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INTRODUCTION

THE VIBRATIONS WHICH occuR in fluid-filled piping systems are of primary interest in many industrial and aerospace applications. For instance, in order to study the dynamic stability of the vibrations of liquid-propelled launchers-the so-called Pogo instabilities [START_REF] References Abramson | The Dynamic Behaviour of Liquids in Moving Containers[END_REF]�ne has to consider the coupling between the propellant tanks, the flexural hydraulic pipes and the combustion phenomenon, taking into account flow and viscosity effects in the pipes. We do not consider nonlinear effects that may also create instabilities in the fluid [START_REF] Dodge | The Dynamic Behavior of Liquids in Moving Containers[END_REF].

The problem of the dynamics of pipes conveying fluid has received much attention in the literature [START_REF] Housner | Bending vibrations of a pipe-line containing flowing fluid[END_REF][START_REF] Long | Experimental and theoretical study of transverse vibrations of a tube containing flowing fluid[END_REF][START_REF] Dodds | Effect of high velocity fluid flow on the bending vibrations and static divergence of a simply supported pipe[END_REF]Pa " idoussis & Issid 1974;[START_REF] Holmes | Bifurcation to divergence and flutter in flow-induced oscillations: a finite dimensional analysis[END_REF][START_REF] Chen | Vibrations of continuous pipes conveying fluid[END_REF][START_REF] Chen | Flow induced vibration and instability of some nuclear reactor system components[END_REF]Dupuis & Rousselet 1985;[START_REF] Edelstein | A finite element computation of the flow-induced oscillations in a cantilevered tube[END_REF]Pa" idoussis et al. 1986;[START_REF] Jendrzejczyk | Experiments on tubes conveying fluids[END_REF]. Inextensible flexural motions involve additional effects of the fluid, acting as if it were incompressible. Due to the flow, the problem is nonconservative in the general case, and for some particular boundary conditions we obtain complex eigenmodes associated to real eigenfre quencies. For a critical value of the stationary flow velocity, an instability phenomenon occurs as in buckling (or flutter in the more general case) problems. Various physical descriptions of the structure and the fluid are discussed for long or short pipes, using refined beam theories and one-(or three-) dimensional representation of the liquid. Computational procedures imply "analytical", transfer matrix or finite element methods.

If we now consider longitudinal motions of a straight pipe, compressibility terms of the fluid are present in the equations and, in this case, it is convenient to keep a state variable describing the liquid, as the relation between the structure and the fluid variables is frequency-dependent. Recall that for flexural motions of a straight pipe, the state variable describing the fluid can be eliminated statically as a function of the structural variables because the fluid acts through inertial terms as if it were incompressible; this elimination is straightforward within a one-dimensional global representation of the liquid.

Let us now review the main computational methodologies in order to quantify the eigenmodes of a three-dimensional compressible fluid-structure coupled system around an equilibrium state at rest. Attention must be paid to the choice of the state variable describing the fluid.

In order to use standard structural finite element codes, attempts have been made through structural-acoustic analogy (Chin & Chargin 1983). If a displacement variable is used for the liquid, one obtains a standard eigenvalue symmetric matrix system with the following drawbacks: a vector field description of the fluid and the presence of spurious solutions corresponding to the discretization of the irrotationality condition.

Because of these problems many investigators have used a dual scalar field for the fluid, namely the pressure or the displacement potential field [START_REF] Zienkiewicz | Coupled vibrations of a structure submerged in a compressible fluid[END_REF]. The resulting matrix system has the following form (K -w2 M)X = 0, where K and M are not symmetric, although the physical system is conservative.

In order to symmetrize the system, one idea was to use the velocity potential of the fluid as unknown [START_REF] Everstine | A symmetric potential formulation for fluid-structure interactions[END_REF][START_REF] Olson | Analysis of fluid-structure interaction. A direct symmetric coupled formulation based on the fluid velocity potential[END_REF], but the resulting matrix system is of the following type: (K + jwC -w2 M)X = 0.

Scaling-matrix manipulations have also been used by [START_REF] Felippa | Symmetrization of the contained compressible fluid vibration eigen problem[END_REF]. We have presented symmetrization procedures using simultaneously the pressure and the displacement potential in the fluid, which have yielded successful results when applied to aerospace problems [START_REF] Morand | Substructure variational analysis for the vibrations of coupled fluid-structure systems[END_REF][START_REF] Ohayon | True symmetric variational formulations for fluid-structure interaction in bounded domains. Finite element results[END_REF]Nicolas Vullierme & Ohayon 1984).

For a low-frequency piping problem, without flow or viscous effects, i.e. for a conservative system, the procedure developed by Morand & [START_REF] Morand | Substructure variational analysis for the vibrations of coupled fluid-structure systems[END_REF] has been applied by Axisa & Gilbert (1982) through an elasto-acoustic beam theory. A boundary integral method has been used for the fluid in [START_REF] El-Raheb | Coupled shell type frequency response of piping system composed of straight elements and elbows enclosing an acoustic medium[END_REF]. In [START_REF] Everstine | Dynamic analysis of fluid-filled piping systems using finite element techniques[END_REF], one may find comparisons between a beam-type model and three-dimensional computations using the velocity potential field. We have developed [START_REF] Ohayon | Variational analysis of a slender fluid-structure system: the elasto-acoustic beam. A new symmetric formulation[END_REF]) a complete variational procedure of displacement type without the drawbacks found in the three-dimensional case. This is due to the fact that the problem is one-dimensional, and the variable chosen to describe the compressible fluid is the scalar cross-section mean value of the longitudinal displacement of the fluid.

The purpose of the present paper is to extend the work presented by [START_REF] Ohayon | Variational analysis of a slender fluid-structure system: the elasto-acoustic beam. A new symmetric formulation[END_REF], by taking into account compressible fluid flow and viscous effects, through a finite element procedure based on an appropriate variational formulation. Therefore, the method is more flexible for describing various complex deflections of the pipe than the transfer matrix procedure (Ordonneau 1985). This work is part of general studies concerning Pogo instability of liquid-propelled launchers.

The outline of the paper is the following. First, we present the main hypotheses and the general coupled equations for a straight pipe. Second, we consider the classical problem of flexural motions of the straight pipe, establishing the corresponding variational formulation and the finite element matrix system. Third, we consider longitudinal motions of the straight pipe, establishing the corresponding variational formulation in terms of structural variables and of the cross-section mean value of the unsteady longitudinal displacement (relative to the pipe), and the finite element matrix system.

A curved pipe is considered as an assembly of straight pipes, each one consistent with the preceding variational formulations. Flexural and longitudinal motions are therefore coupled.

A computer program has been written, which allows a curved pipe filled with a compressible viscous and flowing fluid to condense into a super-element; the degrees of freedom related to internal nodes are eliminated for a prescribed frequency. This super-element is used to compute the response of a curved pipe to a prescribed harmonic excitation.

Numerical results are presented for straight and elbow pipes, and show good agreement with experimental and three-dimensional numerical results available in the literature [START_REF] Dodds | Effect of high velocity fluid flow on the bending vibrations and static divergence of a simply supported pipe[END_REF][START_REF] Everstine | Dynamic analysis of fluid-filled piping systems using finite element techniques[END_REF].

STRAIGHT PIPE ANALYSIS

GENERAL ASSUMPTIONS

We consider the low frequency linear response of a straight pipe with slowly varying circular cross-section, and conveying a compressible, viscous fluid. The structure is a linear elastic homogeneous tube modelled by a standard beam theory. The fluid flowing in the tube is compressible and viscous. The mean flow is assumed incompressible and its velocity small compared to the velocity of sound in the fluid. We are interested in adiabatic perturbations about a stationary situation. Only the cross-section mean values of the fluid variables are of interest.

Therefore, all the unknowns of the problem are functions of time and of the curvilinear abscissa, s , along the pipe centerline (the Frenet reference frame will be classically denoted by (1, n, k), I being the unit vector tangent to the centerline).

GENERAL LINEARIZED EQUATIONS OF THE COUPLED SYSTEM

Structural e q uations

Let us write the dynamic equations of the structure submitted to a prescribed force, f, (per unit length), with components (ft, fn> fd.

If ( q 1, qn, qk) denotes the components of the displacement vector q of the pipe centerline, the standard beam theory, neglecting shear and rotary inertia effects, leads to:

(1)

(2)

(3)

E denotes the Young's modulus, S the cross-sectional area, I the cross-sectional moment of inertia, and Ps the mass density.

2. Fluid e q uations

We shall establish the dynamic responses of a fluid subjected to a prescribed displacement, q, of the fluid-structure interface.

Without entering into details, for the sake of brevity, the method used to obtain a one-dimensional mean value model is classical. Starting from the continuity and the mass momentum equations of the fluid, we integrate them in a volume lying between two close cross-sections, and pass to the limit when os ::} 0. After linearization, the unsteady one-dimensional equations are as follows:

Continuity equation:

Mass momentum equation:
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where p is the mean value of the mass density of the fluid, a the velocity of sound in the fluid, A the fluid cross-sectional area, V the mean velocity of the fluid, iii the steady mass flow rate (iii= pA V), and p the mean pressure of the fluid, and they are all given quantities; the following quantities are the unknowns: p, the unsteady pressure, m, the "relative displacement" of the fluid (rh is the fluctuation of the relative mass flow), and f, the reaction force (per unit length) of the fluid on the structure.

Remark 1. In order to take into account the axisymmetric deformation of the tube, we may use, in a classical way, an equivalent velocity of sound in the fluid a*, which depends on the elasticity of the wall; i.e.,

( _!_ ) 2 = ( ! ) 2 + pD ' a* a Ee
where e and D represent the thickness and the external diameter of the structural cross-section.

3. Viscosity effects a r;;
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where K is determined by experiments. The longitudinal steady force exerted by the fluid is
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Setting Rv = 2Kiii, one obtains for the longitudinal unsteady force aA ti= -p -+ARvrh . as

(9)
Remark 2. The coefficient, Rv, is not taken to zero when there is no flow (iii = 0). This is justified by the fact that when the mass-flow is small enough, the flow becomes laminar and the second member of equation ( 8) becomes -Km . 2.2.4. E q uations of the cou p led system

The eight equations _ (l-7,9) are expressed in terms of (q1, qn , qk and m) as follows:
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Remark 3. As expected, the flexural motions (qn, qk) are decoupled from the longitudinal ones (q1, m).

FLEXURAL MOTIONS

The flexural equations (10, 11) involve only steady quantities of the fluid (p, p, V). The influence of these parameters and of the boundary conditions on the stability of the system, has been extensively studied in the literature. For harmonic motions of circular frequency w, equation (10) is as follows:

a1 ( a1 qn ) a ( ---a qn ) -a qn 2 as2 EI asz + as (mV +AP) as + 2jwm as-w (p,S + pA)qn = 0 . . (14)

The first term represents the elastic forces, the second term plays the role of an axial pres tress effect (due to an excess of pressure P of the fluid relative to the external pressure and to centrifugal forces exerted by the flowing fluid), the third term is a Coriolis force, and the fourth term corresponds to the inertia of the structure and of the fluid.

Remark 4. Effect of fluid com p ressibility. For the flexural vibrations of a straight pipe, the speed of sound does not appear in the dynamic equation ( 14). This means that for such motions, the liquid can be considered as incompressible and therefore has only an added mass effect on the structure.

The variational formulation of (14) is as follows. Find qn E W (the admissible space) such that: K(qn, q�) -KF( qn, q�) + j wC p (qn, q�) -w 2 M(qn, q� ) = F( q�), for every q � E W; F and w being prescribed. In equation (15), explicitly we have K = LL E i a2 qn a2q � ds 0 as2 as2 ' and KF = 0 if there is no flow and no pressure excess, KF is symmetric for clamped or simply supported ends, or ends such that a qn /as = 0, and KF is unsymmetric for other boundary conditions;

T L L ( a qn , a q� ) T [ ' ] L CF= m () -a;qnas qn ds + m qnqn (), (19) and CF= 0 if there is no flow, CF is skew-symmetric for clamped or simply supported ends, and CF is not skew-symmetric for other boundary conditions;
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represents the external virtual work. After a finite element discretization using the usual beam element interpolations, the matrix system is:

(K -KF + jwCF -w 2 M) X = F. ( 21 
)
The symmetry of the matrices has been discussed in the foregoing.

LONGITUDINAL MOTIONS

In the harmonic case, the variational formulation corresponding to equations (12) and ( 13) is as f ollows. Find (q1, m) E W (the admissible class) such that: K(q1, m; q;, m') + jwCF(q1, m; q;, m') + jwCv(m, m') -w 2 M (q1, m; q;, m') = F(q;, m') (22) for every (q;, m') E W; wand F being prescribed. In equation ( 22), explicitly we have L L ( s -2 ) aq1a q; ds L L a2 amam' ds L L z ( amaq; aq1am' ) ds K= E +p a A ---+ -----+ a ---+ --- and CF= 0 if there is no flow, CF is skew-symmetric if the boundary conditions are such that the boundary terms are zero, CF is not skew-symmetric in the general case; F represents the virtual work of the forces and the pressure at the end of the pipe (not written here for sake of brevity). Using linear interpolations for q 1 and m, the matrix system resulting from the finite element discretization is as follows:

(K + jwCF + jwCv-w2M)X = F, X= (�).

(27) 2.5. COMBINED MOTIONS By adding the different variational formulations, we can describe combined motions in order to create a two-node finite element with seven degrees of freedom per node such as:

CURVED PIPE ANALYSIS

A curved pipe is described as an assembly of straight pipes. The elementary matrices are computed as usual in a local frame and then assembled in a common global frame, realizing therefore the coupling between the longitudinal, flexural and torsional motions.

THE COMPUTER SOFfW ARE

An interactive Fortran-77 program has been written and worked out on a BULL/SPS 9(UNIX-system).

For a prescribed frequency, during the assembly procedure, internal nodes are eliminated, leading to a complex impedance matrix (14 x 14) connecting (i), the displacements and the rotations of the beam, the "displacement of the fluid" at the end of the pipe to (ii) the forces and moments applied to the structure and the pressure applied to the fluid.

NUMERICAL RESULTS

Due to the lack of general simple experimental results, we neglect viscosity effects, considering only flow effects. Further analysis will be required for the validation of the crude viscous model described above.

Finite element computations have been performed on two piping systems. The first of these in a straight pipe. The second is an elbow, already examined by [START_REF] Everstine | Dynamic analysis of fluid-filled piping systems using finite element techniques[END_REF], for which experimental and computational results are available.

Modal analysis of these systems has been performed, neglecting viscosity effects, within our set of research computational code ASTRONEF, for some particular cases: (a) when the fluid is at rest, the matrix system to be solved is of the following type:

(K -ulM)X = 0 , where K and M are symmetric matrices, whatever the boundary conditions; (b) when flow effects are taken into account, the matrix system to be solved is of the following type: (K + jwC -w2M)X = 0 , where Mis symmetric. The boundary condi tions must be chosen such that K is symmetric and C is skew-symmetric. Forced vibrations have also been considered. A computer program has been developed, which enables us to model a curved pipe filled with a compressible, viscous and flowing fl uid, as a frequency dependent su per-element. Forced vibrations are then computed by solving a system of linear equations with complex coefficients.

STRAIGHT PIPE

The first piping system is a straight pipe filled with a flowing fluid. We consider transverse vibrations of this pipe, which are independent of the axial fluid-structure vibrations as it has been seen before. The flexural vibrations of a straight pipe conveying fluid have received much attention in the literature, and we intend to find some effects that have been pointed out by former investigators. Table 1 summarizes the pertinent properties of this system, which is discretized with 25 finite elements. Two sets of boundary conditions are studied.

1. 1. Simply supported pipe

The first set of boundary conditions corresponds to the case of a simply supported pipe. It has been shown that a simply supported pipe conveying fluid is a conservative system, than its natural frequencies decrease as the flow velocity increases, and that the pipe may lose stability (buckling) when the flow velocity reaches a critical magnitude.

The natural frequencies of this system have been computed for several values of the flow velocity, and gathered in Table 2. Figure 1 shows that the evolution of the lowest natural frequency is in good agreement with that reported by Dodds & Runyan (1965).

In Figure 1, Ve represents the theoretical critical velocity extracted from Dodds & Runyan (1965) and wv=o is the natural frequency corresponding to V = 0. 

2 2•800m 0•168 m 0•162m 70x109Pa 2800kg/m3 1000kg/m3
Natural frequencies (Hz) of the simply supported straight pipe; influence of flow velocity

Theoretical

Computed (Finite elements) frequencies frequencies 
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Cantilever pipe

The second set of boundary conditions pertains to a cantilever pipe. It is known that a cantilever pipe conveying fluid is a nonconservative system. The fluid flow provides damping if the downstream end is free. Forced vibrations of this cantilever pipe have been computed. The system is excited by a unit transverse force at the free end. 

ELBOW

The second p1pmg system considered is an elbow, for which experimental and computational results are available for the case where the fluid is at rest, as described by [START_REF] Everstine | Dynamic analysis of fluid-filled piping systems using finite element techniques[END_REF]. The characteristics of this system are summarized on Table 3. The boundary conditions are the following: (i) for the structure: cantilever; for the fluid:

excitation by a unit pressure at the fixed end, and free surface at the free end.

The system is modeled with ten elements in each of the straight parts, and five elements in the curved part. In agreement with [START_REF] Everstine | Dynamic analysis of fluid-filled piping systems using finite element techniques[END_REF], an elbow flexibility factor of 8• 14 will be used to reduce the flexural inertia of the finite elements within the curved part. Our model includes 104 degrees of freedom (DOF).

Experimental and computational results of forced vibrations of this elbow for the case where the fluid is at rest are available [START_REF] Everstine | Dynamic analysis of fluid-filled piping systems using finite element techniques[END_REF]. They include numerical results obtained by a 3-D model (3900 DOF), and by a beam model (112 DOF).

Figures 6 and7 present the axial and the transverse velocity of the free end of the pipe, as computed with our computer code and compared with the experimental and computational 3-D model. For the sake of clarity, we have not drawn the results of the Figures 8 and9 present the influence of the flow on the axial and the transverse velocity at the free end of the pipe. Here again the flow provides damping because the downstream end is free.

Remark 5. Flutter by frequency coalescence. We have not considered this case, which occurs when the upstream end of the pipe is free. This phenomenon will be the subject of further investigations.

Table 4 presents, in the case where the fluid is not flowing, the natural frequencies of (i) hydro-elastic modes (obtained with an incompressible fluid), (ii) acoustic modes (obtained with a rigid structure), and (iii) coupled modes.

The table shows how acoustic modes and hydro-elastic modes are influenced by coupling. Hydro-elastic modes are hardly affected. On the other hand, the acoustic mode is influenced by the motion of the pipe, and its frequency shifts when coupling occurs.

6. CONCLUSION We have described a finite element method based on an appropriate variational analysis of the low-frequency modal responses of an elastic pipe conveying a compressible fluid, taking into account flow and viscous damping effects. Numerical results are in good agreement with numerical and experimental data available in the literature. Further work should improve the model, namely a parametric analysis of the crude viscous model described in the paper, together with the introduction of a refined beam model of the pipe and of a possibly sudden variation of the cross-section. While remaining in the linear domain, the interaction between elasto-acoustic pipes described by a slender body theory and propellant tanks should be investigated for aerospace liquid-propelled-vehicle studies as a part of the so-called Pogo instability analysis.
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 1 Figure 1. Evolution of the lowest natural frequency of the simply supported straight pipe. --, Theory (Dodds & Runyan 1965); 0, experiment (pipe 1) and D, experiment (pipe 2) (Dodds & Runyan 1965) ; 6, present model.
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 2 Figure 2. Transverse displacement of the free ensI of the cantilever pipe (absolute value). --, V = O; ---, V = 50 m/s.
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 3 Figure 3. Transverse displacement of the fre� end of the cantilever pipe (phase) . --, V = 0; ---, V = 50 m/s.
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 4 Figure 4. Rotation of the free end of the cantilever pipe (absolute value) . --, V = O; ---, V = 50 m/s.

Figure 5 .

 5 Figure 5. Rotation of the free end of the cantilever pipe (phase). -, V = 0; ---, V = 50 m/s. beam model used by Everstine (1984), which coincide exactly with those of our model. The natural frequencies of this system are: 21•9, 49•2, 309•2, 361•5 and 415 Hz.Figures8 and 9present the influence of the flow on the axial and the transverse velocity at the free end of the pipe. Here again the flow provides damping because the downstream end is free.
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 6 Figure 6. Axial velocity of the free end of the elbow. --, Present model; ---, experiment (Everstine 1984); • • • • , 3-D model (Everstine 1984).
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 7 Figure 7. Transverse velocity of the end of the elbow. --, Present model ; ---, experiment (Everstine 1984); • • • • , 3-D model (Everstine 1984).
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 89 Figure 8. Influence of the flow velocity on the axial velocity of the free end (elbow problem). --, V = O ;---, V = 50 m/s.

TABLE 1

 1 Characteristics of the straight pipe

	Geometry
	Length:
	Outer diameter:
	Inner diameter:
	Structural properties
	Young's modulus:
	Mass density:
	Fluid properties
	Mass density:

TABLE

  

TABLE 3

 3 Characteristics of the elbow

	Geometry
	Length of straight parts:
	Bend radius:
	Outer diameter:
	Inner diameter:
	Structural properties
	Young's modulus:
	Mass density:

TABLE 4

 4 Coupling of modes for the elbow; natural frequencies in Hz

	Hydro-elastic modes	Acoustic modes	Coupled modes
	22•0 49•4 313-8 412•9	377•8	21•9 49•2 309•2 361• 5 415 •0

The viscosity effects will be simply taken into account through a friction force law, which is commonly used for the dynamic analysis of pipes in liquid-propelled launchers for the so-called Pogo instability predictions. In this respect, we shall make use of a global model set up for turbulent steady flow (Ordonneau 1985):
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