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Abstract

In this paper, we present a conditional GAN with two generators and a
common discriminator for multiview learning problems where observations
have two views, but one of them may be missing for some of the training
samples. This is for example the case for multilingual collections where
documents are not available in all languages. Some studies tackled this
problem by assuming the existence of view generation functions to approx-
imately complete the missing views; for example Machine Translation to
translate documents into the missing languages. These functions generally
require an external resource to be set and their quality has a direct impact
on the performance of the learned multiview classifier over the completed
training set. Our proposed approach addresses this problem by jointly
learning the missing views and the multiview classifier using a tripartite
game with two generators and a discriminator. Each of the generators
is associated to one of the views and tries to fool the discriminator by
generating the other missing view conditionally on the corresponding ob-
served view. The discriminator then tries to identify if for an observation,
one of its views is completed by one of the generators or if both views
are completed along with its class. Our results on a subset of Reuters
RCV1/RCV2 collections show that the discriminator achieves significant
classification performance; and that the generators learn the missing views
with high quality without the need of any consequent external resource.

1 Introduction
We address the problem of multiview learning with Generative Adversarial Net-
works (GANs) in the case where some observations may have missing views
without there being an external resource to complete them. This is a typical sit-
uation in many applications where different sources generate different views of
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samples unevenly; like text information present in all Wikipedia pages while im-
ages are more scarce. Another example is multilingual text classification where
documents are available in two languages and share the same set of classes while
some are just written in one language. Previous works supposed the existence of
view generating functions to complete the missing views before deploying a learn-
ing strategy [2]. However, the performance of the global multiview approach is
biased by the quality of the generating functions which generally require exter-
nal resources to be set. The challenge is hence to learn an efficient model from
the multiple views of training data without relying on an extrinsic approach to
generate altered views for samples that have missing ones.

In this direction, GANs provide a propitious and broad approach with a high
ability to seize the underlying distribution of the data and create new samples
[11]. These models have been mostly applied to image analysis and major
advances have been made on generating realistic images with low variability
[7, 15, 16]. GANs take their origin from the game theory and are formulated
as a two players game formed by a generator G and a discriminator D. The
generator takes a noise z and produces a sample G(z) in the input space, on
the other hand the discriminator determines whenever a sample comes from the
true distribution of the data or if it is generated by G. Other works included an
inverse mapping from the input to the latent representation, mostly referred to
as BiGANs, and showed the usefulness of the learned feature representation for
auxiliary discriminant problems [8, 9]. This idea paved the way for the design of
efficient approaches for generating coherent synthetic views of an input image
[21, 14, 6].

In this work, we propose a GAN based model for bilingual text classifica-
tion, called Cond2GANs, where some training documents are just written in one
language. The model learns the representation of missing versions of bilingual
documents jointly with the association to their respective classes, and is com-
posed of a discriminator D and two generators G1 and G2 formulated as a
tripartite game. For a given document with a missing version in one language,
the corresponding generator induces the latter conditionally on the observed one.
The training of the generators is carried out by minimizing a regularized version
of the cross-entropy measure proposed for multi-class classification with GANs
[19] in a way to force the models to generate views such that the completed
bilingual documents will have high class assignments. At the same time, the
discriminator learns the association between documents and their classes and
distinguishes between observations that have their both views and those that
got a completed view by one of the generators. This is achieved by minimizing
an aggregated cross-entropy measure in a way to force the discriminator to be
certain of the class of observations with their complete views and uncertain of
the class of documents for which one of the versions was completed. The regular-
ization term in the objectives of generators is derived from an adapted feature
matching technique [17] which is an effective way for preventing from situations
where the models become unstable; and which leads to fast convergence.

We demonstrate that generated views allow to achieve state-of-the-art re-
sults on a subset of Reuters RCV1/RCV2 collections compared to multiview
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approaches that rely on Machine Translation (MT) for translating documents
into languages in which their versions do not exist; before training the models.
Importantly, we exhibit qualitatively that generated documents have meaning-
ful translated words bearing similar ideas compared to the original ones; and
that, without employing any large external parallel corpora to learn the trans-
lations as it would be the case if MT were used. More precisely, this work is the
first to :

• Propose a new tripartite GAN model that makes class prediction along
with the generation of high quality document representations in different
input spaces in the case where the corresponding versions are not observed
(Section 3.2);

• Achieve state-of-the art performance compared to multiview approaches
that rely on external view generating functions on multilingual document
classification; and which is another challenging application than image
analysis which is the domain of choice for the design of new GAN models
(Section 4.2);

• Demonstrate the value of the generated views within our approach com-
pared to when they are generated using MT (Section 4.2).

2 Related work
Multiview learning has been an active domain of research these past few years.
Many advances have been made on both theoretic and algorithmic sides [5, 12].
The three main families of techniques for (semi-)supervised learning are (kernel)
Canonical Correlation Analysis (CCA), Multiple kernel learning (MKL) and
co-regularization. CCA finds pairs of highly correlated subspaces between the
views that is used for mapping the data before training, or integrated in the
learning objective [3, 10]. MKL considers one kernel per view and different
approaches have been proposed for their learning. In one of the earliest work,
[4] proposed an efficient algorithm based on sequential minimization techniques
for learning a corresponding support vector machine defined over a convex non-
smooth optimization problem. Co-regularization techniques tend to minimize
the disagreement between the single-view classifiers over their outputs on unla-
beled examples by adding a regularization term to the objective function [18].
Some approaches have also tackled the tedious question of combining the pre-
dictions of the view specific classifiers [20]. However all these techniques assume
that views of a sample are complete and available during training and testing.

Recently, many other studies have considered the generation of multiple
views from a single input image using GANs [14, 21, 23] and have demonstrated
the intriguing capacity of these models to generate coherent unseen views. The
former approaches rely mostly on an encoder-encoder network to first map im-
ages into a latent space and then generate their views using an inverse mapping.
This is a very exciting problem, however, our learning objective differs from
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these approaches as we are mostly interested in the classification of muti-view
samples with missing views. The most similar work to ours that uses GANs for
multiview classification is probably [6]. This approach generates missing views
of images in the same latent space than the input image, while Cond2GANs learns
the representations of the missing views in their respective input spaces condi-
tionally on the observed ones which in general are from other feature spaces.
Furthermore, Cond2GANs benefits from low complexity and stable convergence
which has been shown to be lacking in the previous approach.

Another work which has considered multiview learning with incomplete
views, for also document classification, is [2]. The authors proposed a Rademacher
complexity bounds for a multiview Gibbs classifier trained on multilingual collec-
tions where the missing versions of documents have been generated by Machine
Translation systems. Their bounds exhibit a term corresponding to the quality
of the MT system generating the views. The bottleneck is that MT systems
depend on external resources, and they require a huge amount of parallel col-
lections containing documents and their translations in all languages of interest
for their tuning. For rare languages, this can ultimately affect the performance
of the learning models. Regarding these aspects our proposed approach differs
from all the previous studies, as we do not suppose the existence of parallel
training sets nor MT systems to generate the missing versions of the training
observations.

3 Cond2GANs
In the following sections, we first present the basic definitions which will serve
to our problem setting, and then the proposed model for multiview classification
with missing views.

3.1 Framework and problem setting
We consider multiclass classification problems, where a bilingual document is
defined as a sequence x = (x1, x2) ∈ X that belongs to one and only one class
y ∈ Y = {0, 1}K . The class membership indicator vector y = (yk)1≤k≤K , of
each bilingual document, has all its components equal to 0 except the one that
indicates the class associated with the example which is equal to one. Here we
suppose that X = (X1 ∪ {⊥})× (X2 ∪ {⊥}), where xv =⊥ means that the v-th
view is not observed. Hence, each observed view xv ∈ x is such that xv ̸=⊥
and it provides a representation of x in a corresponding input space Xv ⊆ Rdv .
Following the conclusions of the co-training study [5], our framework is based
on the following main assumption :

Assumption 1 ([5]) Observed views are not completely correlated, and are
equally informative.

Furthermore, we assume that each example (x,y) is identically and indepen-
dently distributed (i.i.d.) according to a fixed yet unknown distribution D over

4



X×Y, and that at least one of its views is observed. Additionally, we suppose to
have access to a training set S = {(xi,yi); i ∈ {1, . . . ,m}} = SF ⊔S1⊔S2 of size
m drawn i.i.d. according to D, where SF = {

((
x1
i , x

2
i

)
,yi

)
| i ∈ {1, . . . ,mF }}

denotes the subset of training samples with their both complete views and
S1 = {

((
x1
i ,⊥

)
,yi

)
| i ∈ {1, . . . ,m1}} (respectively S2 = {

((
⊥, x2

i

)
,yi

)
| i ∈

{1, . . . ,m2}}) is the subset of training samples with their second (respectively
first) view that is not observed (i.e. m = mF +m1 +m2).

It is possible to address this problem using existing techniques; for example,
by learning singleview classifiers independently on the examples of S ⊔ S1 (re-
spectively S ⊔ S2) for the first (respectively second) view. To make prediction,
one can then combine the outputs of the classifiers [20] if both views of a test
example are observed; or otherwise, use one of the outputs corresponding to
the observed view. Another solution is to apply multiview approaches over the
training samples of SF ; or over the whole training set S by completing the views
of examples in S1 and S2 beforhand using external view generation functions.

3.2 The Tripartite Game
As an alternative, the learning objective of our proposed approach is to gen-
erate the missing views of examples in S1 and S2, jointly with the learning
of the association between the multiview samples (with all their views com-
plete or completed) and their classes. The proposed model consists of three

Figure 1: A visual representation of the proposed
GAN model composed of three neural networks; a
discriminator D and two generators G1 and G2. The
missing view of an observation is completed by the
corresponding generator conditionally on its observed
view. The discriminator is trained to recognize be-
tween observations having their views completed and
those with complete initial views as well as their
classes.

neural networks that
are trained using an ob-
jective implementing a
three players game be-
tween a discriminator,
D, and two generators,
G1 and G2. The game
that these models play
is depicted in Figure 1
and it can be summa-
rized as follows. At each
step, if an observation
is chosen with a missing
view, the corresponding
generator – G1 (respec-
tively G2) if the first (re-
spectively second) view
is missing – produces
the view from random
noise conditionally on
the observed view in a
way to fool the discrimi-
nator. On the other hand, the discriminator takes as input an observation with
both of its views complete or completed and, classifies it if the views are ini-
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tially observed or tells if a view was produced by one of the generators. Formally,
both generators G1 and G2 take as input; samples from respectively the train-
ing subsets S2 and S1; as well as random noise drawn from uniform distribution
defined over the input space of the missing view and produce the corresponding
pseudo-view, which is missing; i.e. G1(z

1, x2) = x̃1 and G2(x
1, z2) = x̃2. These

models are learned in a way to replicate the conditional distributions p(x1|x2, z1)
and p(x2|x1, z2); and inherently define two probability distributions, denoted re-
spectively by pG1 and pG2 , as the distribution of samples if both views where
observed i.e. (x̃1, x2) ∼ pG1(x

1, x2), (x1, x̃2) ∼ pG2(x
1, x2). On the other hand,

the discriminator takes as input a training sample; either from the set SF , or
from one of the training subsets S1 or S2 where the missing view of the example
is generated by one of the generators accordingly. The task of D is then to
recognize observations from S1 and S2 that have completed views by G1 and G2

and to classify examples from S to their true classes. To achieve this goal we
add a fake class, K + 1, to the set of classes, Y, corresponding to samples that
have one of their views generated by G1 or G2. The dimension of the discrim-
inator’s output is hence set to K + 1 which by applying softmax is supposed
to estimate the posterior probability of classes for each multiview observation
(with complete or completed views) given in input. For an observation x ∈ X ,
we use DK+1(x) = pD(y = K + 1|x) to estimate the probability that one of its
views is generated by G1 or G2. As the task of the generators is to produce
good quality views such that the observation with the completed view will be
assigned to its true class with high probability, we follow [17] by supplying the
discriminator to not get fooled easily as stated in the following assumption :

Assumption 2 ([17]) An observation x has one of its views generated by G1

or G2; if and only if DK+1(x) >
∑K

k=1 Dk(x).

In the case where; DK+1(x) ≤
∑K

k=1 Dk(x) the observation x is supposed to
have its both views observed and it is affected to one of the classes following
the rule; maxk={1,...,K} Dk(x). The overall learning objective of Cond2GANs is
to train the generators to produce realistic views indistinguishable with the real
ones, while the discriminator is trained to classify multiview observations having
their complete views and to identify view generated samples. If we denote by
preal the marginal distribution of multiview observations with their both views
observed (i.e. (x1, x2) = preal(x

1, x2)); the above procedure resumes to the
following tripartite minmax game with value function V (D,G1, G2) :

max
D

min
G1,G2

V (D,G1, G2) = E(x1,x2)∼preal

[
log pD(y < K + 1|x1, x2)

]
+

1

2
E(x̃1,x2)∼pG1

[
log pD(y = K + 1|x̃1, x2)

]
(1)

+
1

2
E(x1,x̃2)∼pG2

[
log pD(y = K + 1|x1, x̃2)

]
Note that, following Assumption 1, we impose the generators to produce equally
informative views by assigning the same weight to their corresponding terms in
V (Eq. 1).
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3.3 Analyses and convergence
From the outputs of the discriminator we build an auxiliary function D equal
to the sum of the first K outputs associated to the true classes :

∀x ∈ X ;D(x) =

K∑
k=1

pD(y = k | x) (2)

In this following, we provide a theoretical analysis of Cond2GANs involving the
auxiliary function D (Eq. 2) under nonparametric hypotheses.

Proposition 1 For fixed generators G1 and G2, the minmax game defined in
(Eq. 1) leads to the following optimal discriminator D∗

G1,G2
:

D∗
G1,G2

(x1, x2) =
preal(x

1, x2)

preal(x1, x2) + pG1,2(x
1, x2)

, (3)

where pG1,2(x
1, x2) = 1

2 (pG1(x
1, x2) + pG2(x

1, x2)).

Proof. The proof follows from [11]. Let

∀x = (x1, x2),D(x) =

K∑
k=1

Dk(x)

From Assumption 2, and the fact that for any observation x the outputs of the
discriminator sum to one i.e.

∑K+1
k=1 Dk(x) = 1, the value function V writes :

V (D, G1, G2) =

∫∫
log(D(x1, x2))preal(x

1, x2)dx1dx2+

1

2

∫∫
log(1−D(x1, x2))pG1(x

1, x2)dx1dx2+
1

2

∫∫
log(1−D(x1, x2))pG2(x

1, x2)dx1dx2

For any (α, β, γ) ∈ R3\{0, 0, 0}; the function z 7→ α log z + β
2 log(1 − z) +

γ
2 log(1− z) reaches its maximum at z = α

α+ 1
2 (β+γ)

, which ends the proof as the
discrimintaor does not need to be defined outside the supports of pdata, pG1 and
pG2 . □

By plugging back D∗
G1,G2

(Eq. 3) into the value function V we have the
following necessary and sufficient condition for attaining the global minimum of
this function :

Theorem 1 The global minimum of the function V (G1, G2) is attained if and
only if

preal(x
1, x2) =

1

2
(pG1(x

1, x2) + pG2(x
1, x2)). (4)

At this point, the minimum is equal to − log 4.
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Proof. By plugging back the expression of D∗ (Eq. 3), into the value function
V , it comes

V (D∗, G1, G2) =

∫∫
log

(
preal(x

1, x2)

preal(x1, x2) + pG1,2(x
1, x2)

)
preal(x

1, x2)dx1dx2+∫∫
log

(
pG1,2(x

1, x2)

preal(x1, x2) + pG1,2(x
1, x2)

)
pG1,2(x

1, x2)dx1dx2

Which from the definition of the Kullback Leibler (KL) and the Jensen Shannon
divergence (JSD) can be rewritten as

V (D∗, G1, G2) =− log 4 +KL

(
preal

∥∥∥∥ preal + pG1,2

2

)
+KL

(
pG1,2

∥∥∥∥ preal + pG1,2

2

)
=− log 4 + 2JSD

(
preal

∥∥ pG1,2

)
The JSD is always positive and JSD

(
preal

∥∥ pG1,2

)
= 0 if and only if preal = pG1,2

which ends the proof □
From Equation 4, it is straightforward to verify that preal(x

1, x2) = pG1(x
1, x2) =

pG2(x
1, x2) is a global Nash equilibrium but it may not be unique. In order to ensure

the uniqueness, we add the Jensen-Shannon divergence between the distribution pG1

and preal and pG2 and preal the value function V (Eq. 1) as stated in the corollary
below.

Corollary 1 The unique global Nash equilibrium of the augmented value function :

V̄ (D, G1, G2) = V (D, G1, G2) + JSD(pG1 ||preal) + JSD(pG2 ||preal), (5)

is reached if and only if

preal(x
1, x2) = pG1(x

1, x2) = pG2(x
1, x2), (6)

where V (D, G1, G2) is the value function defined in Equation (1) and JSD(pG1 ||preal)
is the Jensen-Shannon divergence between the distribution pG1 and preal.

Proof. The proof follows from the positivness of JSD and the necessary and sufficient
condition for it to be equal to 0. Hence, V̄ (D, G1, G2) reaches it minimum − log 4, iff
pG1 = preal = pG2 . □

This result suggests that at equilibrium, both generators produce views such that
observations with their completed view follow the same real distribution than those
which have their both views observed.

3.4 Algorithm and Implementation
In order to avoid the collapse of the generators [17], we perform minibatch discrimina-
tion by allowing the discriminator to have access to multiple samples in combination.
From this perspective, the minmax game (Eq. 1) is equivalent to the maximization
of a cross-entropy loss, and we use minibatch training to learn the parameters of the
three models. The corresponding empirical errors estimated over a minibatch B that
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contains mb samples from each of the sets SF , S1 and S2 are :

LD(B) = − 1

mb

∑
x∈B∩SF

1

K + 1

K∑
k=1

yk log
[
Dk(x

1, x2)
]

(7)

− 1

2mb

∑
x∈B∩S1

log
[
DK+1(G1(z

1, x2), x2))
]
− 1

2mb

∑
x∈B∩S2

log
[
DK+1(x

1, G2(x
1, z2))

]
LGv (B) = −

1

mb

∑
x∈B∩Sv

1

K + 1

K∑
k=1

yk log
[
Dk(Gv(z

v, x3−v), x3−v)
]
+ Lv

FM ; v ∈ {1, 2}

(8)

Minibatch stochastic training of Cond2GANs

Input: A training set S = SF ⊔ S1 ⊔ S2
Initialization: Size of minibatches, mb

Use Xavier initializer to initialize discriminator and gen-
erators parameters, respectively θ

(0)
d , θ

(0)
g1 , θ

(0)
g2

for i = 0 . . . T − 1 do
Sample randomly a minibatch Bi of size 3mb from
S1, S2 and SF ; create minibatches of noise vector
z1, z2 from U(−1, 1)
θ
(i+1)
d ← Adam(LD(Bi), θ

(i)
d , α, β) # Update of D

θ
(i+1)
g1 ← Adam(LG1(Bi), θ

(i)
g1 , α, β) # Update of G1

θ
(i+1)
g2 ← Adam(LG2(Bi), θ

(i)
g2 , α, β) # Update of G2

end

In order, to be in-
line with the premises of
Corollary 1; we empiri-
cally tested different solu-
tions and the most effec-
tive one that we found
was the feature match-
ing technique proposed in
[17], which addressed the
problem of instability for
the learning of generators
by adding a penalty term
Lv

FM = ∥Eprealf(x
1, x2) −

EpGv
f(x3−v, Gv(x

v))∥ , v ∈
{1, 2} to their correspond-
ing objectives (Eq. (8)).
Where, ∥.∥ is the ℓ2 norm and f is the sigmoid activation function on an interme-
diate layer of the discriminator. The overall algorithm of Cond

2
GANs is shown above.

The parameters of the three neural networks are first initialized using Xavier. For
a given number of iterations T , minibatches of size 3mb are randomly sampled from
the sets SF , S1 and S2. Minibatches of noise vectors are randomly drawn from the
uniform distribution. Models parameters of the discriminator and both generators
are then sequentially updated using Adam optimization algorithm [13]. We imple-
mented our method by having two layers neural networks for each of the components
of Cond

2
GANs. These neural nets are composed of 200 nodes in hidden layers with a

sigmoid activation function. Since the values of the generated samples are supposed
to approximate any possible real value, we do not use the activation function in the
outputs of both generators.1

4 Experiments
In this Section, we present experimental results aimed at evaluating how the generation
of views by Cond

2
GANs can help to take advantage of existing training examples, with

many having an incomplete view, in order to learn an efficient classification function.
We perform experiments on a publicly available collection, extracted from Reuters

1We will release the code for reproducibility and research purpose.
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RCV1/RCV2, that is proposed for multilingual multiclass text categorization2 (Table
1). The dataset contains feature vectors of documents originally presented in five
languages (EN, FR, GR, IT, SP). In our experiments, we consider four pairs of languages
with always English as one of the views ((EN,FR),(EN,SP),(EN,IT),(EN,GR)). Documents in
different languages belong to one and only one class within the same set of classes (K =
6); and they also have translations into all the other languages. These translations are
obtained from a state-of-the-art Statistical Machine Translation system [22] trained
over the Europal parallel collection using about 8.106 sentences for the 4 considered
pairs of languages.3

Table 1: The statistics of RCV1/RCV2 Reuters data collection used in our
experiments.

Language # docs (%) dim
EN 18, 758 16.78 21, 531
FR 26, 648 23.45 24, 893
GR 29, 953 26.80 34, 279
IT 24, 039 21.51 15, 506
SP 12, 342 11.46 11, 547

Total 111, 740

Class Size (all lang.) (%)
C15 18, 816 16.84
CCAT 21, 426 19.17
E21 13, 701 12.26
ECAT 19, 198 17.18
GCAT 19, 178 17.16
M11 19, 421 17.39

4.1 Experimental Setup
In our experiments, we consider the case where the number of training documents
having their two versions is much smaller than those with only one of their available
versions (i.e. mF ≪ m1 + m2). This corresponds to the case where the effort of
gathering documents in different languages is much less than translating them from
one language to another. To this end, we randomly select mF = 300 samples hav-
ing their both views, m1 = m2 = 6000 samples with one of their views missing and
the remaining samples without their translations for test. In order to evaluate the
quality of generated views by Cond

2
GANs we considered two scenarios. In the first one

(denoted by TENṽ), we test on English documents by considering the generation
of these documents with respect to the other view (v ∈ {FR, GR, IT, SP}) using
the corresponding generator. In the second scenario (denoted by TẼNv), we test
on documents that are written in another language than English by consider-
ing their generation on English provided by the other generator. For evalua-
tion, we test the following four classification approaches along with Cond2GANs;
one singleview approach and four multiview approaches. In the singleview ap-
proach (denoted by cv) classifiers are the same than the discriminator and they
are trained on the part of the training set with examples having their corre-
sponding view observed. The multiview approaches are MKL [4], co-classification
(co-classif) [1], unanimous vote ( mvb) [2]. Results are evaluated over the test
set using the accuracy and the F1 measure which is the harmonic average of

2https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual,

+Multiview+Text+Categorization+Test+collection
3http://www.statmt.org/europarl/
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precision and recall. The reported performance are averaged over 20 random
(train/test) sets, and the parameters of Adam optimization algorithm are set to
α = 10−4, β = 0.5.

4.2 Experimental Results
On the value of the generated views. We start our evaluation by compar-
ing the F1 scores over the test set, obtained with Cond2GANs and a neural network
having the same architecture than the discriminator D of Cond2GANs trained
over the concatenated views of documents in the training set where the missing
views are generated by Machine Translation. Figure 2 shows these results. Each
point represents a class, where its abscissa (resp. ordinate) represents the test
F1 score of the Neural Network trained using MT (resp. one of the generators of
Cond2GANs) to complete the missing views. All of the classes, in the different lan-
guage pair scenarios, are above the line of equality, suggesting that the generated
views by Cond2GANs provide
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Figure 2: F1-score per class measured for test pre-
dictions made by a Neural-Network, with the same
architecture than the discriminator of Cond2GANs,
and trained over documents where their missing
views are generated by MT, or by G1 or G2.

higher value information
than translations provided
by MT for learning the
Neural Network. This
is an impressive finding,
as the resources necessary
for the training of MT is
large (8.106 pairs of sen-
tences and their transla-
tions); while Cond2GANs

does both view completion
and discrimination using
only the available training
data. This is mainly be-
cause both generators in-
duce missing views with
the same distribution than
real pairs of views as
stated in Corollary 1.

Comparison between multiview approaches. We now examine the gains,
in terms of accuracy, of learning the different multiview approaches on a collec-
tion where for other approaches than Cond2GANs the missing views are completed
by one of the generators of our model. Table 2 summarizes these results obtained
by Cond2GANs, MKL, co-classif, and mvb for both test scenarios. In all cases
Cond2GANs, provides significantly better results than other approaches. This
provides empirical evidence of the effectiveness of the joint view generation and
class prediction of Cond2GANs. Furthermore, MKL, co-classif and Cond2GANs

are binary classification models and tackle the multiclass classification case with
one vs all strategy making them to suffer from class imbalance problem. Results
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obtained using the F1 measure are in line with those of Table 2 and they are
not reported for the sake of space.

Table 2: Test classification accuracy averaged over 20 random training/test sets.
For each of the pairs of languages, the best result is in bold, and a ↓ indicates
a result that is statistically significantly worse than the best, according to a
Wilcoxon rank sum test with p < .01.

Approaches (EN,v = FR) (EN,v = GR) (EN,v = IT) (EN,v = SP)
TENṽ TẼNv TENṽ TẼNv TENṽ TẼNv TENṽ TẼNv

MKL 75.6↓ 77.3↓ 79.4↓ 79.6↓ 78.4↓ 79.8↓ 81.2↓ 83.5↓
co-classif 81.4↓ 83.2↓ 84.3↓ 81.6↓ 82.7↓ 82.5↓ 85.1↓ 86.2↓
mvb 83.1↓ 84.5↓ 85.2↓ 79.9↓ 84.3↓ 82.1↓ 84.4↓ 86.2↓
Cond2GANs 85.3 85.1 86.6 82.9 85.3 84.5 86.5 88.3

Impact of the increasing number of observed views. In Figure 3, we
compare F1 measures between Cond2GANs and one of the single-view classifiers
with an increasing number of training samples, having the view corresponding
to the singleview classifier observed; while the number of training examples with
the other observed view is fixed. With an increasing number of training samples,
the corresponding singleview classifier gains in performance. On the other hand,
Cond2GANs can leverage the lack of information from training examples having
their other view observed, making that the difference of performance between
these models for small number of training samples is higher.
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Figure 3: F1 measure of Cond2GANs and a singleview classifier (cv) for an in-
creasing number of training samples with the corresponding view that is ob-
served. The number of training examples corresponding to the other view
(mv\ = 6000); and the number of training examples with their both views ob-
served is mF = 300.
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5 Conclusion
In this paper we presented Cond2GANs for multiview multiclass classification
where observations may have missing views. The model consists of three neural-
networks implementing a three players game between a discriminator and two
generators. For an observation with a missing view, the corresponding generator
produces the view conditionally on the other observed one. The discriminator
is trained to recognize observations with a generated view from others having
their views complete and to classify the latter into one of the existing classes.
We evaluate the effectiveness of our approach on another challenging applica-
tion than image analysis which is the domain of choice for the design of new
GAN models. Our experiments on a subset of Reuters RCV1/RCV2 show the
effectiveness of Cond2GANs to generate high quality views allowing to achieve
significantly better results, compared to the case where the missing views are
generated by Machine Translation which requires a large collection of sentences
and their translations to be tuned. As future study, we will be working on the
generalization of the proposed model to more than 2 views. One possible direc-
tion is the use of an aggregation function of available views as a condition to
the generators.
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