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Modeling of Frequency-Dependent Viscoelastic Materials 
for Active-Passive Vibration Damping

This work intends to compare two viscoelastic models, namely ADF and GHM, which account for frequency dependence and allow 
frequency and time-domain analysis of hybrid active-passive damping treatments, made of viscoelastic layers constrained with 
piezoelectric actuators. A modal strain energy (MSE) based iterative model is also con-sidered for comparison. As both ADF and GHM 
models increase the size of the system, through additional dissipative coordinates, and to enhance the control feasibility, a modal 
reduction technique is presented for the first time for the ADF model and then applied to GHM and MSE ones for comparison. The 
resulting reduced systems are then used to analyze the performance of a segmented hybrid damped cantilever beam under param-eters 
variations, using a constrained input optimal control algorithm. The open loop modal damping factors for all models match well. 
However, due to differences between the modal basis used for each model, the closed loop ones were found to be different.

1 Introduction

In the middle of the 80’s, a hybrid active-passive damping

mechanism, consisting of replacing the elastic constraining layer

of a conventional Passive Constrained Layer Damping ~PCLD!
treatment by a piezoelectric actuator, was proposed to increase the

shear deformation in the viscoelastic material and, thus, the en-

ergy dissipation. This mechanism, named Active Constrained

Layer Damping ~ACLD!, has received much attention during the

current decade. Literature reviews @1,5,8# indicate that hybrid

active-passive damping treatments allow both high performance

and reliable control systems. However, their performance is

highly dependent on the viscoelastic material properties, which

depend strongly on the excitation frequency and operating tem-

perature. Therefore, a correct modeling of the viscoelastic behav-

ior is required for the analysis of such treatments.

Motivated by the need of finite element modes capable of pre-

dicting frequency and time-domain responses of structures con-

taining viscoelastic components, Hughes and his co-workers @9#
and Lesieutre and his co-workers @7,8# developed the so-called

Golla-Hughes-McTavish ~GHM! and Anelastic Displacement

Fields ~ADF! models, respectively. These are based on the intro-

duction of internal variables to account for viscoelastic damping

behavior. Both models are superior to the MSE method @6# since

they allow higher damping analysis. However, they lead to large-

dimension systems. Therefore, a model reduction should be ap-

plied to the augmented ADF and GHM models.

Although, several works concerning viscoelastic modeling for

ACLD treatments have been presented in the literature @5,8#, the

passage from a frequency-dependent model to a reduced state-

space control system was mainly presented for MSE @4# and GHM

@10# models. Therefore, to the authors’ knowledge, the reduction

of ADF augmented system was not yet presented in the open

literature. Hence, this work aims to detail the model reduction of

the ADF augmented system. The same model reduction is also

applied to the GHM model for comparison purposes. Both re-

duced models are then applied to evaluate optimal segmented
ACLD treatments under limited deflection and control voltage,
using an efficient iterative LQR algorithm.

In the following, a brief introduction of ADF and GHM models
is presented, as well as their parameters curve fitting. In addition,
an iterative version of the MSE method is proposed for compari-
son. Then, the passage from the augmented systems to reduced
control ones is detailed. Finally, the reduced models are used to
analyze the performance of segmented hybrid active-passive
damping of a cantilever beam as compared to passive one for
some parameters variations, such as viscoelastic layer thickness
and treatment length.

2 Modeling of Viscoelastic Materials

Consider a sandwich beam with elastic or piezoelectric faces
and a frequency-dependent, homogeneous, linear and isotropic
viscoelastic core. Supposing that its Poisson’s ratio is frequency
independent, so that its shear and Young’s modulii are propor-
tional, the discretized equations of motion can be written as ~for
details on FE model, see @2#!

Mq̈1Dq̇1@Kp1G*~v ,u !K̄c#q5Fm1Fpew̃p (1)

where M, D, Kp and G*(v ,u)K̄c are the mass, viscous damping

and, faces and core stiffness matrices. Fm and Fpew̃p are the me-
chanical and piezoelectric forces. q is the nodal degrees of free-
dom ~dofs! vector, resulting from the finite element discretization.

G*(v ,u) is the complex frequency- and temperature-dependent
shear modulus of the core. However, since temperature changes
are generally slow compared to the system dynamics, it is sup-
posed constant in this work. The temperature-dependence effect
was studied elsewhere @11#.

To represent the frequency dependence of the viscoelastic core,
GHM and ADF viscoelastic models, allowing both frequency and
time-domain analyses are retained and presented in the subsequent
sub-sections, together with their parameters curve fitting. Also, an
iterative version of the modal strain energy method is presented
for comparison.
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2.1 Golla-Hughes-McTavish Model. The viscoelastic
shear modulus is represented, in the GHM model, by a series of
functions in the Laplace domain such that @9#

sG̃~s !5G0S 11(
i51

n

â i

s2
12 ẑ iv̂ is

s2
12 ẑ iv̂ is1v̂ i

2
D (2)

where G0 is the relaxed ~or static! modulus and s is the Laplace

complex variable. One may note that limv→` G*(v)5G` , G`

5(11( iâ i)G0 being the unrelaxed real modulus. â i , v̂ i and ẑ i

are material parameters determined by curve fitting of the experi-
mental master curves of the viscoelastic material. Replacing Eq.
~2! in the Laplace transformed motion equations ~1! leads to

F s2M1sD1Kc
0S 11(

i

â i

s2
12 ẑ iv̂ is

s2
12 ẑ iv̂ is1v̂ i

2
D 1KpG q̃5F̃

(3)

for vanishing initial conditions, where ˜ states for the Laplace

transformed variables. F̃(s) represents the sum of mechanical and

piezoelectric force vectors and Kc
0
5G0K̄c is the static core stiff-

ness matrix. The GHM model introduces a series of n dissipative
variables zi (i51, . . . ,n) defined in the Laplace domain by

z̃i~s !5

v̂ i
2

s2
12 ẑ iv̂ is1v̂ i

2
q̃~s ! (4)

The association of Eqs. ~3! and ~4! leads to the following
coupled system

~s2M1sD1Kp1Kc
`!q̃~s !2Kc

0(
i

â iz̃i~s !5F̃~s ! (5a)

S s2
1

v̂ i
2 1s

2 ẑ i

v̂ i

11 D z̃i~s !2q̃~s !50 (5b)

where Kc
`

5(11( iâ i)Kc
0. Multiplying ~5b! by â iKc

0 and retrans-

forming to the time-domain, leads to the following symmetric
matricial system

M̄qJ1D̄qG1K̄q̄5F̄ (6)

where

M̄5FM 0

0 Mzz
G ; D̄5FD 0

0 Dzz
G ; F̄5 H F

0J

K̄5FKp1Kc
` Kqz

Kzq Kzz

G ; q̄5col~q, z1•••zn!

and

Mzz5diagS â1

v̂1
2 Kc

0•••
ân

v̂n
2 Kc

0D
Kzz5diag~ â1Kc

0•••â1Kc
0!; Kqz5@2â1Kc

0•••2ânKc
0#

Dzz5diagS 2â1ẑ1

v̂1

Kc
0•••

2ânẑn

v̂n

Kc
0D ; Kzq5Kqz

T

Since all matrices of the augmented system are frequency inde-
pendent, Eq. ~6! allows both a correct representation of the
frequency-dependent viscoelastic material properties and a time-
domain analysis. In case of a partial treatment, the stiffness matrix

Kc
0 may be reduced as presented later in this article.

2.2 Anelastic Displacement Fields Model. The ADF
model is based on a separation of the viscoelastic material strains
in an elastic part, instantaneously proportional to the stress, and an
anelastic part, representing material relaxation @7#. Its implemen-

tation on a finite element model consists of replacing the dofs

vector q by qe
5q2( iqi

a in the core strain energy @8#. qe and qi
a

represent the nodal dofs vectors associated with the elastic and
anelastic strains, respectively. This leads to the following equa-
tion, describing the evolution of elastic dofs

Mq̈1Dq̇1~Kc
`

1Kp!q2Kc
`(

i

qi
a
5F (7)

where Kc
`

5(11( iD i)Kc
0. The ADF model proposes then a sys-

tem describing the evolution of the dofs associated with the ane-
lastic strains

C i

V i

Kc
`q̇i

a
2Kc

`q1C iKc
`qi

a
50 (8)

where material parameters C i and V i are evaluated by curve fit-

ting of the measurements of G*(v), represented as a series of
functions in the frequency-domain

G*~v !5G0S 11(
i51

n

D i

v2
1 jvV i

v2
1V i

2 D (9)

The unrelaxed modulus is here G`5limv→` G*(v)5G0(1
1( iD i). The material parameters D i , representing the relaxation
resistance, are related to the parameters C i by

C i5

11( iD i

D i

(10)

Note that this expression, valid for multiple ADFs, was not given
in @7#. From ~7! and ~8!, an equation similar to ~6! is then ob-
tained, where

M̄5FM 0

0 0
G ; D̄5FD 0

0 Daa
G ; F̄5 H F

0J

K̄5FKp1Kc
` Kea

Kae Kaa

G ; q̄5col~q, q1
a•••qn

a!

and

Daa5diagS C1

V1

Kc
`•••

Cn

Vn

Kc
`D ; Kea5@2Kc

`•••2Kc
`#

Kaa5diag~C1Kc
`•••CnKc

`!; Kae5Kea
T

In this form, the number of the system ‘‘anelastic’’ dofs, for
each ADF, must be equal to that of the elastic ones. A reduction

of the stiffness matrix Kc
` is proposed later to reduce the matrices

corresponding to the dissipative dofs.

2.3 Iterative MSE Method. The complex modulus ap-

proach assumes G*(v)5G(v)@11 jh(v)# , where G(v) and
h~v! are the storage shear modulus and loss factor, respectively.
To preserve the simplicity of this approach, an iterative method
has also been considered for evaluating the eigenfrequencies and
corresponding damping factors of the system. This was made here
through the following iterative scheme:

1 Evaluation of undamped eigenvalues v i of @M, Re(K)] (K

5Kp1G*(v i)K̄c), until convergence of the desired eigen-
value;

2 At convergence, evaluation of the viscoelastic damping ma-

trix by the MSE method D
v
5F i

T Im(K)F i /F i
T Re(K)F i .

It should be noted that the procedure must be repeated for each
mode of interest.

2.4 Curve Fitting of Material Parameters. To represent
properly the frequency dependence of viscoelastic material prop-
erties, ADF and GHM models parameters need to be evaluated
through curve fitting of the viscoelastic material G(v ,u) and
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h(v ,u) master curves. A nonlinear least squares method was used
to optimize computed values Gc and hc as compared to measured
data (Gm ,hm) of the 3M viscoelastic material ISD112 at 27°C
@7#. The greater the number n of parameters series, the better is the
quality of the curve fitting. However, the larger is also the corre-
sponding augmented system dimension. It should be noticed that
the parameters of ADF and GHM models, presented in Table 1,
are only valid for the frequency range used in the optimization,
since errors grow very quickly out of this range. Hence, the fre-
quency range used for the parameters optimization should be
larger than that of interest.

For this material, three series of parameters were found to rep-
resent quite well the frequency range 20–5000 Hz with errors
smaller than 5 percent ~Fig. 1!. Although ADF and GHM have
different parameters, GHM equivalent master curves were found
almost the same as in Fig. 1. This can be explained by the quasi-
equivalence between ~2! and ~9! to represent the 3M ISD112 vis-

coelastic material considered here. In fact, since ẑ i.1 ~Table 1!,
Eq. ~2! of the GHM model can be written as

G*~v !5G0S 11(
i51

n

â i

v~v1 jz i!

~v1 jv i1!~v1 jv i2!D (11)

where v i1 ,v i252v̂ iẑ i6v̂ i( ẑ i
2
21)1/2 and z i522v̂ iẑ i . Simi-

larly, ~9! of the ADF model can be transformed to

G*~v !5G0S 11(
i51

n

D i

v

v2 jV i
D (12)

Evaluating the poles v i1 ,v i2 and zeros z i of the GHM model
~Table 1! and comparing Eqs. ~11! and ~12!, it appears that z i

'v i1 and v i2'2V i . Since also â i'D i , it is then guessed that
some similar results could be obtained by ADF and GHM models.

3 Models Reductions and Control

In this section, two types of model reduction are presented. The
first one aims to reduce and diagonalize the matrices correspond-
ing to the dissipative dofs in ~6! to reduce computational cost. The
second one intends to reduce the resulting augmented state-space
systems to allow their use in the control design.

In Eq. ~6!, the use of a model decomposition zi5Tq̂i
d , such that

L5TTKc
0T, leads to positive definite GHM mass and stiffness

matrices with eventually smaller dimensions. L is a diagonal ma-

trix composed of the nonvanishing eigenvalues of Kc
0, and T the

corresponding eigenvectors matrix. The matrices Mzz , Dzz , Kzz ,
Kqz and Kzq corresponding to the dissipative dofs and the dofs
vector q̄ are written as

Mzz5diagS 1

v̂1
2 L•••

1

v̂n
2 L D ; q̄5col~q,q̂1

d•••q̂n
d!

Dzz5diagS 2 ẑ1

v̂1

L•••
2 ẑn

v̂n

L D ; Kzz5diag~L•••L !

Kqz5@2â1Kc
0T•••2ânKc

0T#; Kzq
T

5@2K̄cT•••2K̄cT#

It is worthwhile to notice that, multiplying Mzz , Dzz , Kzz and
Kzq by @diag(â1 G0 . . . ânG0)# , the symmetry of the augmented

system is maintained (Kzq5Kqz
T ). This is not done here, since

only the state-space form of the equations will be used and so,
symmetry of the second order form is not useful for control
design.

As for the GHM model, we propose a modal decomposition

qi
a
5Tq̂i

d such that L5TTKc
`T to reduce the system dimension

and to diagonalize the matrices associated with the ADF dissipa-
tive dofs. L is a diagonal matrix containing the nonvanishing

eigenvalues of the high frequency core stiffness matrix Kc
` and T

is the corresponding eigenvectors matrix. The dofs vector q̄ is
then reduced as for GHM. The matrices Daa , Kaa , Kea and Kae

corresponding to the dissipative dofs can be written as

Daa5diagS C1

V1

L•••
Cn

Vn

L D ; Kaa5diag~C1L•••CnL !

Kea5@2Kc
`T•••2Kc

`T#; Kae
T

5@2K̄cT•••2K̄cT#

Multiplying matrices Daa , Kaa and Kae by G` , leads to a

symmetric augmented system (Kae5Kea
T ). Again, for the same

reason as above, this is not done here.
In order to use the augmented equations in the control design,

they must be transformed into state-space form. Therefore, the
loading vector is split into perturbation and piezoelectric control
vectors p and Bu. Thus, Eq. ~6!, with the above reduced matrices,
can be written in the form

ẋ5Ax1Bu1p; y5Cx (13)

C establishes, in terms of the state x, the variables y to be mea-
sured. A and B are the system dynamics and input distribution
matrices, respectively. Due to space limitation, they are not given
here. It should be noted that the state vector x depends on the
viscoelastic model used. Hence, it is defined, for GHM, ADF and
iterative models, respectively, as

x5F q̄

qG G , x5F q̄

q̇G , x5Fq

q̇G (14)

Let ne and n i
d be the dimensions of the elastic and i-th ADF/GHM

series dissipative dofs vectors q and q̂i
d , respectively. If n is the

number of ADF/GHM series considered, n n i
d will be the total

number of dissipative dofs. Consequently, the ADF model leads

Fig. 1 Curve fitting of ADF parameters for 3M ISD112

Table 1 Curve-fitted ADFÕGHM parameters for 3M ISD112
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to a state-space system of dimension 2ne
1n n i

d , whereas the di-

mension is 2ne
12n n i

d for the GHM model. For a full treatment,

n i
d
5ne. Hence, the system dimension is (21n)ne for ADF,

whereas, for the GHM model, the same analysis leads to (2

12n)ne. In particular, for n53, the ADF model saves 3ne dofs,
compared to the GHM one, reducing by much the calculation cost.
Also, one may notice that ADF is superior as a material model
since two material parameters are added to the elastic model by

each ADF for n i
d added dofs, while each GHM adds three param-

eters for 2n i
d dofs, leading to less material parameters per dof.

The system matrices in Eq. ~13!, for both ADF and GHM mod-
els, are still too large for the control design. Hence, they are
reduced further using x5Trx̂, where the complex eigenvector ma-
trix Tr of the system matrix A, and its corresponding left coun-
terpart Tl , are the solution of

ATr5LTr ; ATTl5LTl (15)

normalized by Tl
TTr5I. The reduction is done through the elimi-

nation of the overdamped modes, corresponding to the dissipative
dofs, and through retaining few first elastic modes represented by
the reduced state vector x̂. It is worthwhile to notice that care
should be taken with the reduction of highly damped systems
since, in this case, dissipative overdamped modes are strongly
coupled with elastic modes. This may require retaining some ad-
ditional anelastic modes to obtain a creep correction. The model
reduction allows a better comparison between ADF, GHM and
iterative models. Thus, the reduced state-space system can be
written, using the following new reduced matrices

Â5Tl
TATr ; B̂5Tl

TB; p̂5Tl
Tp; Ĉ5CTr (16)

as

ẋ̂5Âx̂1B̂u1p̂; y5Ĉx̂ (17)

This reduced system may now be used for the control design.
An optimal control algorithm LQR with full state feedback u5

2Kgx̂ is considered. Replacing u in Eq. ~17!, the following con-
trol system is obtained

ẋ̂5~Â2B̂Kg!x̂1p̂; y5Ĉx̂ (18)

4 Hybrid Damping Performance

The above viscoelastic models are applied to the analysis of an
aluminum cantilever beam partially treated with segmented PCLD
or ACLD treatments, made of ISD112 viscoelastic patches con-
strained with PZT5H piezoelectric layers. The geometric configu-
ration of the treated beam, which width is 20 mm, is shown in Fig.
2. The material properties of aluminum and PZT5H are those of

@11#; those of ISD112 are r
v
51600 kg m23, n

v
50.5, in addition

to the shear modulus and loss factor of Fig. 1.
To study the performance of the hybrid active-passive damping,

a LQR optimal control algorithm is applied for the first five modes

reduced system. Weight matrices are Q5gQ̄ and R5I, g being
evaluated to respect maximum beam deflection and control volt-

age. A transversal force of perturbation applied to the free end of
the beam is considered, which magnitude leads to a maximum
beam deflection of 3 mm to respect the model assumptions. In
addition, the control voltage is limited to 250 V, corresponding to
a maximum applied electric field of 500 V/mm on the piezoelec-
tric actuators. The number of finite elements used in cutout re-
gions ~10 mm interspaces!, each actuator and rest of the beam
were two, ten and six, respectively, leading to a total of 30 ele-
ments of 4 dof/node ~54 elastic and 105 anelastic dofs, that is, 35
eigenvectors of Kc are retained!. For the cases studied in this
work, all eigenmodes of A are damped by the viscoelastic treat-
ment, as expected ~Fig. 3!; even those out of the frequency range
used in the curve fitting, since both ADF and GHM representa-
tions of the master curves present good asymptotic properties.
Thus, none of them introduces instabilities in the system. Analysis
of the impulse response of the beam, shown in Fig. 4, confirms
their stability.

To check that a five modes model reduction represents well the
dynamic behavior of the system, a comparison between the fre-
quency and time-domain responses of the full and reduced models
was made ~Figs. 3 and 4!. Results showed that the influence of
truncated modes is negligible for the considered problem. Conse-
quently, the reduced models are now used for the hybrid active-
passive damping analysis. Since the tip deflection is to be mini-
mized, a larger performance weight is considered for the first
mode in the optimal control design. In addition, the second and
third modes are also minimized, but with weights ten times lower
than that for the first mode, leading to a weight matrix Q
5g diag(10 10 1 1 1 1 0 0 0 0). Notice that ADF and GHM mod-
els lead to the same results.

Fig. 2 Geometrical configuration of the segmented hybrid
treatment of a cantilever beam „dimensions in mm and not in
scale…

Fig. 3 Beam FRF using ADF reducedÕfull order models

Fig. 4 Transient response using ADF reducedÕfull order
models
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The frequency and time-domain impulse responses of the con-
trolled beam, using ADF/GHM models, are presented in Fig. 5
and 6, respectively. These figures show that both models correctly
represent the controlled behavior of the cantilever beam. For the
first mode, one can also notice that hybrid control outperforms the
passive one. Notice that the time-domain response is the same for
both models, as well as the passive frequency response.

Table 2 presents the first five eigenfrequencies and their corre-
sponding modal damping factors for all models ~ADF, GHM and
iterative! for PCLD and ACLD treatments. It can be seen that
ADF and GHM models lead to the same results for the passive
case, which also match reasonably with the iterative model re-
sults. However, for the active case, the damping factors of ADF
and GHM present differences up to 5 percent. This is due to the
different eigenvectors used in the model reduction which are not
exactly the same, leading to different modal control forces. The
iterative model results show that, although passive damping can
be correctly evaluated, hybrid ones present differences up to 20
percent.

From now on, the reduced ADF model will be retained for
analysis of hybrid damping performance as compared to that of
the passive one alone. As a first analysis, the viscoelastic layer
thickness is set to vary in the range @0.01,1# mm. Results, shown
in Fig. 7, indicate that there is an optimal thickness range near
0.15 nm, meaning that neither too thin nor too thick viscoelastic
layers lead to effective hybrid damping. Therefore, for a second
analysis, a 0.15 mm thick viscoelastic layer is considered to in-
vestigate the influence of treatment length on the hybrid damping
performance. Hence, this length is set to vary in the range @30,90#
mm. The results, presented in Fig. 8, show that hybrid damping
performance increases for long treatments, although not smoothly.
In fact, small variations in the actuator length induce large differ-

ences on reduced control vectors B̂ and in the closed-loop tran-
sient response which limit the control voltage. As shown in @3#,
shear actuators, instead of present ones, may provide control de-
signs less sensitive to actuator length.

Fig. 5 FRF of the damped beam „first mode…

Fig. 6 Transient response of the damped beam

Fig. 7 Influence of viscoelastic thickness on the modal
damping

Fig. 8 Influence of treatment length on the modal damping

Table 2 Eigenfrequencies „damping factors… for the three models, with ACLD and PCLD control

5



5 Conclusions

Time-domain ADF and GHM models to account for viscoelas-
tic damping frequency dependence were presented and compared.
Model reductions of their resulting augmented systems were also
detailed and discussed. An iterative model, based on the modal
strain energy method, was proposed for comparison. Implemented
in a sandwich beam finite element model and associated to an
optimal control algorithm, with maximum control voltage and de-
flection constraints, these are then used to study the performance
of a segmented hybrid vibration damping of a cantilever beam.
Analysis of computed eigenfrequencies and corresponding damp-
ing factors showed that ADF and GHM models, which are more
complex approaches compared to the MSE method, lead to good
results. In addition, for the viscoelastic material considered here, it
was shown that they are quasi-equivalent, leading to similar re-
sults in most situations studied here. However, the ADF model
will be retained for future research since it leads to smaller sys-
tems than GHM, reducing cost on both Kc and A eigenvalues
evaluation, which may be specially important for large structures.
Parametric analyses, using the ADF model, showed that hybrid
damping can present a larger performance as compared to passive
damping alone. In particular, the viscoelastic layer thickness was
shown to present an optimal value. The control system perfor-
mance was shown to be very sensitive to variations in the treat-
ment length. New actuation mechanisms as that proposed in @3#
should provide less sensitive systems. Moreover, separate actions
of active and passive damping mechanisms should provide also
more performance systems for some applications and prevent vis-
coelastic heat dissipation on piezoelectric actuators. Also, al-
though the present model reduction results are good, retaining
some anelastic modes to obtain a creep correction shall be recom-
mended for some cases and is a natural extension of this work.
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