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New Thin Piezoelectric Plate Models 

M. RAHMOUNE, A. BENJEDDOU AND R. 0HAYON1 

Structural Mechanics and Coupled Systems Laboratory, CNAM, 2 rue Conte, 75 003 Paris, France 

D. OsMONT 

ONERA, Solid Mechanics and Damage Department, Avenue de la Division Leclerc, Chatillon, 92330, France 

ABSTRACT: Early investigations on piezoelectric plates were based on a priori mechanical and ex­
perimental considerations. They assume plane stress and consider only transverse components of 
electric displacement and field. Beside, these were supposed constant in the plate thickness. Through 
an asymptotic analysis, this paper shows that mechanical hypotheses follow Kirchhoff-Love theory 
of thin plates. However, electric assumptions are found to be strongly dependent on the electric 
boundary conditions. That is, two regular problems should be distinguished: (l) the short circuited 
plate, for which only transverse electric displacement and field have to be considered-the electric 
potential is then found to be the sum of a known part, which depends on prescribed potentials, and an 
unknown part, which represents an induced potential and cannot be a priori neglected; the mechanical 
and electrical problems may be uncoupled; (2) the insulated plate, for which only in-plane electric 
displacement and field components are to be considered; the mechanical and electrical problems may 
be uncoupled for orthorhombic plates but not in general. Based on the above asymptotic analysis, two 
variational and local two-dimensional static models are presented for heterogeneous anisotropic 
plates. They are then applied to homogeneous and orthorhombic piezoelectric plates. For homoge­
neous orthorhombic piezoelectric plates, the electromechanical problem can be uncoupled. Hence, a 
mechanical problem is first solved for the mechanical displacement, then electric potentials are ex­
plicitly deduced from this displacement. Classical finite element codes having multilayer plate facili­
ties can be used for solving the plate problems obtained. 

INTRODUCTION 

P
IEZOELECTRIC materials find wide use in deformations
and motion of structure detection, as well as in active 

structural control. They are either bonded or embedded in the 
structure in order to measure strains and displacements 
(sensing effect) or to provide localized strains through which 
the deformation of the structure can be controlled (actuation 
effect). Effective sensing and actuation of the resulting smart 
structure need that its electroelastic behavior be well mod­
eled. 

The concept of smart structure was first validated analyti­
cally and experimentally on beam elements, and rapidly 
structural problems of piezoelectric plates arose in modeling 
flat piezoelectric sensors and actuators. These were mainly 
analyzed with approximate theories (Destuynder et al., 1992; 
Tzou, 1993; Drozdov and Kalamkarov, 1996), based on as­
sumed simplifying, a priori, hypotheses concerning direc­
tions of the electric field and displacement, and the represen­
tative form of the electric potential and even the constitutive 
behavior (Drozdov and Kalamkarov, 1996). Indeed, only 
transverse components of electric displacement and field are 
retained. The electric potential is generally considered linear 
through thickness, and sometimes constant. Besides, for 

1 Author to whom correspondence should be addressed. 

most actuation applications, the induced potential due to the 
direct piezoelectric effect is often supposed negligible com­
pared to the imposed potential (Destuynder et al., 1992; 
Tzou, 1993). Classical structural theories are also often 
adapted and the presence of piezoelectric elements is taken 
into account by a thermal analogy approach through the in­
troduction of prescribed strains (Destuynder et al., 1992). 
But, in this way, the full coupled electroelastic behavior of 
smart structures is not completely modeled, since the mass 
and stiffness of the piezoelectrics are not considered. There­
fore, good representations of the piezoelectric effect have 
been achieved using either additional electronic circuits that 
take into account the induced potential, as in self-sensing ac­
tuation techniques (Dosch, Inman and Garcia, 1992) and 
shunted piezoelectrics (Hagood and von Flotow, 1991 ), or 
using through-thickness quadratic variation of the electric 
potential as proposed by Rogacheva (1994) using an asymp­
totic analysis. 

By the beginning of this decade, several asymptotic theo­
ries were proposed to deal with piezoelectric plates. They 
differ in the scaling techniques adopted and their results de­
pend on the type of electric boundary conditions applied on 
upper and lower faces of the plate. Most common conditions, 
in technical applications, are either of Neumann (prescribed 
surface electric charges) or Dirichlet (imposed surface elec­
tric potentials) type. Maugin and Attou (1992) used asymp-
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totic integration theory, in its variational form, that exploits 
the "zoom technique," to establish the first two orders of an 
asymptotic theory of thin piezoelectric plates in the frame­
work of electrostatics. At the first-order of approximation, a 
purely mechanical Love-Kirchhoff theory emerged, while 
the electric potential satisfies a two-dimensional Poisson­
Neumann problem, with an effective dielectric constant ac­
counting for electromechanical coupling. Nevertheless, 
these results do not agree with the thin-plate limit obtained 
by Bisegna and Maceri from exact three-dimensional solu­
tions (Bisegna and Maceri, 1996a), and with the consistent 
piezoelectric plate theory they derived (Bisegna and Maceri, 
1996b). In particular, the deflection given by Maugin and 
Attou (1992) depends on elastic constants and not on piezo­
electric and dielectric ones, contradicting results of Bisegna 
and Maceri (1996a, 1996b). The procedure used in Bisegna 
and Maceri (1996b) to derive field equations governing the 
piezoelectric problem is based on the initial functions 
method in conjunction with a re-scaling of the applied loads. 
A piezoelectric plate model was also derived by Rogacheva 
(1994) as a zero-curvatures shell model. The latter was based 
on a priori assumptions from an asymptotic analysis similar 
to that used by Maugin and Attou (1992) for isolated piezo­
electric plates. Similar results were then obtained. However, 
Rogacheva ( 1994) has also considered tangential polariza­
tion and short-circuited plates. 

The major difficulty introduced by Dirichlet-type electric 
boundary conditions, besides electromechanical coupling, is 
the non-homogeneity (in the mathematical sense). To deal 
with this problem in piezoelectric shells, Bemadou and 
Haenel (1995a, 1995b) simply used a variable change in or­
der to make the electric boundary conditions homogeneous. 
They take their inspiration from the classical handling of 
mechanical Dirichlet boundary conditions. Canon and 
Lenczner (1994) and Lenczner (1996) used Lagrange's mul­
tipliers to deal with electric Dirichlet conditions applied to 
multilayer elastic plates containing piezoelectric inclusions 
(Canon and Lenczner, 1994) or including distributed piezo­
electric actuators and a distributed electric circuit (Lenczner, 
1996). Their plate models were derived as the limit of the 
three-dimensional problem when the thickness vanishes in 
the framework of asymptotic methods. The electric potential 
and displacement were found to be independent of the trans­
verse coordinate. Besides, electromechanical couplings exist 
between in-plane components of electric field and stresses on 
one hand, and between the jump of the electric potential on 
the upper and lower faces and plane stresses, on the other 
hand. However, these results do not agree with those of 
Bisegna and Maceri (1996b) who found that the transverse 
component of the electric displacement is linear in the thick­
ness direction and that the electric potential has quadratic law 
variation with respect to thickness coordinate, even in the 
case of thin piezoelectric plates. 

Recently, Saravanos, Heyliger and Hopkins (1997) pro­
posed layer-wise (or discrete layer) theories using piece­
wise linear continuous approximations along the thickness 

direction for both displacement and electric potential fields. 
These theories can model both global and local electrome­
chanical responses of smart composite laminates. Finite ele­
ment formulations with added electric potential degrees of 
freedom were also developed for quasi-static and dynamic 
analyses of smart composite structures containing piezoelec­
tric layers. Numerical analyses indicate that electric fields 
exist in the piezoelectric layers even with closed-circuit con­
ditions (zero potential). Moreover, figures show that the in­
duced electric potential is parabolic inside piezoelectric lay­
ers and vanishes at their upper and lower skins. 

It is the objective of this paper to present an asymptotic 
theory for piezoelectric plates in the presence of Dirichlet 
electric boundary conditions. These are taken into account 
by considering the electric field induced by the imposed elec­
tric potentials. That is, the electric potential is decomposed 
into a known component, completely defined from pre­
scribed electric potentials and an unknown component repre­
senting an induced electric potential. It will be shown that, 
for the bending problem, this induced potential is propor­
tional to bending strains and its contribution in the system be­
havior appears through a modification of the constitutive 
elastic equations and an additional electric force. Associate 
numerical handling is then made easier, since standard finite 
elements could be used provided that modified elastic con­
stants and electric force could be entered (Rahmoune et al., 
1996; Rahmoune and Osmont, 1996). It is found here that the 
consistent hypothesis for transverse electric displacement 
and field for thin layers is "the electric displacement and field 
are respectively constant and linear through thickness," con­
trary to above asymptotic theories where it is generally as­
sumed or derived that "the electric displacement and field are 
respectively constant through thickness." Moreover, it is 
found that the mechanical problem is of a Kirchhoff-Love 
type. 

In the following, the paper focuses on developing 
Kirchhoff-Love models for piezoelectric plates using an as­
ymptotic approach extending to the piezoelectric media the 
theory of Ciarlet and Destuynder (1979) devoted to elastic 
media. Numerical implementation was described in 
Rahmoune et al. (1996), Rahmoune and Osmont ( 1996), and 
detailed in Rahmoune ( 1997). Local three-dimensional 
equations and their associated variational formulation will 
first be recalled. Next, two-dimensional variational and local 
equations of short-circuited and insulated piezoelectric 
plates will be deduced as a limit when the aspect ratio of the 
plate vanishes. Applications are then made to homogeneous 
and orthotropic plates. 

THREE DIMENSIONAL PROBLEM 

In the three-dimensional space, of reference frame (o, xf , 
x� ' xn , let us consider a homogeneous piezoelectric body
QE, of thickness 2£ and characterized by its elastic, piezo-
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electric and dielectric constants, C!Jk1, efij and Eij respec­

tively. QQE denotes itS regular boundary Which is decom­
posed into upper, lower and lateral surfaces, L+E, L-E and fE, 
respectively. The latter is clamped on rg and free on its com­
plementary part f,E. The middle SUrface Of the piezoelectric 

body is denoted ro and has a boundary aro = y, split into a 

clamped part y0 and a free complementary part y 1. The do­

main can carry mechanical body forces rand surface forces 

g±E on upper and lower faces L±E. Electrically, it could be ei­
ther short-circuited, through prescribed potentials V±E on L±E 
and surface charge qE on r E, or insulated, i.e., charge-free on 
an.£. 

Local Equations 

Local three-dimensional problems consist of finding me­
chanical displacement uE and electric potential 'PE satisfying 
the following equations: 

• mechanical equilibrium and boundary conditions:

-aij.j = N in QE (1) 

crijn j = gfE on L±E, crijn j =O on f1E, 
(2) 

UE l =O on rg 

where crE is the symmetric Cauchy stress tensor, and nj are 
outward normal components, 

• electric equilibrium and boundary conditions:

(3) 

where DE is the electric displacement vector, 
• linear piezaelectric constitutive equations:

(5) 

representing the converse (actuator) and direct (sensor) pi­
ezoelectric effects. Notice that these are expressed using 
the short-circuited elastic, piezoelectric and dielectric con­
stants. In Equation (5), £ and E are the symmetric linear 
strain tensor and electric field vector related to the me­
chanical displacement uE and electric potential <p\ respec­
tively, through, 

It is worthwhile to notice that two important regular prob-

!ems could be distinguished according to the electric bound­
ary conditions considered. The first corresponds to the short­
circuited piezoelectric media, and the second to the electri­
cally insulated piezoelectric body, for which the potential is 
completely unknown, in particular on the boundary. The nat­
ural electric boundary condition is then, assumed to be, for 
the latter case, 

Dfn; = 0 on aQE (7) 

Variational Formulation 

The three-dimensional variational problem, associated to 
local equations (1-5), consists of finding the couple (uE, <pE)
in the admissible space 

satisfying the variational equation: 

where V0(QE) = {(v E, \j/e) E [H1(QE)]3 x H1(QE), vE = 

O on r g, 'l'E = 0 on L±E}. This variational problem has a 
unique solution (Rahmoune, 1997). 

ASYMPTOTIC ANALYSIS 

The asymptotic development technique (Ciarlet and 
Destuynder, 1979) is adapted here to get equivalent Love­
Kirchhoff piezoelectric plate models as limits of the above 
three-dimensional variational problem when £ tends to van­
ish. 

In order to apply the asymptotic analysis, the domain QE is 
first made fixed; i.e., independent of£ through the following 
geometrical variable change: 

Q = (t) x ] - 1, + 1[ (9) 

Then mechanical and electric parameters scaling are defined. 
The former is classically treated, as detailed in Ciarlet and 
Destuynder (1979). However, the latter depends on electric 
boundary conditions. 
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Mechanical Displacement and Forces Scaling 

Geometrical considerations lead to the following a priori 
estimates: uf E H1(QE) is a priori associated to u;(E) E 
H1(Q) such that 

Similar relations hold forvf E H1 (Q e) associated, a priori,
to v;(e) E H1(Q). It is convenient for mathematical purposes
to introduce the following scaling on body and surface forces 
defined as 

(11) 

where f and g are independent of e. Material constants are 
supposed independent of E, i.e.,

Cijkl(xE) = cijk1(x,,Xz,X3), ef;ij(xE) = ek;ij(x,,Xz,X3),
(12) 

Electric Potential Scaling for the Insulated Plate 

The plate is assumed insulated, i.e., Equation (7) holds. 
Thus, the variational problem (8) reduces to finding (uE, rpe) 
E V01(Qe), so that, 

(13) 

where V01(QE) = {(v e ,  'l' E) E [H1(QE)]3 x Hl(QE), ve 
= 0 on r8 }. 

The order of E in the unknown potential rpe is selected such
that the variational problem (13) has an asymptotic solution. 
This is found to be in the form (Rahmoune, 1997): 

Similar relations hold for 'l'E associated to 'lf(E). 

Electric Potential and Charge Scaling for 

the Short-Circuited Plate 

(14) 

The plate is now assumed short-circuited, i.e., electric 
boundary conditions ( 4) hold. Prior to the direct application 
of the asymptotic development technique, non-homage-

neous Dirichlet electric boundary conditions ( 4.1) should be 
made homogeneous. To this end, the electric potential rpE is 
split into a linear part rpOE, known through the given poten­
tials on L±e, and an unknown part <I>\ so that,

where 

---- + x VU±£ E H112(L±E) {u+e + u-e u+E - u-£ }2 2E 3, 

Hence, the variational problem (8), reduces to finding (ue, <l>e) 
E V0(QE), such that: 

(16) 

The second integral in the left hand side (l.h.s.) of Equation 
(16) is the contribution of the unknown potential <l>E, shown 
here to represent the induced potential, often neglected in the 
literature. However, the last integral in the r.h.s. of Equation 
( 16) is the equivalent electric force due to the imposed poten­
tial rp0E. The above variational formulation can be used either
for actuator or sensor analysis. But, in the latter case, the last 
two integrals in Equation (16) should be dropped, according 
to Equation (7). This is more detailed in the next sub-section. 

Now, scaling orders of rpOE, <l>E and qE are chosen so that an 
asymptotic solution exists for the variational problem (16). 
These are found to be in the form (Rahmoune, 1997), 

where q is independent of E. Using Equation (15), the total
potential is then taken in the form, 

(18) 

Similar relations hold for 'l'E associated, a priori, to 'lf(E) 
which can be also decomposed into a known and an unknown 
part as in Equations (15), (17) and (18). Notice that Equa­
tions (14), (17) and (18) ensure that the corresponding elec-
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tric parameters appear in the zeroth order of the asymptotic 
solution. 

SHORT-CIRCUITED PIEZOELECTRIC 

PLATE MODEL 

This section aims to present the limit variational problem 
associated with a short-circuited piezoelectric plate when E 
tends to zero. Starting from the three-dimensional variational 
problem (16), in conjunction with mechanical [Equations 
(10)-(12)] and electric [Equations (15,17,18)] parameters 
scaling, the asymptotic mechanical displacement field and 
electric potential are first deduced through an asymptotic 
analysis; then a limit two-dimensional variational problem is 
defined, together with its associated local equations. 

Asymptotic Mechanical Displacement 

and Electric Potential 

According to the mechanical displacement scaling Equa­
tion (10), the strains can be scaled as 

It can be shown (Rahmoune, 1997) that, when E goes to zero,
we have 

(20) 

which naturally leads to the following asymptotic displace­
ment, 

(21) 

where (Sa,S3) E VKL x WKL with VKL= {Sa E H1(ro), sa=Oon
YoL WKL = {S3 E H1(ro), S3 = avS3 = 0 on Yo}.

From the electric potential scaling (18), the electric field 
scaling has the form 

Ea(<fJE) = £
3 Ea(<fJ(E)), £3(<pE) = E2 £3(<p(E)) 

(22) 

It can be shown (Rahmoune, 1997) that when E tends to zero 

1 
- <j>(E) -+ <j>*3 (23) 

Consequently the electric potential tends to <p such that:

<p =<po + <!>* (24) 

where 

and 

VL = {<po E H1 (Q), <po = V± on I±}

VQ = {w E H1(il), 'I' = O on I±,

It is worthwhile noticing that Equations (20) and (23) are 
weak convergences. It was shown that these are also strong 
convergences (see Rahmoune, 1997 for details). 

These results suggest the following comments: 

• The asymptotic mechanical displacement field (21) is of
the Kirchhoff-Love type (E;3 = 0).

• The asymptotic electric potential (24) has a known part ip0

entirely defined by the known potentials on the upper and
lower faces, and an unknown part <j>* corresponding to the
induced potential. <!>* is often neglected in the literature
(Rahmoune et al., 1996).

• Only transverse components of the electric field are of im­
portance, which is often retained in the literature, but finds
here a mathematical justification [Equation (23)].

Asymptotic Electric Displacement and Stresses 

In order to satisfy the electric equilibrium (3) and bound­
ary conditions (4.2), in-plane and transverse electric dis­
placement components are scaled separately: 

(25) 

where 

and 

<p(E) is defined in Equation (24). Since Kk1(E) and Fk(<j>(E)) are
bounded, then when E tends to zero, electric displacement
components converge weakly to 

(26) 
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Classical scaling of the stresses is defined as (Ciarlet and 
Destuynder, 1979), 

O'�� = E20'a�(E) , 0'�3 = E30'a3(E) , 0'�3 = E40'33(E)

(27) 

where 

Using Equations (19), (22), (25) and (27), the three­
dimensional variational problem (8) becomes: 

= J f;v ;dD. + J + g fv ;dI. ± + J eq'lf(E) dr (28)n L- r 

where 'lf(E) = '1'0(e) + e-'x(e) .
Keeping in mind that K;/E) are bounded, then 

1. Multiplying Equation (28) by E, setting v = Va and 'I' =  0,
and tending e to zero

2. Multiplying Equation (28) by e2 , setting v = v3 and 'I'= 0,
and tending E to zero, weak [shown to be also strong
(Rahmoune, 1997)] convergence of cr;3(e) to cr;3(0) is ob­
tained with:

(29) 

These results indicate that: 

• Only the transverse component of the electric displace­
ment is of importance [Equation (26)], in-plane compo­
nents may be neglected as it is the case for the electric field;
this is a classical hypothesis, but finds its justification here.

• Transverse stresses cr;3 may also be neglected compared to 
in-plane components [Equation (29)].

Two-Dimensional Variational Problem 

Let's set va(x1, x2, x3) = lla(Xi. x2) -x3aa113(xi. x2) , v3(xi. x2, 
x3) = 113(xi. x2) and 'I'= 0 in the variational problem (28) and e 
tends to zero, in order to obtain 

where 

and O'ap(O) is the limit of O'a�(E) ,  given by, 

in which 

are modified elastic and piezoelectric constants due to cr;3 = 
0. The 3 x 3 matrix (S3j3k) is the inverse of the 3 x 3 matrix
(C3j3k) · 

Stress resultants Nap and moments Map are now intro­
duced: 

f+I Map = _1 X30'ap(O)dx3 (32)

then included in Equation (30) to get the following two­
dimensional variational problem: 

(33) 

where 

To prove the importance of the unknown potential <I>*, we
shall first show that the unknown electric field £3( <!>*) [Equa­
tion (31)] may be expressed in terms of bending strains. To 
this end, let us set v = 0 and 'l'o = 0 in Equation (28), then mul­
tiplying by e, and make e vanish to obtain 

f n [e3;k/1Ck1(E,) + E 33 F3 (<l>*) ]F3 (X)dQ = 0 'r:fx E VQ
(34) 

From Equations (27) and (29), K;3 can be expressed in terms
of Kap and F3, 

(35) 
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These are included in Equation (34 ), which is integrated by 
parts in order to get 

(36) 

where 

E values are modified dielectric constants due to c;i3 = 0. 
From the above equation, the unknown electric field £3( tj>*) 
can be written in terms of bending strains as: 

(37) 

The constant of integration is determined through the condi­
tion f � l £3( tj> *)dx3 = 0, leading to the final expression of the
unknown electric field, 

(38) 

Hence, the unknown electric potential can be simply defined 
as 

(39) 

since tj>* = 0 on L±. Unknown electric field (38) and potential 
(39) are interpreted as induced electric field and potential. 
These are often neglected in the literature (Rahmoune et al., 
1996). 

Expression (38) of the induced electric field is now substi­
tuted in the constitutive equation (31 ), which becomes, 

(40) 

where 

and 

Using definitions (32) of the normal and moment stress re­
sultants, we get, 

(41) 

where N �P and M �P are related to the applied potential cp0:

(42) 

Nip and M ip include the effect of induced electric field. 
They are linked to membrane and bending strains through the 
following modified constitutive equations: 

N* - cm cmb* iJ io ap - ap/i'- Yo'- - aPo'- '6'- ':> 3
(43) 

h Cm cmb* chm cb* b b w ere aPli'- , ap/i'- , apo-. , aPli'- are mem rane, mem rane-
bending and bending modified elastic plane stress constants. 
They are given by: 

Cmb* f+lc* d ap/iA = -I ap/iA X3
(44) 

It's worthwhile noticing that modified constitutive equations 
(43) are not symmetric due to membrane-bending elastic 
constant because of the piezoelectric coupling. 

Substituting Equations (43) into (41), then in the varia­
tional problem (33), gives the following new variational 
property: 

(45) 

Compared to a classical elastic variational problem, the 
above equation, indicates that the piezoelectric effect in­
duces a modification of the constitutive equations according 
to Equation (43) and an extra generalized electric force/mo­
ment vector represented by the last r.h.s. integral in Equation 
(45). Hence, the numerical implementation of Equation (45) 
would be very easy provided that Equations (42) and (44) 
could be entered into a classical structural software. The so-
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lution of the above variational problem gives the mechanical 
displacement !;. 

Now let's see how to derive electric quantities such as <I>* 
or £3(<!>*). For this, let v = 0 in the variational problem (28), 

which becomes, 

(46) 

Taking account of Equation (26) and making E vanish, leads 
to: 

which implies that D3,3(0) = 0 in Q. Hence, using Equations
(25) and (35), we get:

In summary, to get the solution of the electromechanical 
coupled problem for a smart short-circuited plate, the 
variational problem (45) is first solved in order to obtain the 
mechanical displacement, then the electric displacement, 
field and potential could be computed, a posteriori, by Equa­
tions (48), (38) and (39) respectively. Beside, the piezoelec­
tric effect induces a modification of the constitutive equa­
tions, as indicated in Equation (43) and an extra electrical 
force term as defined in Equation (42). Here it was found that 
the induced electric potential and field are proportional to 
bending strains, whereas the electric displacement is con­
stant through the thickness. 

Local Problem 

Integrating by parts the variational equation (33), gives the 
following local equations: 

• membrane problem

-opNap =Pa mro 

N apVp = 0 on y1 
(49) 

where Nap are given by Equations (41)-(44) and Vp are 
normal components of the outward normal unit vector to 
YI· 

• bending problem

(50) 

• electric problem

Discussion of the Short-Circuited Piezoelectric 

Plate Model 

(51) 

The present two-dimensional formulation shows that in­
plane electric displacement and field do not appear. Hence, 
only their transverse components and in-plane stresses are 
retained in this model. These are usual hypotheses in the lit­
erature, but find here a mathematical background. 

It was found that, when the induced potential is not ne­
glected, electric displacement and field are constant and lin­
ear in the thickness direction, respectively. When the induced 
field is substituted in the constitutive equations, by its ex­
plicit expression in terms of the bending strains, the electro­
mechanical problem uncouples. Thus, the mechanical prob­
lem is solved first for mechanical displacements, then these 
are used to compute, a posteriori, the electric quantities 
(field, potential, charge, displacement). 

If the induced electric potential is neglected, for consis­
tency reasons, the transverse electric field component is con­
stant in the thickness direction. Consequently, the transverse 
electric displacement becomes linear, i.e., D3(0) = e3;0,_(y0;i,. -
x3a0,_1;3) + E 33E3(rp0) , but does not ensure the electric equilib­
rium equation (51). Hence, assuming constant transverse 
electric field and displacement, as retained in many papers, is 
contradictory. The right electric assumptions for short­
circuited piezoelectric plate should be constant electric dis­
placement and linear electric field as explained above. 

According to Equation (48), bending strains do not induce 
electric charge, only membrane strains can do so for homo­
geneous piezoelectrics. However, both strains can generate 
electric charges for the practical case of multilayer configu­
rations where piezoelectrics are either surface-mounted to or 
embedded in a host structure. 

INSULATED PIEZOELEC TRIC PLATE MODEL 

The objective of this section is to develop the limit 
variational problem associated with an insulated piezoelec­
tric plate when E tends to zero. Starting from local equations 
(1)-(3) and (5)-(7) and their corresponding three-dimen­
sional variational problem (13), in conjunction with mechan­
ical [Equations (10)-(12)] and electric [Equation (14)] 
parameters scaling, asymptotic electric potential and dis­
placement are first deduced through an asymptotic analysis; 
then an equivalent two-dimensional variational model is for­
mulated together with its associated local equations. 

Asymptotic Electric Displacement and Potential 

Compared to the above short-circuited model, scaling of 
electric parameters are no longer those obtained previously, 
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since the electric potential is now completely unknown. Its 
scaling is given by Equation (14), i.e., 

(52) 

Hence, in-plane and transverse components of the electric 
field can be scaled as, 

(53) 

Scaling of in-plane and transverse components of the elec­
tric displacement are now taken so as to satisfy the electric 
equilibrium equation (3) and boundary condition (7) : 

(54) 

where 

and 

Using Equations (19), (27), (53) and (54), the three­
dimensional variational problem (13), written on the fixed 
domain, is now, 

+ D3(£)£- 1 £3(\j/(E))]d.Q = f �J;v;d.Q + Jr.± gfv;dI.±

(55) 

Contrary to the short-circuited plate model, it may be 
shown that the asymptotic electric potential is now constant 
in the plate thickness (Rahmoune, 1997), i.e., when£ goes to 
zero, 

(56) 

Besides, in-plane components of the electric displacement 
converge weakly according to: 

D0 (£) � Da (0) in L2 (57) 

when£ is made to vanish (Rahmoune, 1997). Here, in-plane 
electric displacement components are dominant; D3£3, the
transverse electric work is negligible versus D0E0• 

Two-Dimensional Variational Problem 

Let's set v0(£) = T)0(x1, x2) -x3a0113(x1, x2) , v3(£) = TJ3(x1, x2) 
and 'Jf(E) = 'Jf(x1, x2) in the variational problem (55) and tend£
to zero, in order to get, 

(58) 

where 

�al30J.., !!J..;ap are �odified elastic and piezoelectric constants
due to cr;3 = 0 andD3,3 = 0. They are given in the Appendix. 

Introducing the following electric charge : 

where 

f+I QA = DJ,.dx3-1 (59) 

(§J..a are modified dielectric constants given in the Ap­
pendix), together with stress resultants (32) and generalized 
forces (33) in the above three-dimensional variational prob­
lem, reduces it to the following two-dimensional one, 

(60) 

This equation indicates that the electromechanical prob­
lem cannot be uncoupled in general, and that the coupling is 
between in-plane components of stresses and the electric 
field. However for orthorhombic piezoelectric media like 
PZT, the electrical and mechanical problems are not coupled. 

Local Problem 

Integrating by parts the above two-dimensional varia­
tional problem leads to the following local equations :  

• membrane problem

-apN ap = Pa in co 
(61) 
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• bending problem

in co 

(62) 

• electric problem

(63 )

Discussion of the Insulated Piezoelectric Model 

The present theory shows that, in general, in-plane compo­
nents of the electric field couples with all in-plane strains, 
leading to a coupling between mechanical and electrical phe­
nomena. 

The asymptotic electric potential was found to be inde­
pendent of x3 at the zeroth order in £. This potential can be
identified to the "mean value" of the electric potential 
through the thickness of the plate. 

Moreover for orthorhombic piezoelectric plates, the elec­
tric and mechanical problems uncouple due to the constitu­
tive laws. The electrical problem gives the "mean value" of 
the potential through the thickness of the plate. The mechani­
cal problem, using insulated elastic constants, gives the dis­
placements and as a consequence an additional electrical po­
tential induced by the deformation. 

APPLICATIONS 

Mechanical membrane-bending coupling and electro­
mechanical couplings depend on the symmetry and homoge­
neity of the piezoelectric plate. This section discusses these 
coupling phenomena for a homogeneous and orthorhombic 
piezoelectric media. In particular, such plates have no mem­
brane-bending coupling. 

Homogeneous Piezoelectric Plates 

Transversely homogeneous piezoelectric medium has uni­
form through thickness elastic, piezoelectric and dielectric 
constants, i.e., independent of coordinate x3. Hence, previous
results can be simplified. In particular the variational prob­
lems are symmetric. 

SHORT-CIRCUITED PIEZOELECTRIC PLATE 
The induced electric field defined by Equation (38), re­

duces to, 

(64) 

Thus, the induced potential (39) is now simply,

(65) 

Equations (64) and (65) show that both induced electric field 
and potential are proportional to bending strains. The former 
is linear in x3, whereas the latter is parabolic.

From these relations, generalized constitutive equations 
(43) reduce to, 

(66) 

where 

according to Equation (44) . Notice that only bending con­
stants are modified by the piezoelectric effect. In fact C��x.o
constants are insulated plane stress elastic constants. 

Since there is no membrane-bending coupling, two uncou­
pled mechanical problems can be defined: 

• a membrane problem, for which:

(67) 

• a bending problem, for which:

(68 )

The electric displacement is still defined by equation ( 48).
For constant prescribed electric field E3(rp0), Equations

(42) reduce to:

(69) 

Therefore, the piezoelectric coupling induces modifications 
of the classical plate model: 

• a membrane constitutive law using short-circuited plane
stress elastic constants
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• a bending constitutive law using insulated plane stress
elastic constants

• additional generalized electric in-plane forces N gp ( tp 0)
proportional to the prescribed electric field E3(tp0) for the
membrane problem

• no additional generalized electric moments M 2p ( tp0) rela­
tive to the prescribed electric field E3(tp0) but an additional
potential proportional to bending

So, to solve the problem for the short-circuited thin plate,
one calculates the prescribed electric potential tp0, then the
displacements s of the plate with modified constitutive laws, 
then the induced potential <I>*· If it is desired to solve the 
variational problem using finite element codes, one can have 
trouble introducing different elastic constants for membrane 
and bending. This can be overcome by replacing the piezo­
electric plate by an equivalent three layered plate having 
usual constants for plates. 

INSULATED PIEZOELECTRIC PLATE 
The two-dimensional electromechanical variational prob­

lem is that defined in Equation (60), for which generalized 
constitutive equations read now: 

(70) 

(71) 

Here, the electromechanical variational problem (60) does 
not uncouple. Moreover the coupling is between the in-plane 
components of membrane strain or stresses and plane com­
ponents of electric field or displacement. From Equations 
(69), (70) and (71) it is clear that bending strains could not be
correlated to any electric quantity measured on the plate sur­
face. 

Orthorhombic Homogeneous Piezoelectric Plates 

Actually, commonly used piezoelectric materials are 
transverse isotropic (like PZT) or orthorhombic (like 
PVDF). That is the reason why we focus here on ortho­
rhombic piezoelectric materials for which simplifications 
occur. These materials have the following short-circuited 
elastic matrix, 

C1111 C1122 C1m 0 0 0 

C1122 C2222 C2233 0 0 0 
C1m C2233 C3333 0 0 0 

C= 0 0 0 C2323 0 0 
0 0 0 0 C1313 0 
0 0 0 0 0 C1212 

and piezoelectric and dielectric matrices, 

[ 0 

e = 0

e3;11 

0 
0 

e3;22 [E" 
E = 0 

0 

0 0 e1;31 �]0 e 2;32 0 

e3;33 0 0 

0 

E�JE12 
0 

Piezoelectric material constants depend on the direction of 
the material axes and electric polarization. Here, the former 
is supposed to be parallel to the reference axes and the latter 
is supposed perpendicular to the plate. Modified material 
constants, taking account of the piezoelectric effect in a clas­
sic mechanical problem, are now presented. 

SHORT-CIRCUITED PIEZOELECTRIC PLATE 
1. For an extension problem, the plane stress elastic con­

stants are, 

_ C
C33A liC33ap 

C aPA li  - aPA li  - ---­C 3333 

where Cijkl are the short-circuited elastic constants.

(72)

2. For a bending problem, the plane stress elastic constants
are 

(73)

where 

The constants C �PA ii are the insulated elastic constants.
The only difference with the homogeneous case is a 

simplification of the plane stress elastic constants. 

INSULATED PIEZOELECTRIC PLATE 
Since modified piezoelectric constants gA ;ap are nil here,

there is no coupling between in-plane components of stresses 
and electric field. The mechanical problem and the electric 
problem are not coupled. One obtains a classical elastic plate 
model with plane stress elastic constants having for mem­
brane and bending the expressions: 

where 

= c
; _ 

C�3"oc�3aP 
� aPA li aPAli C i 3333 
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The electrical potential <p is then the solution of the follow­
ing problem: 

!!. <p = 0 in ro, 
aip = 0 on 'Y = aro an 

(75) 

which can be used to find the constant potential. This result is 
similar to that given in Maugin and Attou (1992). 

CONCLUSION 

The present theory shows that, for thin homogeneous pi­
ezoelectric plates, a priori consistent mechanical hypotheses 
are: 

1. Only in-plane stresses have to be retained (cr3i = 0).
2. The transverse electric displacement is constant through

the plate thickness.
3. Mechanical displacement field is of Kirchhoff-Love type;

i.e., in-plane and transverse components are, respectively,
linear and constant through thickness. 

4. The electric potential is the sum of two potentials <p e and
'Pi:
• The former 'Pe• which vary linearly through the thick­

ness of the plate, depends on the electrical boundary 
conditions. 

• The latter 'Pb which vary quadratically through the
thickness of the plate, does not depend on the electrical
boundary conditions.

However, a priori, other electric assumptions depend on 
the electric boundary conditions. They are: 

• for a short-circuited plate:

(a) Only transverse components of the electric field and
displacement have to be retained. 

(b) The electric potential <p e is known explicitly from the
prescribed potentials on the upper and lower faces. 

(c) The electric potential <p; is known explicitly from the
flexural displacement and is called the induced poten­
tial. 

• for an insulated plate

(a) Only in-plane components of the electric field and dis­
placement have to be retained. 

(b) The electric potential 'Pe is constant through the thick­
ness and is only coupled to the membrane displace­
ment; moreover, for an orthorhombic plate, this poten­
tial does not depend on the displacement. 

(c) The electric potential 'Pi is known explicitly from the
flexural displacement and is called the induced poten­
tial. 

The present theory also indicates that bending strains 
could not be correlated to any measurable or applied electric 
quantity on piezoelectric plate surfaces. 

These results make it possible to develop a similar plate 
theory for laminates with some of the layers being piezoelec-

tric. Moreover, classical finite element codes can be used to 
find approximations of multilayer plate problems with pi­
ezoelectric layers. In practice, it is possible to solve a me­
chanical problem for the displacements; then the potential is 
obtained explicitly from these displacements. 

For plates continuously heterogeneous through thickness, 
the results are more complicated. 
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APPENDIX 

Modified Constants for the Insulated 

Piezoelectric Plate 

Modified material constant used in Equations (58) and 
(59) are defined by, 

where 
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