Hydrogen bonding to carbonyl hydride complex Cp*Mo(PMe3)2(CO)H and its role in proton transfer - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Dalton Transactions Année : 2010

Hydrogen bonding to carbonyl hydride complex Cp*Mo(PMe3)2(CO)H and its role in proton transfer

Résumé

The interaction of the carbonyl hydride complex Cp*Mo(PMe3)2(CO)H with Brønsted (fluorinated alcohols, (CF3)nCH3−nOH (n = 1–3), and CF3COOH) and Lewis (Hg(C6F5)2, BF3·OEt2) acids was studied by variable temperature IR and NMR (1H, 31P, 13C) spectroscopies in combination with DFT/B3LYP calculations. Among the two functionalities potentially capable of the interaction – carbonyl and hydride ligands – the first was found to be the preferential binding site for weak acids, yielding CO⋯HOR or CO⋯Hg complexes as well as CO⋯(HOR)2 adducts. For stronger proton donors ((CF3)3COH, CF3COOH) hydrogen-bonding to the hydride ligand can be revealed as an intermediate of the proton transfer reaction. Whereas proton transfer to the CO ligand is not feasible, protonation of the hydride ligand yields an (η2-H2) complex. Above 230 K dihydrogen evolution is observed leading to decomposition. Among the decomposition products compound [Cp*Mo(PMe3)3(CO)]+[(CF3)3CO·2HOC(CF3)3]− resulting from a phosphine transfer reaction was characterized by X-ray diffraction. Reaction with BF3·OEt2 was found to produce [Cp*Mo(PMe3)2(CO)BF4] via initial attack of the hydride ligand.
Fichier principal
Vignette du fichier
275-10.1039-b916084A-Accepted.pdf (583.7 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03178173 , version 1 (23-03-2021)

Identifiants

Citer

Pavel Dub, Oleg A Filippov, Natalia V Belkova, Jean-Claude Daran, Lina M Epstein, et al.. Hydrogen bonding to carbonyl hydride complex Cp*Mo(PMe3)2(CO)H and its role in proton transfer. Dalton Transactions, 2010, 39 (8), pp.2008-2015. ⟨10.1039/B916084A⟩. ⟨hal-03178173⟩
55 Consultations
115 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More