate nodes, as well as the tangential velocities and the normal
reactions of the nodes in sliding contact, depend continuously on the initial conditions
and on time. Consequently, in a sufficiently small neighborhood of the steady sliding
state, the solution of (59) (and (58)) for perturbed initial conditions arbitrarily close to

U0
f ,U

0
t and U̇

0

f = U̇
0

t = 0 leads to a “smooth” solution of the general system (40), (41),
(44). The equations of motion (59) are linearized :

M∗δÜ
∗

(t) + K∗δU∗(t) = 0 (60)

where δU∗(t) denotes a small increment of the active displacements, K∗ a nonsymmetric
friction dependent tangent stiffness matrices of dimension N∗(≤ N) constructed as M∗.
The main important feature is that if the steady sliding equilibrium state is dynamically
unstable for the linearized system (60), it is also unstable for the non-linear system (59)
and for the original system (40), (41), and (44). The analysis of the dynamic stability of
the system (60) leads classicaly to the generalized eigenproblem :

(λ2M∗ + K∗)V∗ = 0. (61)

The occurrence of a nontrivial eigenvector V∗ for some λ with a strictly positive real part
implies the instability of the steady sliding state: a divergence instability if Im(λ) = 0
(non-oscillatory), a flutter instability if Im(λ) 6= 0 (oscillatory).

The generalized eigenproblem (61) is solved by using the Lanczos algorithm 21

along with the double QR method.

6 SQUEAL FOR A RUBBER/GLASS CONTACT

6.1 The waist seal problem

This application adresses the study of the noise generated by the waist seal of the lateral
door of a car. This system is fixed to an internal metal sheet and is pressed against
the window. The longitudinal and transversal sections of the door are schematically
represented in figure 2.

In some cases, this system induces squeal noise. The simulation is conducted on
two real waist seals. The first one gives rise to squeal problems and is not used any
longer. The second waist seal is a modified version of the first one that has completely
removed the noise.

In subsection 6.2, the capabilities of the numerical model are presented on a de-
tailled study of the first waist seal when the glass moves downward. Then, in subsection
6.3, the model is used to compare the behavior of the two waist seals in terms of the
possible occurrence of instabilities and of their consequences.
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Longitudinal section

Window

Transversal section

Lateral door section

Waist seal

Waist seal

Metal sheet

Figure 2: Schematic description of the lateral door.

6.2 Simulation of a waist seal and stability analysis

The basic parameters for the computation of the waist seal behavior are the geometry, the
“loading”, the material properties and the coefficient of friction. The geometry is plotted
in grey on figure 3. The mesh is composed of 649 nodes and 538 Q4P0 finite elements.
It has been particulary refined on the contact zone to ensure a minimum of 10 contact
nodes. The black triangles cm mark the fixed boundary conditions (only a part of the
waist seal is modelled) and the thin rectangle is a schematic representation of the glass
window. The loading is applied in two steps : firstly a normal displacement of the obstacle
is prescribed and the corresponding equilibrium position is computed for µ = 0. Then the
value of the friction coefficient is successively increased, the corresponding steady sliding
equilibrium positions being computed for an imposed tangential velocity of the obstacle
(80mm/s) either upward or downward. The glass window is supposed to be plane and
rectangular and the waist seal to be in a state of plane strain. The Mooney-Rivlin
material coefficients are a1 = 0.293MPa and a2 = 0.177MPa and the bulk modulus is of
1200MPa. The experimental range of the coefficient of friction is [0.1, 0.8]. This range has
been obtained from experiments on small parallelepipedic samples of the waist seal mate-
rial (with or without varnish) and for various interface conditions (with or without water).

The fixed point algorithm of section 4 is used to compute the steady sliding solu-
tions. Computations are conducted with various friction coefficients (increments of 0.05).
The deformed configuration after the initial normal loading is plotted in black on figure
3. The steady sliding configuration obtained for µ = 0.4 is plotted on figure 4.

For the stability analysis, the eigenvalue spectrum of M∗−1K∗ is computed for all
the steady sliding positions previously obtained. A divergence instability would be
characterized by a negative real eigenvalue : it never occurs. Complex eigenvalues
correspond to flutter instability. The analysis focuses on the occurrence of instabilities
with frequencies belonging to the acoustic range, but some results are given for a larger
range.
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Figure 3: Initial normal loading, wi-
per compression with µ = 0.

Figure 4: Glass downward: steady
sliding position for µ = 0.4.

0 10000 20000 30000 40000 50000
Frequency (Hz)

0.0

0.05

0.1

0.15

0.2

0.25

G
ro

w
th

ra
te

(%
)

Figure 5: Eigenvalue spectrum of
M∗−1K∗, µ = 0.2.
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Figure 6: Eigenvalue spectrum of
M∗−1K∗, µ = 0.4.

The first complex eigenvalue appears for µ = 0.2. The eigenvalue spectrum is plotted in fi-
gure 5. The eigenvalue spectrum of M∗−1K∗ obtained with µ = 0.4 is presented in figure 6.

For µ < 0.285, the frequency of the lowest complex eigenvalue is high (about
44000Hz). On figure 7, the coallescence for µ = 0.285 of two real eigenvalues is shown
(frequency about 3250Hz). On the second plot of figure 7, the growth rate of the flutter
oscillations is plotted. This complex eigenvalue frequency remains close to 3250Hz for
the rest of the range of the friction coefficient.

It can be noted that the frequency associated to the lowest complex eigenvalue is
relatively separated from the other ones. The associated eigenmode gives the spatial
form of the growing dynamic solution close to the steady sliding position. On figure 8,
the deformed configuration is plotted in grey and the deformed configuration plus the
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eigenmode multiplied by an amplification coefficient is plotted in black.
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Figure 7: Coupling of two real eigenvalues, µ ∈ [0.25 : 0.3].

Figure 8: Eigenmode associated to the
first flutter frequency, µ = 0.4, first ver-
sion.

The dynamic behavior is computed by solving the dynamical problem P4 (see (53))
taking the steady sliding position and zero velocity as initial conditions. The only
initial perturbation is due to the numerical precision in introducing those initial condi-
tions. A slight amount of numerical dissipation is also introduced (θ1 = θ2 = 0.55 > 0.50).

The evolution of the global contact forces is plotted on figure 9. During a short
time interval, the contact forces seem to remain constant (with Pt = µPn). Then, gro-
wing oscillations with the flutter frequency (3250Hz) are perceptible. About 0.25s after
the beginning of the dynamical computation, the sliding of some contact nodes becomes
intermittent. About 0.03s later, this stick-slip becomes global and is accompanied by
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Figure 9: Evolution of the contact
forces for µ = 0.4.
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Figure 10: Evolution of the contact
forces for µ = 0.4, time interval of
0.25 10−2 s.

global losses of contact (see figure 10). It can be noted on figure 10 that the evolution
has reached what looks like a limit cycle. The amplitude of the oscillations of the contact
forces is very large and the waist seal hammers the window with a frequency that belongs
to the acoustic range. For this computation of the dynamical behavior of the waist seal,
the perturbation introduced is very small (only the numerical precision) and a relatively
long time is necessary to reach the limit cycle. This time may be reduced by introducing
a slightly larger initial perturbation. We have checked that for different forms of this
extra small perturbation, the same limit cycle is attained.

For a larger coefficient of friction (µ = 0.8), the growth of the flutter oscillations
is larger in the sense that these oscillations become significant for τ = 0.045s (instead of
τ = 0.15s for µ = 0.4). The phenomenon is more complex as presented on figure 11. As
previously, global losses of contact occur during the oscillations.

An non-linear elastic behavior has been assumed in the theorical model adopted
for the waist seal. In reality, this kind of rubberlike material is viscoelastic, and some
small numerical damping has been always considered in our computations, by means of
the values adopted for θ1 and θ2. It is interesting to check the effect of an increase of
the numerical damping on the solution. Using θ1 = θ2 = 0.60 instead of θ1 = θ2 = 0.55
leads to the results presented on figure 12. The nature of the phenomenon is still the
same with an oscillation frequency equal to 3250Hz, but the evolution is more regular
and no global losses of contact are observed. This absence of loss of contact has been
also observed with µ = 0.4 when θ1 = θ2 = 0.60.

We give now some further details of the dynamic evolution in this case (µ = 0.8

18



0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Time (s)

0

2

4

6

8

10

12

14

16

18

20

22

24

C
on

ta
ct

fo
rc

es
(N

)

Pn
Pt

Figure 11: Evolution of the contact
forces for µ = 0.8, θ1 = θ2 = 0.55.
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Figure 12: Evolution of the contact
forces for µ = 0.8, θ1 = θ2 = 0.60.

and θ1 = θ2 = 0.60). We present first the evolution of the tangential velocity of all the
contact nodes on a short time interval (τ ∈ [0.25s; 0.2505s]) on figure 13. As expected, a
stick-slip phenomenon is observed but it should be noted that it is more complex than a
simple succession of global stick and global slip states : the contact nodes do not start
to slip simultaneously. We focus now on the the normal and tangential movements of a
node located on the edge of the contact zone (node 1 on figure 13). Phase plane plots
of that tangential movement are presented in figure 14 (the complete evolution) and in
figure 15 (the “limit cycle”). The normal component is presented on figure 16. It can
be noted that even for θ1 = θ2 = 0.60, the “limit cycle” oscillation has a short period
of loss of contact; for example, one cycle of the node 1 involves the following sequence
of states : stick, slip, loss of contact, slip and back to stick. The results obtained with
the window moving upward are very similar to the previous one, but with a lower flutter
frequency (about 1980Hz).

6.3 Comparison of the analysis for two different waist seals

Because of the lack of detailed experimental results, the only way to give a rough validation
of the model has been to compare the results of the stability analyses of two waist seals,
one of which is known to be noisy and the other one to be “silent”. Those two waist
seals are flocked, and with this flock the friction coefficient is experimentally found to
belong to [0.15, 0.45]. The waist seal simulated in the previous subsection was known
to be noisy. We will conduct now the analysis of the modified “silent” geometry. This
second geometry is shown to be less prone to flutter instabilities than the first one. The
new geometry is given on figure 17.
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Figure 13: Evolution of the tangential velocity of the contact nodes
with τ ∈ [0.25s; 0.2505s], the window velocity is of 80mm/s.
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Figure 14: Tangential velocity of node 1, time
interval : τ ∈ [0; 0.25].
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Figure 15: Limit cycle, τ ∈
[0.2; 0.25].
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Figure 16: Normal components of node 1, time interval : τ ∈ [0; 0.25].

Figure 17: Steady sliding position,
window downward, µ = 0.4, second
waist seal.

Figure 18: Eigenmode associated
with the lowest flutter frequency,
µ = 0.4, second waist seal.

6.3.1 Window moving upward (µ = 0.4 and θ1 = θ2 = 0.55)

The eigenvalue spectra of M∗−1K∗ for the upward movement of the window with µ = 0.4
are presented in figure 19 (first geometry) and in figure 20 (second geometry). The
eigenmode associated to the lowest flutter frequency is plotted on figure 18. For the first
case, the frequency corresponding to the complex eigenvalue is of 1950Hz with a growth
rate of 3.5% and for the second case, it is of 18890Hz with a growth rate of 0.06%. For the
second geometry, squeal noise is not expected, because, for the computed high frequency of
flutter (which in any case would not be in the acoustic range) and for the corresponding
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Figure 19: Eigenvalues spectrum of
M∗−1K∗, µ = 0.4, window moving
upward, first waist seal.

0 5000 10000 15000 20000
Frequency (Hz)

0.0

0.02

0.04

0.06

0.08

0.1

G
ro

w
th

ra
te

(%
)

Figure 20: Eigenvalues spectrum of
M∗−1K∗, µ = 0.4, window moving
upward, second waist seal.
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Figure 21: Eigenvalues spectrum of
M∗−1K∗, µ = 0.4, window moving
downward, second waist seal.

small growth rate, one may expect that any small amount of material dissipation will
cancel out the instability.

6.3.2 Window moving downward (µ = 0.4 and θ1 = θ2 = 0.55)

For the window moving downward, the eigenvalue spectrum of M∗−1K∗, corresponding
to the first case has been given on figure 6. The one corresponding to the second waist
seal is given on figure 21. The frequencies corresponding to the first complex eigenvalue
are similar in both cases (3250Hz for the first geometry, 3050Hz for the second one) but
the growth rate is six times smaller for the second geometry (0.35% instead of 2.4%).
The second case involves also two other frequencies in the acoustic range (5240Hz and
6810Hz) but their growth rates are also smaller than the one of the first geometry.
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Figure 22: Evolution of the contact
forces for µ = 0.4, θ1 = θ2 = 0.55,
second waist seal.
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Figure 23: Evolution of the contact
forces for µ = 0.8, θ1 = θ2 = 0.55,
second waist seal.

To check the possible consequences of flutter in this second case, dynamic analyses
were performed with the numerical parameters used earlier to obtain figure 22 (namely
θ1 = θ2 = 0.55). The result given on figure 22 shows that no oscillating solution emerges.

The first geometry is more prone to flutter instability then the second one and,
using the same material and numerical parameters, important oscillations are nume-
rically obtained for the first “noisy” geometry whereas no oscillations occur in the
numerical tests with the second “silent” geometry.

For sufficiently large friction coefficient (for µ = 0.8) the second geometry may
also lead to squeal (the first one was unstable for both µ = 0.4 and µ = 0.8). The lowest
flutter frequency obtained with µ = 0.8 is of 2965Hz and the corresponding growth rate
is of 3.35%. The dynamic solution plotted on figure 23 should be compared with the one
obtained for the first geometry and given on figure 11.
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