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INTRODUCTION

P

IEZOELEC TRIC materials are widely used for structural vibration control. Commonly, they are bonded on the surface of the structure and, when activated by an applied electric field, their induced membrane deformation controls the vibrations of the structure. In this case, constant through-thickness electric fields are imposed to a trans versely poled piezoelectric actuator, using the so-called e31 piezoelectric constant. This defines the extension actuation mechanism which has been widely used on either active con trol applications [START_REF] Chandra | Structural modeling of composite beams with induced-strain actuators[END_REF][START_REF] Crawley | Detailed models of piezoceramic actuation beams[END_REF] or hybrid active-passive damping treat ments [START_REF] Baz | B oundary control of beams using active constrained layer damping[END_REF][START_REF] Huang | Some design consider ations for active and passive constrained layer damping treatments[END_REF]To mlinson, 1996;[START_REF] Varadan | C losed loop finite-element modeling of active/passive damping in structural vibration control[END_REF].

Recently, developments in composites design have brought attention to the use of embedded actuators. Although extension actuators can be embedded to produce torsional deformation [START_REF] Bent | Anisotropic actuation with piezoelectric fiber composites[END_REF] using Piezo electric Fiber Composites with or without Interdigitated Electrodes [START_REF] Hagood | Transverse actuation of piezoceramics using interdigitated surface electrodes[END_REF], for the control of bending vibrations, they are not optimal on embedded configurations. Some recent works presented shear actuators, that are longi tudinally poled and, when subjected to transverse electric field, present shear deformations through the so-called e15 piezoelectric constant. This leads to the less known shear ac tuation mechanism. In fact, the shear mode may also be ob tained by applying axial electric fields on standard trans versely poled piezoelectric actuators. However, putting *Author to whom correspondence should be addressed.

conductors on side surfaces is a difficult task and leads to small axial electric fields for plate-type actuators. So that one should prefer to apply transverse electric fields on axially poled actuators. Figure 1 illustrates both actuation mecha nisms. Hence, a comparative numerical static analysis using a commercial finite element code has been performed by [START_REF] Sun | Use of thickness shear mode in adaptive sandwich structures[END_REF], who proposed also a theoretical model for shear-based actuators [START_REF] Zhang | Formulation of an adaptive sandwich beam[END_REF]. It was shown that embedded shear actuators are subjected to lower stresses than surface-mounted extension actuators, under actuation.

Shear actuation mechanisms were also studied by the pres ent authors. A sandwich beam finite element, using the mean and relative axial displacements of the core skins as main pa rameters, was developed and validated [START_REF] Benjeddou | A unified beam fi nite element model for extension and shear piezoelectric actuation mech anisms[END_REF]. A comparison of extension and shear actuation mechanisms in static and free-vibration anal ysis was then carried out using this element discretization (Benjeddou, Trindade and Ohayon, 2000). It showed that for bending, shear actuators induce distributed actuation mo ments in the structure [Figure l(b)] unlike extension actua tors which induce boundary point forces [Figure l(a)]. Therefore, it is proposed that the shear actuation mechanism may lead to less problems of debonding in actuators bound aries and to minor dependence of the control performance on actuators position and length. To provide a better understand ing of the energy dissipation characteristics of both mecha nisms, another sandwich beam finite element was developed, using the surface layers mean and relative axial displace ments as independent variables (Benjeddou, Trindade and Ohayon, 1999b). Comparisons between the two finite ele ments showed that the second one presents better and faster convergence (Benjeddou, Trindade and Ohayon, 1999a). That is why it was retained for current and future researches.

Using the strain-induced piezoelectric coupling constant d15, [START_REF] Kim | C omposite piezoelectric assemblies for torsional actu ators[END_REF] have recently proposed composite pi ezoelectric assemblies for shear-based torsional actuators for the production of large angular displacement and torque. They discussed actuator designs and assembly methods, ma terial preparation, poling procedures, test results for joint strengths, and actuator output capabilities. It was pointed out that commercially available PZT piezoelectrics are opti mized for their extension response but not for their shear be havior.

This paper aims to present a comparative study of shear and extension actuation mechanisms for structural bending vibration control. Theoretical and finite element models to gether with an LQR optimal control strategy are presented. Then, under limited input voltage and induced beam tip transverse deflection, these are used to study control perfor mances of both mechanisms through parameters variations, such as actuator thickness, structure/actuator modulus ratio and core filling material properties.

THEORETICAL FORMULATION

Two configurations of a symmetric three-layer sandwich beam are considered. In the first one, an elastic central core is sandwiched between two transversely poled piezoelectric layers [Figure l(a)], whereas, in the second one, two elastic layers sandwich a longitudinally poled piezoelectric core [Figure l(b)]. For both cases, a transverse electric field is ap plied to piezoelectric layers, which have electrodes on top and bottom skins. However, elastic layers are assumed insu lated. All layers are assumed perfectly bonded and in plane stress state. Top and bottom layers are assumed to behave as Bernoulli-Euler beams, whereas Timoshenko theory is re tained for the central core to allow shear deformation. This is necessary for the shear actuation mechanism. Local axes are attached to surface layers at their left end centers, and a global one is attached to the left end center of the beam, so that beam centroidal and elastic axes coincide with the x-axis. The length, width and thickness of the beam are de noted by L, b and h , respectively. a, b, c indices indicate top, bottom and core layers quantities and/index is used for sur face layer parameters. The geometrical and kinematics de scriptions of the sandwich beam are given in Figure 2.

Mechanical Displacements and Strains

Starting with linear axial displacements for each layer and enforcing the interface displacement continuities, the fol lowing expressions for the surface layers and core axial dis placements are obtained k = a, b ( + for k = a and -for k = b)

( 1) u=u+z ( u +A.w') • A.= h f c h • h c c
Where Z a =(ha+ h c )/ 2, Z b =-(h b + h c )/ 2 and w' is the first de rivative of the transverse deflection w, supposed constant through-thickness. u and u are the mean and relative axial displacements of the surface layers, defined by,

(2)

here, u a and uh are mid-plane displacements of the top and bottom layers (Figure 2). From the above displacements and usual strain-displace ment relations, layers strains can be written as

s [ u 1 ' ] £cs=£c= -+(/\.+l)w h, (3) where _, £;' =u'± � ; cZ =-w"; k=a(+),b(-); (4)
The mechanical parameter A couples the bending behavior of the surface layers to that of the core. It is an important vari able for parameter studies.

Piezoelectric Plane-Stress Reduced Constitutive Equations and Electric Potentials

The piezoelectric layers are considered to be linear orthotropic piezoelectric materials with material symmetry axes parallel to the beam axes. Cp , eml and Emm (j,l = 1, ... , 6; m = 1, 2, 3) denote their elastic, piezoelectric and dielectric constants.

For extension actuation mechanism, supposing a plane-stress state ( cr3 = 0), the three-dimensional linear con stitutive equations of an orthotropic piezoelectric layer can be reduced to (for reduction details, see [START_REF] Benjeddou | A unified beam fi nite element model for extension and shear piezoelectric actuation mech anisms[END_REF] (5)

where

CTi. £" D3 and £3 are axial stress and strain, and transverse electric displacement and field. Notations of the IEEE Stan dard on Piezoelectricity ( 1987) are retained here. Notice that the piezoelectric effect couples only axial strain and trans verse electric field, characterizing an extension actuation mechanism.

For the shear actuation mechanism, it can be shown (for details see [START_REF] Benjeddou | A unified beam fi nite element model for extension and shear piezoelectric actuation mech anisms[END_REF]) that, af ter coordinate transformations [START_REF] Bent | Anisotropic actuation with piezoelectric fiber composites[END_REF][START_REF] Hagood | Transverse actuation of piezoceramics using interdigitated surface electrodes[END_REF] so that axial and transverse indi ces interchange, the three-dimensional linear constitutive equations of the orthotropic piezoelectric core reduce to, where 2 / -c -C1 3 33 -33 C11

(6)

cr5 and £5 are transverse shear stress and strain. Here, the pi ezoelectric effect couples shear strain and transverse electric field, characterizing a shear actuation mechanism.

The combination of the strain-displacement relations ob tained from Equations ( 1)-( 4), and the reduced constitutive Equations ( 5) or ( 6 The last term in Equation ( 7) represents the quadratic in duced potential, often neglected in the literature [START_REF] Rahmoune | New thin piezoelectric plate models[END_REF].

Variational Formulation

In order to study the effects of the electromechanical cou pling on the dynamics of the sandwich beam, let us start from the following variational formulation of the problem in terms of the unknown fields u, u, wand cp 8T-8H +8W = O; 'v'8u, 8u, 8w, 8cp (9) where 8T , 8H and 8W are the virtual variations of kinetic en ergy T(u, ii, w), electromechanical energy H(u, u, w,<p) and work done by applied mechanical loads W(u,u, w), respec tively. Here only the actuation problem is considered, that is, <ii ; are given. Thus, only u, ii and w must be retained as in dependent and unknown fields. Note that these fields are time and space-dependent, whereas their variations (8u,8u,8w) are only space-dependent. Therefore, the vir tual va,riations in Equation ( 9) are now detailed in terms of these three main variables, only. It is important to notice that the Equation ( 9) must be complemented by initial conditions.

To provide a better understanding of the extension and shear actuation mechanisms, surface layers and core contri butions (8H1 and 8HJ to the electromechanical energy variation are studied separately Comparing <>Heme in Equation (12) to BiI fme in Equation (13), one can notice that the extension actuation mechanism produces boundary point forces (tractions/compressions), whereas the shear actuation mechanism induces distributed moments (Figure 1 ). Hence, one can expect that the latter avoids the common singularity problems at the boundaries of conventional extension actuators.

Variations of the kinetic energy and work due to applied mechanical loads of the sandwich beam for both mecha nisms, written in terms of the main variables, are 

(2 p 1A1 + P cA ) u B u BT= s: [[2 A 4 I c ) li I c � 1 ] Bu + P J 1+ P c z -+p c -A W - h c
(1 5 )

where P i is the mass density of the i-th layer. n ;, m;. q ; and N;, M;, Q; are distributed and point normal, moment and shear stress resultants.

For the extension actuation mechanism, <>He me vanishes since the core is not piezoelectric. Thus, the variational Equation ( 9) reduces to

Similarly, for the shear actuation mechanism, BHfme van ishes since the surface layers are elastic. The variational Equation ( 9) is then where 8Hrm is similar to 8H fm but with c1{ = c{i* .

FINITE ELEMENT DISCRETIZATION

The standard finite element method is followed to discretize the variational problems Equations ( 16) and (17).

The variables ii and u are interpolated by Lagrange linear shape functions and w by Hermite cubic ones. For the shear actuation mechanism, the discretized equations of motion can be written as, where q = [ii1, u1, w1, w[, ii2, u2, w2, w�] is the vector of de grees of freedom and q,q the corresponding velocity and ac celeration. M is the mass matrix obtained from the discretization of 8T. Cv is a global viscous damping matrix accounting for materials damping. K 1 and Kc are the surface layers and core stiffness matrices obtained from the discretization of 8H fm (with c1 � = c{i* ) and 8H cm given in Equations ( 11) and (12), respectively. Fce<P c and Fm are the induced electric and mechanical load vectors deduced from discretization of 8H cm e in Equation ( 12) and 8W , respec tively.

For the extension actuation mechanism, the discretization of Equation ( 17) leads to the following discretized equations of motion where K f is the stiffness matrix of the piezoelectric surface layers and F 1 e<P 1 is the induced electric force vector obtained from the discretization of Equation (13). All matrices and vectors of Equations ( 18) and (19) were integrated analyti cally and implemented in MATLAB software. A comprehen sive review synthesis on the piezoelectric finite element liter ature was given by Benjeddou (2000).

CONTROL STRATEGY

Prior to the presentation of the vibration control strategy, linear second order matricial Equations ( 18) and (19), are written in state-space form, with state vector x, input vector u and output vector y, A J and B J (j = f,c) represent system and control matrices of the extension (j) and shear ( c) actuation mechanisms, respec tively. B P represents the perturbations vector and C, the state output matrix. These have the following expressions, For both configurations (surface-mounted or sandwich), it is supposed that the control actuation is done by the piezoelec tric actuators only. Therefore, BJ and B P are column vectors and u is a scalar, representing the imposed voltage u = cp 1 for the extension actuation mechanism and u = <Pc for the shear one.

The design of the controller is based on LQR full state feedback, i.e., the control voltage u is proportional to the state vector x, (23

)
where Kg is a row vector representing the control gain. Sub stituting Equation (23) in the uncontrolled state Equations (20), the resulting controlled ones can be written as

x =(A J -B J Kg)x+B P y=Cx (24)
The system is then controlled by a modification of the ma trix A J , which becomes A J -B J Kg. Therefore, the control ac tion may stabilize the system by changing its vibration char acteristics, such as the damping of some chosen poles, as explained in the following section.

In order to interpret these results in a structural mechanics approach, Equations ( 18) and (19) can be rewritten, taking into account Equations ( 21), ( 22) and (24 ), as for the shear actuation mechanism, and for the extension one. The row vectors Kd and K P are ob tained from decomposition of the gain row vector into pro portional and derivative components, i.e., Kg = [K P KJ]. One ca ? notice that the control law supplies a stiffness matrix K = F J eKp and a damping matrix C = F J eKd in addi tion to the actual structural stiffness matrices and eventual initial viscous damping matrix Cv. The unified resulting sys tem may be represented by the general form where K = K 1 +Kc for the extension actuation mechanism and K =Kr +Kc for the shear one. It is worthwhile to com pare the original uncontrolled systems ( 18) and ( 19) with the corresponding controlled systems (25) and (26). The LQR control strategy is implemented using MATLAB Control To olbox.

NUMERICAL RESULTS

This section aims to present a comparative numerical anal ysis of shear and extension actuation mechanisms. To this end, the present finite element model is used to evaluate bending vibration characteristics of both mechanisms (Fig ure 3), under variations of several parameters such as, actua tor thickness, structure/actuator modulus ratio, foam stiff ness and number of actuators.

The geometrical data of the beam, according to Figure 3 17 C m-2 , and dielectric constant E; 3 = 1.73 10-3 F m-1 . An initial viscous damping of 0.1 % was assumed. The control gain vector Kg is evaluated using LQR optimal control algorithm. The ponderation matrices Q and Rare considered to be Q = yl and R =I, giving the same con trol weight yfor all states. One to three actuators are consid ered, each of them having same length a and being at position dck= 15(3k-l) mm (k= 1,2,3). By default, three actuators are considered.

The numerical analysis, presented here, consists in evalua tion of the active damping, for each parameter variation, sup plied by both mechanisms for the first four natural bending 

QI)

.

. Next, the effect of the structure stiffness on the active damping is analyzed. To this end, the damping factor is eval uated for several structure/actuator Young's modulus ratios (E,,!Ep). The results, presented in Figure 6, suggest a superi ority of the shear actuation mechanism over the extension one for softer structures (E,,!Ep < 1). Moreover, shear actua tors performance is highly dependent on structure stiffness, whereas, that of extension ones is not, even if the results sug gest an optimal medium stiffness ratio (E,,!Ep = 0.2). It is im portant to note that these results are subjected to a variation in the maximum open-loop deflection amplitude since, as the stiffness of the beam decreases, this amplitude increases for a fixed impulse magnitude.

Since the shear actuation mechanism requires the use of an extra-material (here, a foam) to cover the rest of the core �:. 7:. 7::•:. :::: layer, it is important to investigate the influence of its mate rial properties. Figure 7 presents the variation of the damping factor with the foam modulus multiplying factor le (E t = 3 5 . 3 le MPa, G t = 12.7 le MPa). It indicates that, generally, the in crease of the foam stiffness decreases damping. However, al though the output weight y is the same for all modes, each mode damping presents a different optimal foam stiffness, e.g., the third mode damping is optimal for a relatively rigid foam lfe = 3). This means that soft foams may improve the control of some modes, but not of all of them.

The control performance is also dependent on the number of actuators. Generally, several actuators will outperform a single one. Moreover, as the position of actuator defines which modes can be well controlled, several actuators may provide damping over larger frequency range. Figure 8 pres ents the damping of the first four natural bending modes us ing one, two and three actuators. It shows that, as expected, the increase in the number of actuators increases the damping factor of all modes. For the extension actuation mechanism, the variation of modal damping with the number of actuators is almost linear. However, for the shear actuation mecha nism, although the variation of first and fourth modal damp ing are also almost linear (approximately +0.2% per actua tor), for the second and third modes, the inclusion of a second actuator does not increase much the damping ( +0. 1 % ) com pared to that of a third one ( +0.8% ) .

CONCLUSIONS

Theoretical and finite element models of an adaptive sand wich beam, capable of dealing with both shear and extension actuation mechanisms, were presented and used to compare active damping performances of such mechanisms for the control of structural bending vibrations of smart beams. It was shown that, for bending actuation, shear actuators in duce distributed moments, unlike extension ones which pro-duce boundary point forces, predicting less problems of debonding and singularities, and better controllability. Using a LQR optimal control law, the influence of important geometrical and material properties on the active damping of the beam was analyzed under maximum applied voltage of <P c = 2<P 1 = 200 V and induced tip transverse deflection of 5 mm. Finite element results show that shear actuators may be better in producing active damping than the generally used extension ones. The shear actuation mechanism was shown to be optimal for a range of thin actuators (2t < 0.2 mm) and relatively soft structures. It was observed that the choice of the core filling material is important for the shear actuation mechanism performance, with advantages for softer materi als. The increase of the number of actuators enhances the av erage damping over a broader frequency range. Finally, due to lower stresses in the actuator and better controllability properties, shear actuators are suitable for the vibration con trol of structures with embedded actuators.

The present study has been extended to the inclusion of embedded shear and/or extension sensors and hybrid piezo electric-viscoelastic damping treatments [START_REF] Trindade | M odeling of fre quency-dependent viscoelastic materials for active-passive vibration damping[END_REF]. 

Figure 1 .

 1 Figure 1. Piezoelectric extension and shear actuation mechanisms.

Figure 2 .

 2 Figure 2. Geometrical and kinematics descriptions of the sandwich beam.

  ), then integration of the electrostatic equilibrium equation, free of volumic charge density, allow us to write the following electric potential forms for piezo electric surface layers <pk (extension actuation mechanism), and for a piezoelectric core <p, (shear actuation mechanism), are the mean and the difference of the prescribed electric po tentials on top (<pr ) and bottom (<pj) skins of the i-th layer.

  Decomposing these two variations into mechanical and elec tromechanical contributions, the surface layers contribution 8H1 is written as (11) where, s: H -2I L { f * A -11:-1 1 f * A -11:-1 -J I II<;: "} dx u fm = 0 cu 1u uu + 4 c 11 1u uu +cu 1w uw and the core contribution <>He as (12) where, s: H I L c A <P c [ <>u � s: I ] u cme = -0 e 1 5 c --+(A+ l )uw dx h e he In Equations (11) and (12), I ;.A; are moment area and area of the i-th layer. Notice that the induced potential leads to an augmentation of the surface layers bending stiffness through From Equation (12), <>Heme can be interpreted as a distrib uted moment ef5A c <P c I h e induced by the applied electric dif ference of potential <P c to the core layer [Figure l(b)]. A transverse shear strain [u I he +(A+ l ) w 1 ] is then produced. Since, only the bending actuation will be considered here, surface imposed potentials are of opposite signs (cpa = -<Pb = <P 1 ). Hence, BHfme• given in Equation (11), re duces to, (13) Therefore, BiI fme is interpreted as the virtual work of boundary point actuation tractions e{; A1<P f I h 1 induced by the applied opposite difference of potentials <P f on the sur face layers [Figure l(a)]. Only relative axial displacement or strain of the surface layers is produced.

  s:-( n a-n b mc )s: r 0 -(ma +mb -AmJ8w 1 +( q a + q b +%)8w

  , are L = 200 mm, h = 4 mm, t = 0.05 mm, de = 30 mm, a= 30 mm. The shear actuator thickness is 2t leading to equivalent surface-mounted and sandwich configurations. Aluminum properties are: Young's modulus Eb=70.3 GPa, Poisson's ra tio v =0.35, density Pb= 2710 kg m-3 . Those of the foam are: Young's modulus Ef= 35.3 MPa, shear modulus Gf= 12.7 MPa, density P J = 32 kg m-3 ; and, for the PZT-5H: c�1 = c; 3 = E P = 69.8 GPa, c55 = 23 GPa, density pp= 7500 kg m-3 , piezoelectric coupling constants e;1 = -23.2 C m-2 ,

  e15

  a) Extension actuation configuration PZT-SH Actuator Foam b) Shear actuation configuration
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 34 Figure 3. Cantilever beam, shear and extension actuation configu rations.
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 6 Figure 6. Variation of first four natural bending modes damping with structure/actuator modulus ratio.
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Figure 7 .

 7 Figure 7. Variation of first four natural bending modes damping with foam modulus factor fc.

Figure 8 .

 8 Figure 8. Variation of the first four natural bending modes damping with number of actuators.

NOMENCLATUREA;

  = cross-section area of the layer i A = state-space system matrix a = piezoelectric actuators length B = state-space control input matrix B P = state-space perturbation vector b,L = beam width and length, respectively C = state-space output matrix <;; v = viscous damping matrix C = control supplied damping matrix c j l,ekz,Ekk = elastic, piezoelectric and dielectric con stants, respectively O H= virtual variation of electromechanical en ergy O T= virtual variation of kinetic energy o w= virtual variation of external loads work de = piezoelectric actuators center position E 3 ,D 3 = transverse electrical field and displacement, respectively ef = bending strain of layer i e;' = axial strain at centerline of layer i (membrane strain) E c 5 = shear strain of layer c Eil = axial strain of layer i Fm = mechanical loads vector Fe = induced electrical loads vector <i>; = mean of applied electric potentials on the layer i cp; = difference of applied electri c potentials on the layer i <p; = electric potential in the layer i f = states for surface layers material constants m = states for membrane contributions s = states for shear contributions

cp7 ,cp/ =electric potential at the top and bottom skins of the layer i, respectively y = LQR state ponderation factor h; = thickness of layer i I; = cross-section moment area of the layer i K = stiffness matrix Kd = derivative control gain matrix K8 = control gain matrix � P = proportional control gain matrix K = control supplied stiffness matrix M =mass matrix N;,M;,Q; = point normal, moment and shear resultants on layer i, respectively n;,m;,q; = distributed normal, moment and shear resultants on layer i, respectively Q = LQR state ponderation matrix q = degrees of freedom vector R = LQR input ponderation matrix P; = mass density of the layer i