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Parametric Analysis of the Vibration Control of Sandwich 
Beams Through Shear-Based Piezoelectric Actuation 

M. A. TRINDADE, * A. BENJEDDOU AND R. OHAYON 

Structural Mechanics and Coupled Systems Laboratory, Conservatoire National des Arts et Metiers, 2, rue Conte, 75003, Paris, France 

ABSTRACT: This paper presents a comparative numerical analysis of shear and extension actua­
tion mechanisms for the bending vibrations control of sandwich beams. The extension actuation 
mechanism denotes the use of through-thickness poled piezoelectric actuators bonded on the surfaces 
of the structure such that, when submitted to a through-thickness applied electric potential, these ac­
tuators produce axial stresses or strains. The shear actuation mechanism, in the contrary, is obtained 
through an embedded longitudinally poled piezoelectric actuator that, subjected to the same electric 
potential, produces shear stresses or strains. Theoretical and finite element models of a sandwich 
beam, capable of dealing with both mechanisms, are presented. The models are based on 
Bernoulli-Euler assumptions for the surface layers and Timoshenko ones for the core. An optimal 
state feedback control law is used to maximize the damping of the first four natural modes of the sand­
wich beam. The influence of important parameters variation, such as actuator thickness and struc­
ture/actuator modulus ratio, on the performance of the control system is analyzed under limited input 
voltage and induced beam tip transverse deflection. Results suggest that shear actuators can be more 
effective than extension ones for the control of bending vibrations. 

INTRODUCTION 

PIEZOELECTRIC materials are widely used for structural 
vibration control. Commonly, they are bonded on the 

surface of the structure and, when activated by an applied 
electric field, their induced membrane deformation controls 
the vibrations of the structure. In this case, constant 
through-thickness electric fields are imposed to a trans­
versely poled piezoelectric actuator, using the so-called e31 
piezoelectric constant. This defines the extension actuation 
mechanism which has been widely used on either active con­
trol applications (Chandra and Chopra, 1993; Crawley and 
Anderson, 1990) or hybrid active-passive damping treat­
ments (Baz, 1997; Huang, Inman and Austin, 1996; 
Tomlinson, 1996; Varadan, Lim and Varadan, 1996). 

Recently, developments in composites design have 
brought attention to the use of embedded actuators. Although 
extension actuators can be embedded to produce torsional 
deformation (Bent, Hagood and Rodgers, 1995) using Piezo­
electric Fiber Composites with or without Interdigitated 
Electrodes (Hagood et al. 1993), for the control of bending 
vibrations, they are not optimal on embedded configurations. 
Some recent works presented shear actuators, that are longi­
tudinally poled and, when subjected to transverse electric 
field, present shear deformations through the so-called e15 
piezoelectric constant. This leads to the less known shear ac­
tuation mechanism. In fact, the shear mode may also be ob­
tained by applying axial electric fields on standard trans­
versely poled piezoelectric actuators. However, putting 

*Author to whom correspondence should be addressed. 

conductors on side surfaces is a difficult task and leads to 
small axial electric fields for plate-type actuators. So that one 
should prefer to apply transverse electric fields on axially 
poled actuators. Figure 1 illustrates both actuation mecha­
nisms. Hence, a comparative numerical static analysis using 
a commercial finite element code has been performed by Sun 
and Zhang ( 1995), who proposed also a theoretical model for 
shear-based actuators (Zhang and Sun, 1996). It was shown 
that embedded shear actuators are subjected to lower stresses 
than surface-mounted extension actuators, under actuation. 

Shear actuation mechanisms were also studied by the pres­
ent authors. A sandwich beam finite element, using the mean 
and relative axial displacements of the core skins as main pa­
rameters, was developed and validated (Benjeddou, 
Trindade and Ohayon, 1997). A comparison of extension and 
shear actuation mechanisms in static and free-vibration anal­
ysis was then carried out using this element discretization 
(Benjeddou, Trindade and Ohayon, 2000). It showed that for 
bending, shear actuators induce distributed actuation mo­
ments in the structure [Figure l(b)] unlike extension actua­
tors which induce boundary point forces [Figure l(a)]. 
Therefore, it is proposed that the shear actuation mechanism 
may lead to less problems of debonding in actuators bound­
aries and to minor dependence of the control performance on 
actuators position and length. To provide a better understand­
ing of the energy dissipation characteristics of both mecha­
nisms, another sandwich beam finite element was developed, 
using the surface layers mean and relative axial displace­
ments as independent variables (Benjeddou, Trindade and 
Ohayon, 1999b). Comparisons between the two finite ele­
ments showed that the second one presents better and faster 
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a) Extension actuation mechanism b) Shear actuation mechanism 

Figure 1. Piezoelectric extension and shear actuation mechanisms. 

convergence (Benjeddou, Trindade and Ohayon, 1999a). 
That is why it was retained for current and future researches. 

Using the strain-induced piezoelectric coupling constant 
d15, Kim et al. ( 1997) have recently proposed composite pi­
ezoelectric assemblies for shear-based torsional actuators for 
the production of large angular displacement and torque. 
They discussed actuator designs and assembly methods, ma­
terial preparation, poling procedures, test results for joint 
strengths, and actuator output capabilities. It was pointed out 
that commercially available PZT piezoelectrics are opti­
mized for their extension response but not for their shear be­
havior. 

This paper aims to present a comparative study of shear 
and extension actuation mechanisms for structural bending 
vibration control. Theoretical and finite element models to­
gether with an LQR optimal control strategy are presented. 
Then, under limited input voltage and induced beam tip 
transverse deflection, these are used to study control perfor­
mances of both mechanisms through parameters variations, 
such as actuator thickness, structure/actuator modulus ratio 
and core filling material properties. 

THEORETICAL FORMULATION 

Two configurations of a symmetric three-layer sandwich 
beam are considered. In the first one, an elastic central core is 
sandwiched between two transversely poled piezoelectric 
layers [Figure l(a)], whereas, in the second one, two elastic 
layers sandwich a longitudinally poled piezoelectric core 
[Figure l(b)]. For both cases, a transverse electric field is ap­
plied to piezoelectric layers, which have electrodes on top 
and bottom skins. However, elastic layers are assumed insu­
lated. All layers are assumed perfectly bonded and in plane 
stress state. Top and bottom layers are assumed to behave as 
Bernoulli-Euler beams, whereas Timoshenko theory is re­
tained for the central core to allow shear deformation. This is 
necessary for the shear actuation mechanism. Local axes are 
attached to surface layers at their left end centers, and a 
global one is attached to the left end center of the beam, so 
that beam centroidal and elastic axes coincide with the 
x-axis. The length, width and thickness of the beam are de­
noted by L, b and h , respectively. a, b, c indices indicate top,
bottom and core layers quantities and/index is used for sur­
face layer parameters. The geometrical and kinematics de­
scriptions of the sandwich beam are given in Figure 2. 

Mechanical Displacements and Strains 

Starting with linear axial displacements for each layer and 
enforcing the interface displacement continuities, the fol­
lowing expressions for the surface layers and core axial dis­
placements are obtained 

k = a, b ( + for k = a and - for k = b) ( 1) 

u=u+z ( u+A.w') · A.=
h
f c h • h c c 

Where Za =(ha+ hc)/2, Zb =-(hb + hc)/2 and w' is the first de­
rivative of the transverse deflection w, supposed constant
through-thickness. u and u are the mean and relative axial
displacements of the surface layers, defined by, 

(2) 

here, ua and uh are mid-plane displacements of the top and
bottom layers (Figure 2). 

z / 

w 

x 
Figure 2. Geometrical and kinematics descriptions of the sandwich 
beam. 
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From the above displacements and usual strain-displace­
ment relations, layers strains can be written as 

s [ u 1 '] £cs=£c= -+(/\.+l)w 
h, 

(3) 

where 

_, 
£;' =u'± � ; cZ =-w"; k=a(+),b(-);

(4) 

The mechanical parameter A couples the bending behavior
of the surface layers to that of the core. It is an important vari­
able for parameter studies. 

Piezoelectric Plane-Stress Reduced Constitutive 

Equations and Electric Potentials 

The piezoelectric layers are considered to be linear 
orthotropic piezoelectric materials with material symmetry 
axes parallel to the beam axes. Cp, eml and Emm (j,l = 1, . . .  , 6; m 
= 1, 2, 3) denote their elastic, piezoelectric and dielectric 
constants. 

For extension actuation mechanism, supposing a 
plane-stress state ( cr3 = 0), the three-dimensional linear con­
stitutive equations of an orthotropic piezoelectric layer can 
be reduced to (for reduction details, see Benjeddou, Trindade 
and Ohayon, 1997) 

(5) 

where 

CTi. £" D3 and £3 are axial stress and strain, and transverse 
electric displacement and field. Notations of the IEEE Stan­
dard on Piezoelectricity ( 1987) are retained here. Notice that 
the piezoelectric effect couples only axial strain and trans­
verse electric field, characterizing an extension actuation 
mechanism. 

For the shear actuation mechanism, it can be shown (for 
details see Benjeddou, Trindade and Ohayon, 1997) that, af­
ter coordinate transformations (Bent, Hagood and Rodgers, 
1995; Hagood et al., 1993) so that axial and transverse indi­
ces interchange, the three-dimensional linear constitutive 
equations of the orthotropic piezoelectric core reduce to, 

where 

2 / -c - C13
33 - 33 

C11 

(6) 

cr5 and £5 are transverse shear stress and strain. Here, the pi­
ezoelectric effect couples shear strain and transverse electric 
field, characterizing a shear actuation mechanism. 

The combination of the strain-displacement relations ob­
tained from Equations ( 1)-(4 ), and the reduced constitutive 
Equations (5) or (6), then integration of the electrostatic 
equilibrium equation, free of volumic charge density, allow 
us to write the following electric potential forms for piezo­
electric surface layers <pk (extension actuation mechanism), 
and for a piezoelectric core <p, (shear actuation mechanism), 
respectively 

where 

- <pc 
<p,=<p,+z-

h, 

(7) 

(8) 

are the mean and the difference of the prescribed electric po­
tentials on top (<pr ) and bottom (<pj) skins of the i-th layer.
The last term in Equation (7) represents the quadratic in­
duced potential, often neglected in the literature (Rahmoune 
et al., 1998). 

Variational Formulation 

In order to study the effects of the electromechanical cou­
pling on the dynamics of the sandwich beam, let us start from 
the following variational formulation of the problem in terms 
of the unknown fields u, u, wand cp 

8T-8H +8W = O; 'v'8u, 8u, 8w, 8cp (9) 

where 8T, 8H and 8W are the virtual variations of kinetic en­
ergy T(u, ii, w), electromechanical energy H(u, u, w,<p) and 
work done by applied mechanical loads W(u,u, w), respec­
tively. Here only the actuation problem is considered, that is, 
<ii; are given. Thus, only u, ii and w must be retained as in­
dependent and unknown fields. Note that these fields are 
time and space-dependent, whereas their variations 
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(8u,8u,8w) are only space-dependent. Therefore, the vir­
tual va,riations in Equation (9) are now detailed in terms of 
these three main variables, only. It is important to notice that 
the Equation (9) must be complemented by initial conditions. 

To provide a better understanding of the extension and 
shear actuation mechanisms, surface layers and core contri­
butions (8H1 and 8HJ to the electromechanical energy
variation are studied separately 

(10) 

Decomposing these two variations into mechanical and elec­
tromechanical contributions, the surface layers contribution 
8H1 is written as

(11) 

where, 

s:H- 2I L { f*A -11:-1 1 f*A -11:-1 -JI II<;: "}dx u fm = 0 cu 1u uu +4c11 1u u u  +cu 1w uw 

and the core contribution <>He as

(12) 

where, 

s:H IL c A <Pc [<>u � s: I] u cme = - 0 e15 c - -+(A+ l)uw dx 
he he 

In Equations (11) and (12), I;.A; are moment area and area
of the i-th layer. Notice that the induced potential leads to an 
augmentation of the surface layers bending stiffness through 

From Equation (12), <>Heme can be interpreted as a distrib­
uted moment ef5Ac <Pc I he induced by the applied electric dif­
ference of potential <Pc to the core layer [Figure l(b)]. A
transverse shear strain [u I he +(A+ l) w1] is then produced.

Since, only the bending actuation will be considered here, 
surface imposed potentials are of opposite signs 
(cpa =-<Pb = <P1 ) . Hence, BHfme• given in Equation (11), re­
duces to, 

(13) 

Therefore, BiI fme is interpreted as the virtual work of
boundary point actuation tractions e{; A1<P f I h1 induced by
the applied opposite difference of potentials <Pf on the sur­
face layers [Figure l(a)]. Only relative axial displacement or 
strain of the surface layers is produced. 

Comparing <>Heme in Equation (12) to BiI fme in Equation
(13), one can notice that the extension actuation mechanism
produces boundary point forces (tractions/compressions), 
whereas the shear actuation mechanism induces distributed 
moments (Figure 1 ) . Hence, one can expect that the latter
avoids the common singularity problems at the boundaries of 
conventional extension actuators. 

Variations of the kinetic energy and work due to applied 
mechanical loads of the sandwich beam for both mecha­
nisms, written in terms of the main variables, are 

(2 p1A1 +PcA) uBu 

BT= s: 
[[2 A 4 Ic ) li Ic � 1] Bu + PJ 1+ Pcz -+pc -A W -

hc 2 he 2 
+ (2 p1A1 +pcAJwBw 

+ [ PJc A � +(2 p!If +pJcA2) w1]8w1

and 

IL na +nb +nc uu + ---+- uu 
BW = 2 he 

[( ) s:- ( na-nb mc )s: r
0 - (ma +mb -AmJ8w1 +(qa +qb +%) 8w

(14) 

(15) 

where Pi is the mass density of the i-th layer. n;, m;. q; and N;, 
M;, Q; are distributed and point normal, moment and shear 
stress resultants. 

For the extension actuation mechanism, <>Heme vanishes
since the core is not piezoelectric. Thus, the variational 
Equation (9) reduces to 

Similarly, for the shear actuation mechanism, BHfme van­
ishes since the surface layers are elastic. The variational 
Equation (9) is then 

4



where 8Hrm is similar to 8H fm but with c1{ = c{i* .

FINITE ELEMENT DISCRETIZATION 

The standard finite element method is followed to 
discretize the variational problems Equations ( 16) and (17). 

The variables ii and u are interpolated by Lagrange linear 
shape functions and w by Hermite cubic ones. For the shear 
actuation mechanism, the discretized equations of motion 
can be written as, 

where q = [ii1, u1, w1, w[, ii2, u2, w2, w�] is the vector of de­
grees of freedom and q,q the corresponding velocity and ac­
celeration. M is the mass matrix obtained from the 
discretization of 8T. Cv is a global viscous damping matrix
accounting for materials damping. K1and Kc are the surface 
layers and core stiffness matrices obtained from the 
discretization of 8H fm (with c1� = c{i* ) and 8Hcm given in
Equations (11) and (12), respectively. Fce<Pc and Fm are the
induced electric and mechanical load vectors deduced from 
discretization of 8H cme in Equation (12) and 8W, respec­
tively. 

For the extension actuation mechanism, the discretization 
of Equation ( 17) leads to the following discretized equations 
of motion 

where K f is the stiffness matrix of the piezoelectric surface 
layers and F1e<P 1 is the induced electric force vector obtained
from the discretization of Equation (13). All matrices and 
vectors of Equations (18) and (19) were integrated analyti­
cally and implemented in MATLAB software. A comprehen­
sive review synthesis on the piezoelectric finite element liter­
ature was given by Benjeddou (2000). 

CONTROL STRATEGY 

Prior to the presentation of the vibration control strategy, 
linear second order matricial Equations (18) and (19), are 
written in state-space form, with state vector x, input vector u 
and output vector y, 

AJ and BJ (j = f,c) represent system and control matrices of
the extension (j) and shear ( c) actuation mechanisms, respec­
tively. BP represents the perturbations vector and C, the state 
output matrix. These have the following expressions, 

(22) 

For both configurations (surface-mounted or sandwich), it is 
supposed that the control actuation is done by the piezoelec­
tric actuators only. Therefore, BJ and BP are column vectors 
and u is a scalar, representing the imposed voltage u = cp 1
for the extension actuation mechanism and u = <Pc for the 
shear one. 

The design of the controller is based on LQR full state 
feedback, i.e., the control voltage u is proportional to the 
state vector x, 

(23) 

where Kg is a row vector representing the control gain. Sub­
stituting Equation (23) in the uncontrolled state Equations 
(20), the resulting controlled ones can be written as 

x =(AJ-BJKg)x+BP 
y=Cx 

(24) 

The system is then controlled by a modification of the ma­
trix AJ, which becomes AJ - BJ Kg. Therefore, the control ac­
tion may stabilize the system by changing its vibration char­
acteristics, such as the damping of some chosen poles, as 
explained in the following section. 

In order to interpret these results in a structural mechanics 
approach, Equations (18) and (19) can be rewritten, taking 
into account Equations (21 ), (22) and (24 ), as 

for the shear actuation mechanism, and 

for the extension one. The row vectors Kd and KP are ob­
tained from decomposition of the gain row vector into pro­
portional and derivative components, i.e., Kg = [KP KJ] .
One ca? notice that the control law supplies a stiffness 
matrix K = FJeKp and a damping matrix C = FJeKd in addi­
tion to the actual structural stiffness matrices and eventual 
initial viscous damping matrix Cv. The unified resulting sys­
tem may be represented by the general form 

where K = K 1 +Kc for the extension actuation mechanism
and K =Kr +Kc for the shear one. It is worthwhile to com­
pare the original uncontrolled systems ( 18) and ( 19) with the
corresponding controlled systems (25) and (26). The LQR 
control strategy is implemented using MATLAB Control 
Toolbox. 
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NUMERICAL RESULTS 

This section aims to present a comparative numerical anal­
ysis of shear and extension actuation mechanisms. To this 
end, the present finite element model is used to evaluate 
bending vibration characteristics of both mechanisms (Fig­
ure 3), under variations of several parameters such as, actua­
tor thickness, structure/actuator modulus ratio, foam stiff­
ness and number of actuators. 

The geometrical data of the beam, according to Figure 3, 
are L = 200 mm, h = 4 mm, t = 0.05 mm, de= 30 mm, a= 30
mm. The shear actuator thickness is 2t leading to equivalent 
surface-mounted and sandwich configurations. Aluminum 
properties are: Young's modulus Eb=70.3 GPa, Poisson's ra­
tio v =0.35, density Pb= 2710 kg m-3. Those of the foam are:
Young's modulus Ef= 35.3 MPa, shear modulus Gf= 12.7 
MPa, density PJ = 32 kg m-3; and, for the PZT-5H:
c�1 = c;3 = EP = 69.8 GPa, c55 = 23 GPa, density pp= 7500
kg m-3, piezoelectric coupling constants e;1 = -23.2 C m-2,
e15 17 C m-2, and dielectric constant E;3 =
1.73 10-3 F m-1. An initial viscous damping of 0.1 % was
assumed. The control gain vector Kg is evaluated using LQR
optimal control algorithm. The ponderation matrices Q and
Rare considered to be Q = yl and R =I, giving the same con­
trol weight yfor all states. One to three actuators are consid­
ered, each of them having same length a and being at position 
dck= 15(3k-l) mm (k= 1,2,3). By default, three actuators are 
considered. 

The numerical analysis, presented here, consists in evalua­
tion of the active damping, for each parameter variation, sup­
plied by both mechanisms for the first four natural bending 

a) Extension actuation configuration 

PZT-SH Actuator Foam 

b) Shear actuation configuration 

Figure 3. Cantilever beam, shear and extension actuation configu­
rations. 

Initial y 

Evaluate K8 (LQR) 

Evaluate forced response x(t) 

y =y(l +�) Evaluate u(t) = -K8x(t) 

Testumax 

Figure 4. Algorithm for control gain evaluation (2<i>rax = tj)�ax = 
200 V). 

modes of the sandwich beam. Therefore, to compare differ­
ent configurations with different parameters, two basic pa­
rameters are fixed: the excitation Fm and the maximum con­
trol voltage <Pnuu:. The free end of the beam is excited by a 
transverse impulse excitation, which produces a maximum 
open-loop deflection of w (L) = 5 mm. An iterative algorithm, 
shown in Figure 4, was developed to evaluate the control 
gain, such that the maximum supplied voltage is 
<Pj = 100 V. Since the same electric field must be imposed 
to both actuation mechanisms, the maximum voltage for the 
shear actuators is the double of that of extension ones, i.e., 
<P::WX = 200 V. Limited to these voltages, the damping of the 
two configurations is evaluated. 

In the first case, the actuator thickness t is varied in the 
range [0.01, 0.5] mm (note that the shear actuator thickness is 
2t). As it can be seen in Figure 5, the shear actuation mecha­
nism (SAM) provides much larger damping factors for very 
thin actuators. Moreover, one can see that the effectiveness of 
the extension actuation mechanism (EAM) is almost inde­
pendent of the thickness of the actuator, whereas, the shear 
one is better for a thickness 2t < 0.2 mm. 

9(,) � "° 
.54 0. 
�3 

2 

\. ' 
'i.. \ ·,.:" v, 

vSAM 
aEAM 

Mode 1 
Mode2 
Mode3 
Mode4 

o����������-'-������_._��..._, 
10-2 10-1 100 

Actuator thickness t (mm) 
Figure 5. Variation of first four natural bending modes damping with 
actuator thickness. 

6



16 

14 \ \ 

vSAM 
oEAM 

Mode 1 
Mode2 
Mode3 
Mode4 

� 12 \ 
.. 
� 10 ':. � '".·,. QI) . 
.5 8 
� 
8 6 

4 

• .... .... 
' ' ' ' 

' \it.. 

O '--����� ...... ������-'-����-=.....� 
1� l� lif ld 

Structure/actuator modulus ratio 

Figure 6. Variation of first four natural bending modes damping with 
structure/actuator modulus ratio. 

Next, the effect of the structure stiffness on the active 
damping is analyzed. To this end, the damping factor is eval­
uated for several structure/actuator Young's modulus ratios 
(E,,!Ep). The results, presented in Figure 6, suggest a superi­
ority of the shear actuation mechanism over the extension 
one for softer structures (E,,!Ep < 1). Moreover, shear actua­
tors performance is highly dependent on structure stiffness, 
whereas, that of extension ones is not, even if the results sug­
gest an optimal medium stiffness ratio (E,,!Ep = 0.2). It is im­
portant to note that these results are subjected to a variation in 
the maximum open-loop deflection amplitude since, as the 
stiffness of the beam decreases, this amplitude increases for a 
fixed impulse magnitude. 

Since the shear actuation mechanism requires the use of an 
extra-material (here, a foam) to cover the rest of the core 

2.5.------�--�-..-------�-�...., 

2 

0.5 ·"·'"' 

--------

. .... .... 

--- ---

.
.

... 

---------- -----

,. ,. ... ... -·-' -·-' - ·-' •.•. :.:·:;:: ... � .... 
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.
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_,.,· 
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Mode2 
Mode3 
Mode4 

oL_������..__�.......:::===:::::::==::::::.J 
10-1 100 IOI 

Foam modulus factor 

Figure 7. Variation of first four natural bending modes damping with 
foam modulus factor fc. 

� 
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Mode4 
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•BAM 
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Number of actuators 

.. , .. , 
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,' .. 

3 

Figure 8. Variation of the first four natural bending modes damping 
with number of actuators. 

layer, it is important to investigate the influence of its mate­
rial properties. Figure 7 presents the variation of the damping
factor with the foam modulus multiplying factor le (Et= 35.3le MPa, Gt= 12.7 le MPa). It indicates that, generally, the in­
crease of the foam stiffness decreases damping. However, al­
though the output weight y is the same for all modes, each
mode damping presents a different optimal foam stiffness, 
e.g., the third mode damping is optimal for a relatively rigid 
foam lfe = 3). This means that soft foams may improve the
control of some modes, but not of all of them. 

The control performance is also dependent on the number 
of actuators. Generally, several actuators will outperform a 
single one. Moreover, as the position of actuator defines 
which modes can be well controlled, several actuators may 
provide damping over larger frequency range. Figure 8 pres­
ents the damping of the first four natural bending modes us­
ing one, two and three actuators. It shows that, as expected, 
the increase in the number of actuators increases the damping 
factor of all modes. For the extension actuation mechanism, 
the variation of modal damping with the number of actuators 
is almost linear. However, for the shear actuation mecha­
nism, although the variation of first and fourth modal damp­
ing are also almost linear (approximately +0.2% per actua­
tor), for the second and third modes, the inclusion of a second 
actuator does not increase much the damping ( +0. 1 % ) com­
pared to that of a third one ( +0.8% ) .

CONCLUSIONS 

Theoretical and finite element models of an adaptive sand­
wich beam, capable of dealing with both shear and extension 
actuation mechanisms, were presented and used to compare 
active damping performances of such mechanisms for the 
control of structural bending vibrations of smart beams. It 
was shown that, for bending actuation, shear actuators in­
duce distributed moments, unlike extension ones which pro-
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duce boundary point forces, predicting less problems of 
debonding and singularities, and better controllability. 
Using a LQR optimal control law, the influence of important 
geometrical and material properties on the active damping of 
the beam was analyzed under maximum applied voltage of 
<Pc = 2<P 1 = 200 V and induced tip transverse deflection of 5
mm. Finite element results show that shear actuators may be 
better in producing active damping than the generally used 
extension ones. The shear actuation mechanism was shown 
to be optimal for a range of thin actuators (2t < 0.2 mm) and
relatively soft structures. It was observed that the choice of 
the core filling material is important for the shear actuation 
mechanism performance, with advantages for softer materi­
als. The increase of the number of actuators enhances the av­
erage damping over a broader frequency range. Finally, due 
to lower stresses in the actuator and better controllability 
properties, shear actuators are suitable for the vibration con­
trol of structures with embedded actuators. 

The present study has been extended to the inclusion of 
embedded shear and/or extension sensors and hybrid piezo­
electric-viscoelastic damping treatments ( Trindade, 
Benjeddou and Ohayon, 2000). 

NOMENCLATURE 

A; = cross-section area of the layer i 
A = state-space system matrix
a = piezoelectric actuators length 
B = state-space control input matrix 

BP = state-space perturbation vector
b,L = beam width and length, respectively 

C = state-space output matrix
<;;v = viscous damping matrix
C = control supplied damping matrix

cjl,ekz,Ekk = elastic, piezoelectric and dielectric con­
stants, respectively 

OH= virtual variation of electromechanical en­
ergy 

OT= virtual variation of kinetic energy 
ow= virtual variation of external loads work 
de = piezoelectric actuators center position

E3,D3 = transverse electrical field and displacement, 
respectively 

ef = bending strain of layer i 
e;' = axial strain at centerline of layer i (membrane

strain) 
Ec5 = shear strain of layer c 
Eil = axial strain of layer i 
Fm = mechanical loads vector
Fe = induced electrical loads vector
<i>; = mean of applied electric potentials on the 

layer i 
cp; = difference of applied electri c potentials on 

the layer i 
<p; = electric potential in the layer i 

cp7 ,cp/ =electric potential at the top and bottom skins of the
layer i, respectively

y = LQR state ponderation factor
h; = thickness of layer i 
I; = cross-section moment area of the layer i 
K = stiffness matrix

Kd = derivative control gain matrix
K8 = control gain matrix
�P = proportional control gain matrix
K = control supplied stiffness matrix
M =mass matrix

N;,M;,Q; = point normal, moment and shear resultants 
on layer i, respectively

n;,m;,q; = distributed normal, moment and shear resul-
tants on layer i, respectively

Q = LQR state ponderation matrix
q = degrees of freedom vector 
R = LQR input ponderation matrix
P; = mass density of the layer i 

O'i.0'5 = axial and shear stresses, respectively 
t = piezoelectric actuators thickness 

ii = mean of the axial displacements of surface 
layers centerlines 

ii1, u1, w1, w� = displacements and rotation of element node 1 
ii2, ii2, w2, w� = displacements and rotation of element node 2 

u; = axial displacement of the centerline of the 
layer i 

u = difference between the axial displacements of 
surface layers centerlines 

u; = axial displacement of the layer i 
w = transverse displacement of beam centerline 
x= state vector 

x,z = axial and transverse coordinates 
y = state-space output vector 

Subscripts 

Zk = distance to centerline of surface layer k (k = 
a,b) 

e,me = state for electrical or mechanical-electrical coupling 
contributions (piezoelectric) 

f = states for quantities related to sandwich surface lay­
ers 

i = states for beam layers a, b or c
j = states for quantities related to extension (j) and shear

(c) actuation mechanisms 
k = states for surface layers a or b 

m = states for mechanical contributions 

Superscripts 

* = states for modified material constants
b = states for bending contributions 
c = states for core material constants 
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f = states for surface layers material constants
m = states for membrane contributions 

s = states for shear contributions 
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