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Abstract

A model considering both unilateral contact, Coulomb friction, and adhesion is
presented. In the framework of continuum thermodynamics, the contact zone is
considered as a material boundary and the local constitutive laws are derived by
choosing two specific surface potentials : the free energy and the dissipation poten-
tial. Because of the non regular properties of these potentials, convex analysis is
used to derive the local behavior laws from the state and the complementary laws.
The adhesion is characterized by an internal variable β, introduced by Frémond,
which represents the intensity of adhesion. The continuous transition from a total
adhesive condition to a possible pure frictional one is enforced by using elasticity
coupled with damage for the interface. Non penetration conditions and Coulomb
law are strictly imposed without using any penalty. The variational formulation
for quasistatic problems is written as the coupling between an implicit variational
inequality, a variational inequality, and a differential equation. An incremental for-
mulation is proposed. An existence result under a condition on the friction coefficient
is given. A numerical method is derived from the incremental formulation and var-
ious algorithms are implemented : they solve a sequence of minimization problems
under constraints. The model is used to simulate a micro-indentation experiment
conducted to characterize the behavior of fiber/matrix interface in a ceramic com-
posite. Identification of the constitutive parameters is discussed.

Preprint submitted to Elsevier Preprint 19 January 2007



1 Introduction

This paper is concerned with the coupling of unilateral contact, friction, and
adhesion. The present model considers the interface as a material surface. The
unilateral condition and the Coulomb friction law are strictly imposed with-
out using any penalty. Adhesion and friction are strongly coupled through a
specific compliance with damage that acts only in traction or shear and that
disappears when the contact displacements increase. This insures a continuous
transition between total adhesive and pure frictional states [3,37]. Adhesion is
characterized by an intensity of adhesion β, previously introduced by Frémond
[15]. In the present model, evolution of this intensity of adhesion β includes a
viscosity effect. The thermodynamics basis of the model are given in Section
2 and a variational formulation is considered in Section 3. It is written under
the form of the coupling between two variational inequalities (of which one
is implicit) and a differential equation. Introducing an incremental formula-
tion allows us to give an existence theorem when the friction coefficient is
small. This incremental formulation suggests two numerical schemes to solve
the problem. Several algorithms are presented in Section 4. In Section 5, the
model is used to simulate the micro-indentation of a fiber of a composite ma-
terial. Identification of the model parameters is presented, and ability of the
model to describe the behavior of the fiber/matrix interface is discussed.

The present work is based on Frémond’s work on adhesion [15] and on previ-
ous works on quasistatic problems with friction [8,11,37,38]. Most of the works
on interface modelling have been conducted on fiber/matrix interface or on
delamination. Some of them are analytical [17,28,36,41]. They give a global
analysis of the decohesion, and friction modelling (when it is considered) is
elementary (Tresca’s law). Lemaitre [23] has given a formulation of interface
damage based on a viscoplastic analysis restricted to a surface. Needleman
[33,34] has proposed a decohesion model without friction, based on atomistic
considerations. An exponential representation is used for the interface poten-
tial. A few years later, Tvergaard [45] introduced a non dimensional damage
parameter to include a non reversible evolution of decohesion. The same au-
thor added the coupling with a frictional behavior, which is active only when
adhesion is totally broken. This induces a non smooth evolution of the contact
forces, which turn back to zero before friction starts. Recently Chaboche et al
[5] have introduced a way, slightly different of ours [4], to couple the two phe-
nomena ; it insures the continuity of the stress and displacement evolutions.
Stupkiewicz [43] adds the influence of micro-asperities in a strip model [32]
governed by energy or stress criteria. In these models, the contact conditions
(both the non penetration condition and the friction law) are regularized and
viscosity is not considered for the evolution of adhesion. For homogenization
problems, decohesion between inclusions and matrix has been considered in
[33] and in [31], where Michel et al use a Griffith criterion derived from inter-
face damage model with elastic domain. For delamination problems, adhesion
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has been widely studied by Allix and Ladeveze [1,2]. Contrary to the previ-
ous progressive decohesion models, several approaches have considered brittle
break down for the interface adhesion (either analytical or numerical treat-
ment) [17,22,29,30]. On the basis of material boundary hypothesis Klarbring
[18] proposed a thermodynamic analysis of frictional contact and Strömberg
et al [42] gave an extension to take wear into account.

Some works have been done considering an interphase model with the pres-
ence of a third body [6]. Although a third body approach would be attractive
for the sake of simplicity of the concept, numerical simulations are difficult for
two reasons : the parameters and the real geometry of the third body are very
hard to determine, and the numerical treatment (mesh,...) is difficult because
the interphase domain is one hundred or one thousand times smaller than
the other domains under consideration. On the contrary, asymptotic methods
and theoretical studies on the equivalent behavior of the third body when the
thickness decreases to zero are very constructive [13,16,19,25,26,40].

2 A thermodynamic formulation for the coupling of adhesion and
friction

2.1 Hypotheses and notations

Let Ω1 and Ω2 be two domains of Rd (d = 2, 3) occupied by two continuous
bodies, with a boundary separated in three disjoint parts for each domain :

∂Ωα = Γα
U ∪ Γα

φ ∪ Γα
C α = 1, 2 .

Let Γ1
φ, Γ2

φ denote the parts of the boundary where external forces φ1, φ2 are
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Fig. 1. Contact between two elastic bodies
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respectively applied (see Fig. 1). In the same manner, Γ1
U and Γ2

U are the parts
of ∂Ω1, ∂Ω2 where the displacements are prescribed and f 1 and f 2 denote the
imposed volume force densities. Let Γ1

C , Γ2
C denote the parts of the boundary

where the two solids are initially in contact. Introducting a gap in the unilat-
eral conditions would allow the treatment of a case where contact may occur
on a part larger than the present ΓC . Assuming small displacements hypoth-
esis, we have n1 = −n2, where nα denotes the outward normal unit vector
to ∂Ωα, α = 1, 2. Thus each particle of Γ1

C is coupled with a particle of Γ2
C

in a single valued correspondence. Consequently, the two material boundaries
Γα

C ⊂ ∂Ωα (α = 1, 2) define at the beginning a common zone of contact de-
noted ΓC : Γ1

C ≃ Γ2
C ≃ ΓC . The relative displacement between the two bodies

is defined on ΓC by [u] = u2 − u1 where u1 and u2 measure the displacements
of two corresponding points. For the normal/tangential decomposition, the
vector n1 is chosen (n = n1 = −n2) : [u] = UNn + UT with UN = [u].n. Ac-
cording to this choice, the non penetration condition will be written UN ≥ 0
(convenient for a gap condition). When the second solid is rigid (u2 = 0), the
usual Signorini condition UN = u1.n = u1.n1 ≤ 0 is obtained.

The internal force on ΓC is denoted R. By using the principle of virtual
power (see [12]), we obtain : R = σ1n1 = −σ2n2, according to the previous
choice for [u].

2.2 The general framework

Considering the contact area ΓC as a material boundary [12,15,18,42], we
introduce a surface density of internal energy E and a density of entropy
S associated to the pseudo domain ΓC . Then the Helmholtz free energies
can be written Ψ = E − ST on ΓC and ψ = e − sT in Ω1 ∪ Ω2 (where
e is the specific internal energy, s the specific entropy and T the absolute
temperature). According to Frémond [14,15], we introduce the internal state
variable β, which represents the intensity of adhesion (β = 1 means that the
adhesion is total, β = 0 means that there is no adhesion and 0 < β < 1 is the
case of partial adhesion). If adhesion is described with a damage parameter D,
we have β = 1 −D. As Michel et al [31] and Needlman [33], let us introduce
the normalized relative displacements uN = UN/l and uT = UT/l where l is a
characteristic length associated to the geometry such that uN < 1 and uT < 1.
Numerous choices are possible : in the example of Section 6, we take l equal to
the radius of the fiber. The following state variables are chosen : ǫ = (ǫij) , the
strain tensor in Ω1 ∪Ω2, the normalized relative displacement uT and uN and
the intensity of adhesion β on ΓC . Classically, let σr denote the thermodynamic
force associated to ǫ, where the superscript (.)r means reversible part. In the
same manner, we take Rr

N and Rr
T as the thermodynamic forces associated

to uN and uT . The internal variable β is then related to the thermodynamic
force of decohesion denoted by Gβ (see Table 1).
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Table 1
The thermodynamic variables.

State variables ǫ uN uT β

Thermodynamic forces σr Rr
N Rr

T Gβ

2.3 Free energies and state laws

Into the domain Ω1 ∪Ω2, the free energy ψ is the potential of elasticity (1),
and the classical state law (2) is written as follows.

ψα(ǫ) =
1

2ρ
Aα

ijkl ǫij ǫkl (1)

(σr)α = ρ
∂ψα(ǫ)

∂ǫ
(2)

In the following, we will consider only what concerns the contact boundary
ΓC , the part concerning Ω1 ∪Ω2 being a classical elasticity problem. Onto ΓC ,
the surface density of free energy Ψ is chosen as follows :

Ψ(uN , uT , β) =
1

l

(
C̃N

2
U2

Nβ
2 +

C̃T

2
‖UT‖

2β2

)
− w h(β) + I

K̃
(UN) + IP (β) (3)

where K̃ = {v / v ≥ 0} and P = {γ / 0 ≤ γ ≤ 1}.
Introducing the new variables uN = UN/l and uT = UT/l, the potential (3)

can be written as :

Ψ(uN , uT , β) =
CN

2
u2

Nβ
2 +

CT

2
‖uT‖

2β2 − w h(β) + I
K̃

(uN) + IP (β) (4)

where CN = l C̃N and CT = l C̃T .
The introduction of the indicator functions I

K̃
and IP imposes the unilateral

condition uN ≥ 0 and the condition β ∈ [0, 1]. The interfacial forces induced by
the adhesion are introduced under the form of a compliance law depending on
the current state of adhesion β and characterized by the initial stiffness CN and
CT . In the work of Truong Dinh Tien [44], concerning a frictionless problem
with adhesion, the penalty coefficients introduced for algorithmic reasons can
be considered as large limit values of CN and CT . The term w h(β) is a general
form of the energy of decohesion which is supposed to be differentiable. With
h(β) = β, w could be considered as Dupré’s energy. Other forms for h(β)
could be considered.

The pseudo-potential Ψ can be separated into :
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• a part (the first three terms) that is differentiable but not convex according
to the couple (u, β) (it is only convex according to u or to β separately),

• a part (the last two terms) that is convex but not differentiable.

To write the state laws, the two difficulties (lack of convexity and lack of differ-
entiability) are overcome by using local or partial subdifferentiation [3,12,15,37].
Then the state laws can be written as :

Rr
N ∈ ∂uN

Ψ(uN , uT , β) (5)

Rr
T ∈ ∂uT

Ψ(uN , uT , β) (6)

−Gβ ∈ ∂βΨ(uN , uT , β) (7)

where ∂u and ∂β denote respectively the subdifferential with respect to the
variables u and β.

The following relation (8) is easily deduced from (6). By making explicit the
subdifferentials ∂uN

and ∂β in (5) and (7), we obtain the following relations
on the normal components (9) and on the thermodynamic force Gβ (10).

Rr
T = CT uTβ

2 (8)

uN ≥ 0 −Rr
N + CN uNβ

2 ≥ 0
(
−Rr

N + CN uNβ
2
)
uN = 0 (9)





Gβ ≥ w h′(β) if β = 0

Gβ = w h′(β) − (CN u
2
N + CT ‖uT‖

2) β if β ∈ ]0, 1[

Gβ ≤ w h′(β) − (CN u
2
N + CT ‖uT‖

2) if β = 1.

(10)

The state laws show that :

- the reversible (elastic) part of the tangential force depends on the square of
the adhesion β,

- the reversible parts of the normal components of R and u satisfy a general-
ized Signorini condition (unilateral contact),

- the thermodynamic force Gβ, if β ∈]0, 1[, is composed of the adhesive energy
minus the elastic energy of the interface.
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2.4 Dissipation and complementary laws

The two laws of thermodynamics give the following form of the Clausius-
Duhem inequalities (in an isothermic evolution) :




ρψ̇ ≤ σ · ǫ̇ in Ω1 ∪ Ω2

Ψ̇ ≤ RN u̇N +RT .u̇T on ΓC .
(11)

In Ωα the behavior is totally reversible (elastic) and so σ = σr.
On ΓC , using the state laws (5), (6), (7) to evaluate the time derivative of Ψ

in the second Clausius Duhem inequality [3], the following expression for the
dissipation D is obtained.

D = (RN −Rr
N) u̇N + (RT −Rr

T ).u̇T +Gβ β̇ ≥ 0 (12)

The irreversible part of the contact forces are Rir
N = RN − Rr

N and Rir
T =

RT − Rr
T . The only dissipative processes under consideration are friction

and adhesion. To formulate the following complementary laws where the irre-
versible forces verify (12), we have to choose a pseudo-potential of dissipation
Φ = Φ(u̇T , β̇;χN) with χN = (Rr

N , uN , β) , positive, convex in (u̇T , β̇) , and
zero in (0, 0) (extension of standard generalized materials). We choose the
following form for the pseudo-potential of dissipation :

Φ
(
u̇T , β̇;χN

)
= µ

∣∣∣RN − CN uNβ
2
∣∣∣ ‖u̇T‖ +

b

p+ 1

∣∣∣β̇
∣∣∣
p+1

+ IC−(β̇) (13)

with C− = {γ ∈W/γ ≤ 0} and p ≤ 1. A power law is considered for the
evolution of the adhesion. The indicator function imposes that β̇ ≤ 0 : the ad-
hesion is allowed only to decrease and cannot be regenerated (not reversible).
This is in agreement with our application but other choices could be made for
other situations. The parameter µ is the friction coefficient of the Coulomb
law. The parameter b characterizes a time dependent evolution of the adhesion.

The complementary laws are then written :

Rir
N = 0 (14)

(Rir
T , Gβ) ∈ ∂Φ(u̇T , β̇;χN) (15)

and (15) can be written as :

Rir
T ∈ ∂u̇T

Φ(u̇T , β̇;χN) (16)

Gβ ∈ ∂β̇Φ(u̇T , β̇;χN) (17)
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The normal behavior has been supposed to be totally elastic. Making explicit
the subdifferentials in (16) and (17), we obtain on ΓC :

∥∥∥RT − CT uT β
2
∥∥∥ ≤ µ

∣∣∣RN − CN uNβ
2
∣∣∣ (18)

with :
∥∥∥RT − CT uT β

2
∥∥∥ < µ

∣∣∣RN − CN uNβ
2
∣∣∣ ⇒ u̇T = 0

∥∥∥RT − CT uT β
2
∥∥∥ = µ

∣∣∣RN − CN uNβ
2
∣∣∣ ⇒ ∃λ ≥ 0 ,

u̇T = λ(RT − CT uT β
2)

β̇ = −
(
G−

β /b
)1/p

, (19)

where G−

β denotes the negative part of Gβ.

2.5 The local model

Putting together the various relations obtained in the previous sections, the
local model coupling adhesion, friction, and unilateral contact is written on
ΓC as follows.

Unilateral conditions with adhesion

−RN + CN uNβ
2 ≥ 0 , uN ≥ 0 , (−RN + CN uNβ

2) uN = 0 (20)

Coulomb friction with adhesion

Rr
T = CT uTβ

2

‖RT −Rr
T‖ ≤ µ |RN − CN uNβ

2|

‖RT −Rr
T‖ < µ |RN − CN uNβ

2| ⇒ u̇T = 0

‖RT −Rr
T‖ = µ |RN − CN uNβ

2| ⇒ ∃λ ≥ 0 , u̇T = λ(RT −Rr
T )

(21)

Evolution of adhesion intensity

β̇ = −
[
(1/b) (w h′(β) − (CN u

2
N + CT ‖uT‖

2)β )
−
]1/p

if β ∈ [0, 1[

β̇ ≤ −
[
(1/b) (w h′(β) − (CN u

2
N + CT ‖uT‖

2)β )
−
]1/p

if β = 1 .
(22)

The contact variables are uN , uT , β, RN , RT . The six parameters of the model
are CN , CT (initial normal and tangential stiffness of the interface if adhesion
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is complete), µ (the friction coefficient), b (viscosity of the adhesion evolution),
w (limit of decohesion energy) and p (the power coefficient). In what follows,
we take h(β) = β.

Let us now analyze the interface behavior for a 2D case. The initial condi-
tions are supposed to be complete adhesion (β = 1) and zero displacement
(uT = uN = 0). Considering first the normal behavior (see Fig. 2), under com-
pressive action, the non penetration condition is strictly verified (uN = 0).

Under traction (uN ≥ 0), an adhesive resistance (RN = CN uNβ
2) is active

u        0    =

loadings

N

N

N

U

R

0

Adhesive limit

u        0    

 unloading

N

Fig. 2. Normal behavior (for uT = 0 here)

(elasticity with damage). The intensity of adhesion starts to decrease when
the displacement is sufficiently large such that the elastic energy becomes
larger than the limit of adhesion energy w. Evolution of the adhesion is then
governed by equation (22). When adhesion is totally broken, the classical Sig-
norini problem is obtained.

Considering now the shear behavior (see Fig. 3), note first that friction
acts only if a normal compression is applied ; if a normal traction is applied
(uN > 0), the sliding limit (µ |RN − CN uNβ

2|) is zero because of (20) and the
tangential behavior is elastic with damage (RT = CT uTβ

2). Under compres-
sion, the sliding limit is (µ |RN |) (because uN = 0). As long as the norm of the
tangential force ‖RT‖ is smaller than the sliding limit, sliding does not occur
(uT = 0 as initial condition and u̇T = 0 in relation (21)). When the sliding
limit is reached, an elastic tangential displacement occurs. The adhesion be-
gins to decrease when the adhesive limit is reached and evolution of β is then
governed by (22). When adhesion is lost (β goes to zero), the usual Coulomb
friction conditions are obtained.

If the loading remains constant (when the adhesion limit is overcome), the
adhesion keeps decreasing (by relaxation). If the tangential loading is now
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u  > 0  :  loading
T Adhesive part

Friction part

Tu       0    

0

Sliding limit

Adhesive limit
∆ TT

T

T
U

Tu  < 0  :  unloading

R

u  = 0  :  relaxation     

Fig. 3. Tangential behavior (RN is constant)

backward, an opposite tangential displacement occurs only when the other
side of the Coulomb cone is reached.

3 Variational formulation of the quasistatic problem

3.1 The quasistatic problem

Problem P1.
Find the displacements uα , the stresses σα (α = 1, 2), the strains ǫ, the
contact force R such that :

ǫ = grads u
α in Ωα (23)

div σα + fα = 0 in Ωα (24)

σαnα = φα on Γα
φ (25)

uα = 0 on Γα
U (26)

[u] = u2 − u1 = uN n + uT on ΓC (27)

σ1n1 = −σ2n2 = RN n + RT on ΓC (28)

σα = Kα : ǫ in Ωα (29)

and on ΓC :

−RN + CN uNβ
2 ≥ 0 , uN ≥ 0 ,

(
−RN + CN uNβ

2
)
uN = 0 (30)

Rr
T = CT uTβ

2
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‖RT −Rr
T‖ ≤ µ

∣∣∣RN − CN uNβ
2
∣∣∣ (31)

‖RT −Rr
T‖ < µ

∣∣∣RN − CN uNβ
2
∣∣∣ ⇒ u̇T = 0

‖RT −Rr
T‖ = µ

∣∣∣RN − CN uNβ
2
∣∣∣ ⇒ ∃λ ≥ 0 , u̇T = λ(RT −Rr

T ) ,

β̇ = −
[
(1/b)

(
w h′(β) − (CN u

2
N + CT ‖uT‖

2)β
)
−

]1/p

if β ∈ [0, 1[ , (32)

β̇ ≤ −
[
(1/b)

(
w h′(β) − (CN u

2
N + CT ‖uT‖

2)β
)
−

]1/p

if β = 1 .

The time dependence of the loading is slow enough to make the inertial terms
negligible.

3.2 The variational formulation

In what follows, we make the simplest hypothesis of a linear dissipation for
the adhesion evolution (case p = 1).

We denote by V α the following spaces :

V α =
{
vα ∈ [H1(Ωα)]

d
; vα = 0 a.e. on Γα

U

}
, α = 1, 2,

and we set

V = V 1 × V 2, K = {v = (v1, v2) ∈ V ; vN ≥ 0 a.e. on ΓC} ,

H = L∞(ΓC).

For all v ∈ V the norm on V is given by ‖v‖V = ‖v1‖V 1 + ‖v2‖V 2 and

〈., .〉 shall denote the duality pairing on H
1

2 (ΓC) ×H−
1

2 (ΓC) .
We suppose that :

f ∈W 1,2(0, T ; [L2(Ω1)]
d
× [L2(Ω2)]

d
),

φ ∈ W 1,2(0, T ;
[
L2(Γ1

φ)
]d

×
[
L2(Γ2

φ)
]d

),

which imply that F ∈ W 1,2(0, T ;V ), where

(F, v) =
∑

α=1,2

[∫

Ωα
fα.vαdx+

∫

Γα
φ

φα.vαds

]
∀v ∈ V.
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We shall adopt the following notations :

• a : V × V −→ IR,

a(u, v) = a1(u1, v1) + a2(u2, v2) ∀u = (u1, u2), v = (v1, v2) ∈ V,

where aα(uα, vα) =
∫

Ωα
Aα

ijklǫij(u
α)ǫkl(v

α)dx, α = 1, 2 .

• j : H × V × V −→ IR ,

j(β, u, v) =
∫

ΓC

µ|σ∗

N(Pu1) + CNβ
2uN | ‖vT‖ds,

where P is the projection of W 1,2(0, T ;V 1) on V 1
0 with

V 1
0 =

{
w1 ∈ W 1,2(0, T ;V 1);

∫ T

0
a1(w1, ψ) dt

=
∫ T

0
(f 1, ψ)[L2(Ω1)]d dt+

∫ T

0
(φ1, ψ)

[L2(Γ1

φ
)]

d dt,

∀ψ ∈ L2(0, T ;V 1), ψ = 0 a.e. on ΓC×]0, T [
}
,

µ ∈ L∞(ΓC) and µ ≥ 0,

( . )∗ : H−
1

2 (ΓC) → L2(ΓC) is a linear and compact mapping.

• cN , cT : H × V × V −→ IR ,

cN(β, u, v) =
∫

ΓC

CNβ
2uNvNds and cT (β, u, v) =

∫

ΓC

CTβ
2uT .vTds.

• y(β, u) = −
1

b

[
w − (CN u

2
N + CT ‖uT‖

2)β
]
−

.

Then the local problem P1 admits the following variational formulation (see
[3,11,37]).

Problem P2.
Find (u, β) ∈W 1,2(0, T ;V ) ×W 1,2(0, T ;H) such that u(0) = u0,
β(0) = β0 and for almost all t ∈ [0, T ], u(t) ∈ K and

a(u, v − u̇) + j(β, u, v) − j(β, u, u̇) + cT (β, u, v − u̇) ≥

(F, v − u̇) + 〈σN(u1), vN − u̇N〉 ∀ v ∈ V
(33)

〈σN(u1), zN − uN〉 + cN(β, u, z − u) ≥ 0 ∀ z ∈ K, (34)

β̇ = y(β, u) a.e. on ΓC , (35)
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where the initial conditions u0 ∈ K, β0 ∈ H, β0 ∈ [0, 1[ a.e. on ΓC and satisfy
the following compatibility condition :

a(u0, w − u0) + j(β0, u0, w − u0) + cT (β0, u0, w − u0) ≥

(F (0), w − u0) ∀w ∈ K.
(36)

This problem is a generalization of the quasistatic unilateral contact problem
with friction considered by Cocu et al in [11].

4 Incremental formulation and mathematical results

First, let us focus on the properties of the bilinear form a and the mapping j
involved in the problem P2 :

a(., .) is continuous on V × V and coercive i.e. it satisfies

∃M > 0 ∀u ∈ V ∀v ∈ V |a(u, v)| ≤M‖u‖V ‖v‖V , (37)

∃m > 0 ∀u ∈ V a(u, u) ≥ m‖u‖2
V , (38)

and the mapping j(., ., .) satisfies the following property :

∃C > 0 ∀u, ū, v, v̄ ∈ V 1
0

|j(β, u, v) − j(β, u, v̄) − j(β, ū, v) + j(β, ū, v̄)| ≤ µ̄C‖u− ū‖V ‖v − v̄‖V ,
(39)

with µ̄ = |µ|L∞(ΓC) .
An incremental formulation is obtained by operating a time discretization of
problem P2, taking n ∈ IN∗ and setting ∆t = T/n, ti = i∆t and F i = F (ti)
for i = 0, ..., n. Using an implicit scheme we obtain the following sequence of
problems (P n

i ), i = 0, ..., n− 1, defined for a given (u0, β0) ∈ K ×H .

Problem Pn
i .

Find (ui+1, βi+1) ∈ K ×H such that :

a(ui+1, v − ui+1) + j(βi+1, ui+1, v − ui) − j(βi+1, ui+1, ui+1 − ui)

+c(βi+1, ui+1, v − ui+1) ≥ (F i+1, v − ui+1) ∀v ∈ K
(40)

βi+1 − βi = ∆t y(βi+1, ui+1) a.e. on ΓC , (41)

where c(·) = cN(·) + cT (·).

The incremental problem Pn
i is solved using a fixed point method as follows.
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For every ū ∈ K let us denote by s(ū) = β the solution of

β = ∆t y(β, ū) + βi. (42)

For every β ∈ H we denote by u(β) the solution of

u ∈ K a(u, v − u) + j(β, u, v − ui) − j(β, u, u− ui)

+c(β, u, v − u) ≥ (F i+1, v − u) ∀v ∈ K.
(43)

The existence of the solution for problem (42) is clear and inequalities such
as (43) have a unique solution if the friction coefficient is sufficiently small i.e.

µ̄ <
m

C
(see [9]). We suppose from now on that µ satisfies this condition.

We define the mapping T : K −→ K by

∀ū ∈ K T (ū) = u(s(ū)).

By a straightforward computation, we obtain that ∃ k1 > 0 such that for all
ū1, ū2 ∈ K

|s(ū1) − s(ū2)| ≤ k1∆t (‖ū1‖ + ‖ū2‖) ‖[ū1 − ū2]‖ a.e. on ΓC . (44)

Let us now set u1 = u(s(ū1)), u2 = u(s(ū2)). Adding the inequalities (43) with
u = u1, v = u2 and u = u2, v = u1 and using the properties of a, j and b one
can show that ∃ k2 > 0 such that for all ū1, ū2 ∈ K

||u1 − u2||
2 ≤ k2

∫

ΓC

|u2| |u1 − u2| |s(ū1) − s(ū2)|ds. (45)

From the inequalities (44), (45) and the relation ||u|| ≤ k3 (with k3 indepen-
dent of ū), satisfied by u(s(ū)), it follows that T is a contraction mapping for
sufficiently small ∆t. Then T has a unique fixed point u and (u, s(u)) is the
solution of the incremental problem Pn

i (see also [10]).

5 Numerical methods and algorithms

The previous sections showed that the two variational inequalities (one is
implicit) coupled with the differential equation on β can be reduced for the

14



incremental formulation to the only one variational inequality (40). By ex-
tending the results of [11], it is evidenced that this variational inequality is
very similar to the one obtained for the static problem of Coulomb friction
with unilateral contact without adhesion. As shown in [11], two alternative
discrete formulations (one set on the variables ui+1 and the other one set on
the increments ∆ui+1 = ui+1−ui) can be associated : they include extra terms
related to the previous time steps (velocity formulation of the friction) and to
the variable β (coupling with adhesion).

For the time discretization, an implicit Euler method was introduced in the
previous section. The implicit or semi-implicit character of the integration is
important because the intensity of adhesion β may decrease very fast during
the loading. A θ-method is also used ; it improves the accuracy of the solution.
For the sake of simplicity, only the Euler method is presented here.

A finite element approximation is used to solve the problem Pn
i at each time

step ti+1. Only 2D problems are considered here. In Note 2, a convenient treat-
ment for 3D problems is given.

The approximate problem Ph
i associated to problem Pn

i is written:

Problem Ph
i .

For each time step ti+1, find β̄h fixed point of the application s(·) :

βh −→ s
(
uh(βh)

)
= βi

h + ∆y
(
βh, uh(βh)

)
,

where uh(βh) is solution of Problem Qh
i .

Problem Qh
i .

Find uh(βh) ∈ Kh such that ∀wh ∈ Kh,

a(uh, wh − uh) + πh jh(β
h, uh, wh − ui

h) − πh jh(β
h, uh, uh − ui

h)

+ c(βh, uh, wh − uh) ≥ (F i+1
h , wh − uh) ,

where :

- Kh =
{
vh ∈ Uh / vh ≥ 0 on ΓC

}
is the set of the admissible displacements

with (Uh)h a family of finite dimensional spaces which constitutes a finite
element approximation of V ,

- πh denotes the projection on the finite element discretization; the choice of
this extra projection for the approximate problem makes the approximation
of the absolute value in j(·, ·, ·) much simpler (as shown in [27]),

- βi
h, u

i
h are the approximate solutions computed for the previous step ti,

- y(βh, uh(βh)) = −
1

b

[
w − (CN u

h
N

2
+ CT ‖uh

T‖
2)βh

]−

- c(βh, uh, wh−uh) =
∫

ΓC

CNβ
h2
uh

N(wh
N −uh

N)ds+
∫

ΓC

CTβ
h2
uh

T .(w
h
T −u

h
T )ds ,

- jh(β
h, uh, wh − ui

h) =
∫

ΓC

µ
∣∣∣RN(uh) − CNβ

h2
uh

N

∣∣∣
∥∥∥wh

T − ui
hT

∥∥∥ds .
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For solving the implicit variational inequality in problem Qh
i , let us intro-

duce a fixed point method on the sliding limit. As show in [21,27,38], problem
Qh

i is then equivalent to the problem Rh
i .

Problem Rh
i .

Find ḡ fixed point of the application t(·) :

g −→ t
(
uh(g)

)
= µ

∣∣∣RN(uh(g)) − CNβ
h2
uh

N(g)
∣∣∣ ,

where uh(g) is solution of problem Sh
i .

Problem Sh
i .

Find uh(g) ∈ Kh such that ∀wh ∈ Kh,

a(uh(g), wh − uh) + πh j
⋆(wh − ui

h) − πh j
⋆(uh(g) − ui

h)

+ c(βh, uh(g), wh − uh(g)) ≥ (F i+1
h , wh − uh(g)) ,

where j⋆(v) =
∫

ΓC

g ‖vT‖ds.

Now, problem Sh
i is a classical variational inequality problem associated to

a Tresca problem with a given sliding limit g. A minimum principle can be
associated, thus problem Sh

i is equivalent to the following problem Th
i .

Problem Th
i .

Find uh
g such that

J
(
uh

g

)
≤ J (v) ∀v ∈ Kh

with

J (v) =
1

2
a(v, v) + j⋆(v − ui

h) +
1

2
c(βh, v, v) − (F i+1

h , v).

This is a minimization problem under constraint (v ∈ Kh) of a quadratic
functional including a non differentiable part (j⋆(v− ui

h)). The discrete prob-
lem is then written as follows :

Problem Uh
i .

Find u ∈ IK such that

J (u) ≤ J (v) ∀v ∈ IK

with

J (v) =
1

2
vTAv +GT

∣∣∣v − ui
h

∣∣∣+
1

2
vTC(β)v − F i+1

h

T
v,

where :
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- IK = {ΠKi with Ki = R+ if i ∈ Ic
N and Ki = R if not } (if the shape func-

tions are strictly positive the approximation is internal : that is the case
when linear elements (T3 or Q4) are used).

- Ic
N is the set of the number of degrees of freedom concerning the normal

components of the contact nodes,
- A is the matrix of dimension N = dim(V ) : Aij = a(wi, wj),
- C is the diagonal matrix of dimension M (M is the number of contact

nodes) : Ckl = c(βh, wk, wl),

- G is the vector of dimension M : Gj =
∫

ΓC

g wjds .

Problem Uh
i is very similar to the one solved in [11,21,38]. The main difference

is that, at each step, the terms of A concerning the contact variables have to
be modified by adding the term Ckl related to the current contact condition.
The memory of the loading history (velocity formulation of the friction) is

given by the term
∥∥∥wh − ui

h

∥∥∥ in the functional j⋆ of the variational inequality

of problem Sh
i , where ui

h is the solution at the previous time step.
Various solvers of problem Uh

i have been implemented :

- Successive Over-Relaxation with Projection (see [21,38]),
- Gauss Seidel with Aitken acceleration and Projection,
- Projected Conjugate Gradient with Preconditioning (see [39]).

These algorithms are robust, and the average number of iterations is smaller
than the number of degrees of freedom. The convergence of the fixed point
of the sliding limit g (Problem Rh

i ) is fast (generally 7 or 8 iterations), and
a diagonal process (coarse resolution for the first values of g) improves the
efficiency of the algorithm. Computational times are given in the next section.

Note 1 : An alternative choice of the unknowns.
As given in [11], problem Sh

i can also be written under the form of an equiv-
alent problem where the unknown is the increment of displacement ∆ui+1 =
ui+1 − ui

∆t
( velocity formulation). In that case, the convex IK changes at each

step, and the memory of the loading appears in the contribution to the loading
term of the contact forces at the previous time step.

Note 2 : An alternative solver (see [7,8,20,35]).
The incremental problem Ph

i can also be written as a complementarity prob-
lem. Two extra variables must be introduced (see [20]) : sliding is separated
into right and left slidings. After condensation of the problem, which is a
reduction of the problem to only the contact variables, various algorithms
of mathematical programming can be used. We have implemented Lemke’s
method (see [7,8,35,38]). It is a powerful pivoting direct method. Compari-
son with other methods can be found in [8]. By making the Coulomb cone
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polygonal, 3D problems can be treated (see [20]).

6 An application : modelling of the fiber/matrix interface of a
composite material

We have used the present model to describe the behavior of the fiber/matrix
interface of composite materials. The global study deals with the interaction
of a crack in the matrix with a fiber/matrix interface. The final topic is to
optimize the characteristics of the interface in order to enforce the resistance
of the composite to macro- and micro-crack progression. The first step of this
study consists of the validation of the model by considering simulations on
micro-indentation experiments carried out at the ONERA (Office National
d’Etudes et de Recherches Aerospatiales). This is widely discussed from a me-
chanical point of view in [24]. Some corrections of the experiment data have
to be made to take into account the plastic zone under the indentor, and
the global elasticity of the testing bench. Various geometries are considered,
boundary conditions are discussed, and residual thermal stresses are taken
into account. To complete the validation, different loadings are simulated :
single loading, cycles, relaxation, different loading velocities, etc.

In the present paper, we present only the ability of the model to describe
the complex behavior of a fiber/matrix interface during a micro-indentation
experiment (push-in). A qualitative identification of the model parameters is
conducted on a single experiment, and the numerical results are discussed
in relation to the fundamental choices of the model : smooth evolution from
adhesion to friction, strict unilateral conditions, etc.

6.1 Experiment and model

A push-in experiment carried out at the ONERA on a SIC/SIC composite is
used to test the model. The parameters are identified on the plot of the evo-
lution of the force on the indentor relatively to its prescribed displacement.
Figure 4 shows the model geometry. The radius of the fiber is Rf = 8.6µm. By
analyzing the volume density of fibers (Vf = 40%), the radius Rm = 12.6µm
is chosen to define a zone of pure matrix. The extra zone is defined as an
equivalent homogeneous material equivalent to the composite one by using
a mixture rule. Various global dimensions were tested. Results are given for
L = 200µm (radius of the domain 23 times larger than the fiber one) and
h = 1600µm. The boundary conditions are given on Fig. 4.
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Fig. 4. The micro-indentation test

The elasticity coefficients of the different materials are given on Table 2. The
characteristic length l is taken equal to the fiber radius : l = 8.6µm. A vertical
prescribed displacement is applied on the indentor. A frictionless unilateral
contact is considered between the indentor and the upper part of the fiber.

Table 2
Elasticity coefficients.

E (Gpa) ν

fiber 200 0.25

matrix 350 0.2

composite 290 0.22

6.2 Simulation and identification of the parameters

The finite element mesh is given on Fig. 5 and 6. Triangle T3 are used. The
mesh has 1419 nodes of which 300 are contact nodes of the interface.

Results of the identification of the model parameters are given on Table 3
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Zoom

Fig. 5. Initial Mesh. Fig. 6. Zooms.

and on Fig. 7. The same contact stiffness was chosen for the normal and the
tangential interface behavior : CN = CT = C. Figure 7 shows the ability of
the model to fit the force/displacement evolution of the push-in experiment.
A more realistic identification is conducted in [24] on a collection of experi-
ments. Mechanical considerations give a specified range of variations for each
parameter. For the contact stiffness, the range is evaluated by considering the
composition and the thickness of the layer of carbon and oxyde in the inter-
face. On Fig. 7, we have also plotted the results of the simulation by making

Table 3
First parameter identification.

parameters values

Friction coefficient µ 0.075

Contact stiffness C 0.007 N/µm2

Energy of adhesion w 1 J/m2

Adhesion viscosity b 25N.s/m

µ = 0 (no friction) and w = 0 (no adhesion) in the values of the parameters
given on Table 3. This is helpful to better understand the experimental results
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: the change of the slope is strongly related to the lost of adhesion and the final
slope to the residual friction between the fiber and the matrix when adhesion
is broken.

On Fig. 8, the contact condition is presented for a given step of the load-
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Fig. 7. Simulation and experimental results.

ing. The values of the ratio RT/RN (scale on the left), the adhesion intensity
β, and the tangential sliding uT (scales on the right) are plotted along the
interface. Three zones are clearly characterized :

• zone 1 : close to the indentor, adhesion is totally broken (β ≃ 0) and only
friction remains active (RT/RN = µ),

• zone 2 : in this transition zone, adhesion is partial (0 < β < 1) and the
elasticity acts (RT/RN > µ),

• zone 3 : on this part, the interface is still weakly affected, the adhesion is
total (β = 1).

The smooth evolution of the solution underlines the good property of the
model, which gives a continuous transition from total adhesion to pure fric-
tional contact.
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6.3 Computational aspects

In that case, the Aitken - Gauss Seidel solver has been used. The number of
iterations is quite the same as it is for the successive overrelaxation solver but
the determination of the optimal relaxation parameter is not needed in that
case. For the time discretization, the number of steps is 20. The time steps are
chosen so as to correctly follow the changes in the condition of the contact:
there is no convergence problem with large increments. For each step of the
loading, the average number of iterations of the fixed point on the sliding limit
g is 7 ; the one on the fixed point on the adhesion intensity β (treatment of the
implicit integration) is 3. The average number of Aitken - Gauss Seidel solver is
600. This includes the fixed point iterations on g because a diagonal process is
used : for the first values of g, a coarse resolution is conducted (the convergence
test is coarse), and when more precise values of g are computed the accuracy of
the resolution is enforced. The global CPU time, for the complete computation
of the results given on Fig. 7 is 40 mn on a VAX 8400/bi-processor 350MHz.

22



7 Conclusion

A model coupling adhesion and friction that is based on the choice of conve-
nient thermodynamics potentials has been elaborated. Damage, through trac-
tion and shear but not compression, that is introduced in the initial elasticity
of the interface provides a smooth transition between the adhesive and fric-
tional states. The unilateral contact conditions are strictly imposed without
penalty regularization. It remains possible to add some elasticity in compres-
sion in case of mechanical necessity because the problem is then more regular.
Viscosity of the evolution of the intensity of adhesion is considered. The limit
case when viscosity may be neglected can be treated without numerical diffi-
culties.

The variational formulation given as the coupling between an implicit vari-
ational inequality, a regular variational inequality, and a differential equation
is constructive to establish an existence result and a condition of uniqueness,
and to propose a discretization scheme.

The numerical methods based on optimization methods are robust. A direct
mathematical programming method, presented in [7,8,35], may also be used.

This application to the simulation of fiber/matrix interface is only a test on
the ability of the model to describe this kind of phenomena. A more complete
analysis has been conducted in collaboration with ONERA [24]. An extended
paper will be presented. The role of viscosity and of anisotropy in the behavior
of such an interface should be investigated. Our undergoing research concerns
the interaction of a crack with an interface so as to better understand crack
progression in composite materials [30].

Acknowledgments : The experimental result in Fig. 7 was provided by the
Office National d’Etudes et de Recherches Aerospatiales (ONERA).

References
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fragile-fragile, Comptes-Rendus des 8 èmes Journées Nationales sur les
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INSA Lyon (1988).
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special issue, supplement n◦1 to 7, (1988) 111-128.

[39] M. Raous and S. Barbarin, Preconditioned conjugate gradient method for a
unilateral problem with friction, in Contact Mechanics, A. Curnier (Ed), Presses
Polytechniques et Universitaires Romandes (1992) 423–432.
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