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The equations of motion for an acoustic fluid enclosed in a moving or flexible container are studied. It is shown that the determination of the reference state must account for the surface-integrated effect of the wall motions. The governing equation of transient motions about this state in the displace ment potential does not generally reduce to the classical wave equation unless special adjustments are made. The results are relevant to finite elements formulations based on the displace ment potential.

Problem Description

The results presented in this Note were obtained in the course of a wider study by Felippa and Ohayon (1989) of variational methods for transient motions and vibrations of acoustic fluids held in flexible and/or moving containers. These partial results merit special attention on two counts. First, they extend the classical dynamic equations of acoustic fluids to include wall motions as well as the static limit in a consistent manner. Second, they are relevant to finite element implementations that have not accounted for the correction terms described herein. Computations that are particularly af fected by these corrections involve liquid masses subject to prescribe dynamic motions, such as tanks and reservoirs under seismic ground motion excitations, and rocket fuel tanks under launch conditions.

The general problem is as follows. A container (the struc ture) is totally or partly filled with a compressible, homogeneous liquid or gas (the fluid). Although the container' is generally flexible, the rigid-but-moving container case is not excluded. The fluid is modeled as an acoustic medium (the linearly compressible generalization of an ideal fluid). We consider dynamic motions about a static reference state, which will be determined as part of the study. If the container is rigid and fixed, the reference state is well known: the static equilibrium solution in which the pressure is equal to the hydrostatic pressure, and the displacements may be taken as zero. The acoustic motions about this posi tion are governed by the homogeneous wave equation in the displacement potential. But if the container walls move, we show that a correction term that depends on the mean boun dary motion appears. The reference state is affected, and the resulting transient vibration problem is no longer given by the classical wave equation unless special adjustments are made.

A boundary integral term representing the mean container motion was introduced by Aganovic (1981) for the surface wave problem of an incompressible fluid posed in terms of the velocity potential. Ohayon (1987) considered similar terms in the displacement potential formulation. The general forms presented in this Note for a compressible fluid are believed to be new.

The Acoustic Fluid

The three-dimensional volume occupied by the fluid is denoted by V. This volume is assumed to be simply connected.

The fluid boundary S consists generally of two portions S:Sd US P .

(1)

Sd is the interface with the container at which the normal displacement dn is prescribed (or found as part of the coupled fluid structure problem) whereas sp is the "free surface" at which the pressure p is prescribed (or found as part of the "slosh" problem). If the fluid is fully enclosed by the con tainer, as is necessarily the case for a gas, then S P is missing and S=Sd. The domain is referred to a Cartesian coordinate system (x1, x 2 , x3) grouped in vector x.

The fluid is under a body force field b which is assumed to be the gradient of a time-independent potential {3(x), i.e., b = V {3. All displacements are taken to be infinitesimal and thus the fluid density p is invariant.

We consider three states or configurations: original, from which displacements, pressures and forces are measured, cur rent, where the fluid is in dynamic equilibrium at time t, and reference, which is obtained in the static equilibrium limit of slow motions. Transient motions are the difference between current and reference states. It should be noted that in many situations the original configuration is not physically at tainable. Table 1 summarizes the notation used in relation to these states.

Field Equations. The governing equations of the acoustic fluid are the momentum, state, and continuity equations. They are stated as follows for the current configuration, and specialized to the reference configuration later. The momen tum (balance) equation expresses Newton's second law for a fluid particle:

pd0 1 = -Vp 1 + b = -Vp1 + V{3.
(2)

The continuity equation may be combined with the linearized equation of state to produce the constitutive equation that ex presses the small compressibility of a liquid:

p 1 = -K V d1 = -pc 2 V d 1 , ( 3 
)
where K is the bulk modulus and c = ../K7P the fluid sound speed. If the fluid is incompressible, K , c-oo. This relation is also applicable to nonlinear elastic fluids such as gases undergoing small excursions from the reference state, if the constitutive equation is linearized there so that 

K = p0(dpldp)0•
) 4 
where d� is either prescribed or comes from the solution of an auxiliary problem as in fluid-structure interaction, and jJ may be either prescribed or a function of dn and b, as in the surface wave ("slosh") problem.

3 The Reference State

Taking the curl of both sides of (2) yields curl ii'1 =0.

(5)

The general integral of this equation for a simply connected domain is

d 1=V1/; 1+a+bt, ( 6 
)
where 1/; 1= 1/; 1 (x,t) 

C(t) = --[d:Js+ -(1/;1) V--(/3) V v v v 2 = - pc [d:Js + p J 1 -/3, v ( 
d' � {: 1 � r 2 � [ H' : (x-H , ) ']O 1 + d� "" (1 5 )
where d�01 is an arbitrary divergence-free rotational motion that satisfies the boundary conditions.

Transient Motions

Substracting the constitutive relations at the current and reference states we get p= -pc2v21/;=pc2s, (

where s= -V21/; is the condensation. Subtracting (12) from (11) yields (2 4)

The (25)

The adjustment condition gives P ( t) = -112 act2, and conse quently f=O for x�ct. Hence, for finite c we have f" =c2/;. If c-oo, the solution approaches the rigid body motion 11 =at.
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  d�= d� on Sd, p1 = jY on S P , (

  is the displacement potential, a = a(x) and b = b(x) are time-independent vector functions, and t denotes the time. If accelerationless motions (for example, rigid body motions) are precluded by the boundary conditions, a and b vanish. Replacing di= v{/ into the momentum equation (2) C(t) is not spatially dependent. Next, in tegrate the constitutive equation (3) over V and apply the divergence theorem to Vd:(p1 )v + (pc2 v d 1 )v = (p' )v + (pc 2d:Js = 0.(9)Insertingp' from (8) into equation (9) furnishes a condition on

v

  10)where v=(l)v is the fluid volume and ]= (j)vlv denotes the volume average of a function f defined over V. Substituting C(t) into (9)In the static limit the inertia terms may be neglected and we recover the reference solution pc 2 p O = (/3-/j) --[ ct,:J s.

v

  For an incompressible fluid, [dnls = 0 but coo; thus it woul d be incorrect to conclude that p0 = {3-/3. To illustrate this point, consider a rigid cylindrical container of cross-section area A, filled with liquid up to height H = H1 + H2• The origin of the Cartesian system (x1, x2, x3) is placed at H2 below the free surface, with x1 =x upwards and normal to that surface (see Fig.1) . The body force is the gravity field b = (-pg,0,0) ; thus {3 = -pgx + B, B being an arbitrary constant.

Fig. 1

 1 Fig. 1 Cylindrical fluid container in gravity field

  On equating(16) and (17) we get modified forms of the wave equation that account either for nonzero mean boundary sur face motions, V2f) =c2(V2f + s) = f-f.

  The second form follows from -us= [dnls, which is a conse quence of the divergence theorem. For an incompressible fluid, c-oo and s=[dnls=O, and from either form one recovers the Laplace equation V 2f = 0.Adjusting the Displacement Potential. If the transient displacement potential is modified by a function of time:f = f+ P(t) , (20)wh _ft the potential of (6)-(19), we may chose P(t) so that c2/; = V2f = -s for any t. (P(t) may be found by integrat ing c2 J-v2f twice in time.) We then recover the classical wave equation (21) If this adjustment has been made, C(t) vanishes and (17) reduces to p= -pf.

  As an example, consider again the container of Fig.1in which H1 =0 for convenience. At t::>O, the container is in the reference state of rest. At t�O, it is subjected to a prescribed constant velocity motion of the bottom surface, dn (t) Lo =-at, t�O, (23) positive upwards for a> 0. The unknown free surface vertical displacement is 11 (t), also positive upwards. As all quantities become independent of x 2 and x3, the governing equation is one-dimensional: ,/,II --{;f + where primes denote derivatives with respect to x1 =x. solution for 0::;; t::>H/c is 11=0, f(x,t) = a {at x+ -x2 +P(t) , x::>ct,
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