Variational analysis of a slender fluid-structure system:

The elasto-acoustic beam-A new symmetric formulation We present a new finite element analysis of the linear dynamic responses of a slender fluid structure system, namely the elasto-acoustic beam, neglecting flow and viscosity effects. Using one unknown field in the fluid, namely the 'mass-flow' corresponding to a cross-section mean value of the longitudinal displacement field component, an original symmetric formulation is derived which does not exhibit the usual spurious modes associated with the irrotationality constraint occurring in displacements formulations of fluid-structure problems.

INTRODUC TION

It is proposed to investigate appropriate computational methodologies for the determination of the linear dynamic responses of a compressible linear fluidstructure slender body. This problem occurs in piping engineering and also, for instance, in aerospace engineering when, in order to study the dynamic stability of the vibrations of liquid-propelled vehicles, one has to consider the coupling between the liquid-filled tanks, the flexural hydraulic pipes and the combustion phenomenon, taking into account flow and viscosity effects in the pipes.

The problems of the dynamic stability analysis of pipes conveying fluids have received much attention in the literature.1-3 For vibration analysis, it may be convenient, in order to avoid a prohibitive number of degrees-of-freedom, to define a frequency-dependent super-element for the pipe. This can be done in many ways using, for instance, a transfer matrix procedure together with the use of shape functions corresponding to the modal analysis of a beam containing a frozen liquid.4 An improvement of this procedure consists in describing more accurately in liquid in order to obtain better shape functions, neglecting for this purpose flow and viscosity ef fects.

Therefore, the problem which will be described here concerns the finite element analysis of an elastic pipe containing a compressible liquid with appropriate boundary conditions such as zero pressure or zero fluid mean longitudinal displacement field over the cross-section. As we shall consider low frequency motions, i.e. beam type behaviour of the system, we are faced with the elasto-acoustic beam problem. s-7 In this case, the methodologies developed for th ree dimensional fluid-structure conservative systems may be applied. s-10 Let us recall that, for the analysis of compressible fluidstructure linear interaction, the choice of state variables is of prime importance. We shall review briefly the state-of-the art of this problem. The utilization of a displacement type formulation (see Appendix of Reference 11) presents the following interesting features: (a) symmetric straightforward formulation; (b) banded matrix system. The main drawbacks of the formulation are: (a) a vector field description of the fluid (three variables for three-dimensional problems); (b) the presence of spurious solutions corresponding to the irrotationality condition in the fluid (a condition which must be satisfied by the admissible class of liquid displacement field). Some attempts have been made using reduced integration techniques, but the problem is still an open one. That is why many investigators have considered the dual stress field for the liquid, i.e. the pressure field as fundamental unknown for the fluid. Unfortunately, the system cannot be directly written, as one could expect, under the following form :

KX + MX = F(t)
or KX -w2MX = 0

where Kand Mare symmetric and where X contains the displacement field of the structure and the pressure field in the liquid. On the contrary, the system implies non-symmetric matrices.13 Nevertheless, one can keep symmetry properties for modal analysis for instance, under the form of a quadratic eigenvalue problem-with w2 and w4 terms-which implies the utilization of non standard algorithms. The utilization of the displacement potential of the fluid leads to the same conclusions.12• 13 This particular non-symmetric aspect is due to the nature of the dynamic coupling between a primal and a dual variable, even if the whole system is a standard conservative (non-gyroscopic) one.

The ut ilization of velocity potential of the fluid transforms, for a transient analysis for instance, the non-symmetric matrix system into the following equation: AX +BX +ex= F, where A, B and C are symmetric.14•9•15 In order to keep the standard symmetric conservative (non-gyroscopic) form, some matrix scaling has been tried.13 In References 11, 16, 1 7 and 18 we have introduced in a systematic way a three-field formulation-displacement in the structure, pressure and displacement potential in the liquid-which can be condensed, through added mass operator, into a two-field one implying the displacement of the structure and the pressure in the liquid. This formulation has been used in many aerospace applications.16-19 and can be modified in order to lead to a new added stiffness operator. 18 New symmetric three-field formulations introducing the reaction forces in the structure and leading, through added stiffness and mass operators, to condensed versions have also been derived. 18 The discretized forms of these formulations are not equivalent in general. A systematic scaling matrix approach of the non-symmetric original equation has been recently presented and it should be stressed that for a particular choice of interpolation functions, some of the above condensed versions coincide with the results of this direct scaling procedure. [START_REF] Felippa | Symmetrization of the contained compressible-fluid vibration eigenproblem[END_REF] For the elasto-acoustic beam, if the pressure is chosen as a variable, the preceding discussions about the symmetry of the operators remain. In particular, some authors5 have adapted the three-field (displacement in the structure, pressure and displacement potential) formulation16 -18 in the case of piping systems.

The originality of this paper is to derive a displacement type formulation. Using the standard elasto-acoustic beam model,4•5 the irrotationality constraint becomes trivial (one-dimensional case). The field variable for the fluid is the scalar cross-section mean value of the longitudinal displacement field, which corresponds to a 'mass-flow' (around an equilibrium state at rest).

Therefore, the formulation-which involves only line integrals-is more interesting than the pressure plus displacement potential one from the point of view of fluid variables, as a symmetric formulation in its standard form is obtained with one scalar variable. The pressure field may be added to the formulation in order to recover together the 'mass-flow' and the pressure.

Numerical finite element results are presented and compared with experimental ones.

GOVERNING EQUA TIONS OF THE ELAS TO-ACOUS TIC BEAM MODE L

The following notations are used (Figure 1 ): The physical and geometrical assumptions are the following : if r is the time scale of the problem, the low frequence response of the slender body (d/ L « 1) implies d/rc « 1 and L/rc > 1. Moreover, we assume that a straight pipe may have a slowly varying geometry and that an elbow part has a constant curvarture, the considered beam being here only planar. This means that compressibility acts mainly in the longitudinal direction and that for transverse motions the fluid produces an inertial effect with an added mass equal to its actual mass. The structural beam model is the classical linearized theory without any ovalization effects. For the sake of brevity, we do not consider torsion motions. For the structure, a curved beam is modelled by straight finite element beams; but for the fluid, curvature effects are introduced. Let us decompose the three-dimensional pressure field into its mean value and a fluctuation term according to P(M, t) = p(s, t) + P (M, t) p( s, t) = ____!____ ( J P(M, t)drr S s) S( s )

(1)

(2)
The preceding assumptions mean that p(s, t) will satisfy a one-dimensional Helmholtz type equation, whereas the three-dimensional fluctuation will satisfy the Laplace equation (incompressibility). Let us enter in some details of the fluid equations, the structural (beam) equations being classical.

For linearized motions around an equilibrium state at rest, the constitutive barotropic law of the fluid is

P= -p J c 2 divU J

The dynamic equilibrium equation is

-VP=pf[J J

We shall add afterwards prescribed external acoustic forces.

(3) (4)

The derivation of mean-values equations over a cross-section S(s) is done in the classical manner, i.e. integration of equations (3) and (4) over a domain n between S(s) and S( s + bs) before considering the limit when b s � 0.

For equation (3):

(5)

an is the boundary of 0(80 = S(s) + S(s + bs) + l:). Using (1) in [START_REF] Axisa | Non-linear analysis oflluid-structure coupled transients in piping systems[END_REF] and introducing the 'mass flow' m( s, t) as follows:

we obtain (as U J •N = Us•N on l:) s om

.

1 f 2 p(s ,t ) +pf� 0 + hm � p J U.-Ndrr=O c s �s�ous r (6) (7) 
Assuming that Us is uni form, the evaluation of the last integral may be carried by considering the quantity f n pf div U5d0 and application of Stokes theorem:

lim ,1 J PJ Us•Ndrr = -pf q • d d (Si) (8 

) �p�o us r s

This leads to the first fundamental equation : S om S dS c2 P + as + P rR q " -PJ ds q ; = o Similar considerations are undertaken for the equation (4):

l p J U J (M, t)dO+ f PNdrr=O J n on (9) (10) 
We consider the projection of the equation i; this introduces a quantity Jim 1/bs hPN •idcr <ls�o which is zero for a straight pipe and of second order for low frequency response of slowly varying geometry beam.

This leads to the second foundamental equation:

• • s 0 P o m+ -= OS
The combination of the constitutive law (9) and of the dynamic equation (11) ( 11) the (12) If an external plane wave acoustical force Fa(s, t) is prescribed, one must add to the second member of (12) Fa.

The same derivation is carried for the evaluation of the density forces:

I.e.

. 1 I (13)

The projection on i of the last term is, as previously, of second order and the projection on n is carried by considering the equation ( 10) together with the fact that compressibility effects are negligible in transverse direction (U J •n= qn , U J •k=qk) . We obtain then lim 1/.5shPNdcr= ds-+O -p JS iin (the same for qd . The fundamental expressions for the pressure forces are then

(15) fk = -PJSij k
These are to be added to the classical dynamic equations of a straight beam, together with prescribed mechanical forces F(F;(s, t) , Fn(s, t), Fk(s, t) according to a ( o q; ) .. dS 

The equations ( 16)-( 19) are the governing equations of the considered elasto-acoustic beam model, S.4 plus boundary and initial Cauchy conditions. The direct variational formulation of ( 16)-( 19) through test functions procedures21.22•23 (5 q(s) and [START_REF] Axisa | Non-linear analysis oflluid-structure coupled transients in piping systems[END_REF] p(s) leads to non-symmetric operators, as discussed in the Introduction. The methodology developed in References 11, 16, 17 and 18, using an additional field connected physically to the displacement potential of the fluid (supposed homogeneous), has been applied in Reference 5 to the system (16)- ( 19).

The purpose and the originality of the present paper is to show that a displacement type formulation with one variable for the fluid, namely m , is straightforward without the usual drawbacks of three-dimensional general displacements formulations. The difference with these last formulations is that coupling of fluid-structure terms occurs in the formulation and not in the admissible class.

A NE W SYMME TR IC VAR IA T IONAL FORMULA TION:

FLUID VARIABLE UNKNOWN m

Instead of using the pressure field p(s , t), we shall use as unknown field the 'mass-flow' m by considering the equation (9) in order to eliminate p.

For the sake of brevity we shall only consider the free vibration case and we shall indicate in additional remarks the modification for modal and tansient responses to external forces.

The equations ( 16)-( 19) become plus boundary conditions at the ends of the pipe which are the classical ones for the beam structure and which are for the fluid: m = 0 or p = 0 for s = s0, s = s 1 (p = 0 is a fluid-free surface condition). Let V be the admissible class (C 0 continuity form and q;, C 1 continuity for q. , q k as it represents a one-dimensional problem). The variational formulation of (20)-( 23) is straight forward using the test functions <5 m(s), <5q(s) :

Find w 2EIR+ and ( m,q;,q.,qk)EV such that Y(q, m) = K(q, q) + A(m, m)

+ C(q, m) -w 2 [M(q, q) + B(m, m)] (24) 
is stationary on V:

(25) (26) (27) 
(28)

1 f 2 B(m,m) = 2 p f S m (29) 
q = (q;, qn, qk ) K(q, q), the only function of the structural variables, contains the classical beam potential energy terms plus additional terms due to the fluid; M(q, q) corresponds to the kinetic terms of the beam plus additional terms due to the fluid; A(m, m) + C(q, m) represents the potential energy of the fluid due to the compressibility of the fluid (C(q, m) represents the coupling expression between the fluid and the structure); B(m , m) represents the kinetic energy of the fluid. The weak symmetric variational form is deduced immediately and implies symmetric coupling operator since

C(q, bm) = c (bq, m )
Important remark: V contains the boundary condition m = 0. If not, then the reader can verify that p = 0 is a natural boundary condition (using the definition of p through equation ( 9)), and if w = 0, m constant is solution.

Remarks 1. We stress here again the fact that this non-standard displacement type formulation does not present any spurious modes connected to irrotationality constraint and contains coupling fluid-structure terms without any Lagrange multiplier extra-variable, as would be the case in standard displacements formulations. 2. The transient case is easily recovered when replacing -w2X type terms by X.

3. The external prescribed acoustical and mechanical forces are easily introduced as linear forms on V(f F 0bm and f F• bq).

4.

In some cases, it may be convenient to introduce instead of m, the 'relative mass-flow' m,= m-p! S q i as this variable is usually utilized when flow and viscosity effects are present. This transformation is straightforward in (24).

Finite element discretization

The matrix eigenvalue system associated to ( 24) is (30

)
where the matrices correspond to the contribution terms ( 25)-( 29). The general transient case will then be:

Mq+Kq+Cm=F Bm + CT q + Am = Fa 

In order to recover the pressure variable p in the fluid, it may be convenient to extent the preceding formulation by introducing p among the unknowns (instead of using after discretization, the local equation ( 9) to recover p). This is done easily by considering the system of equation ( 9), ( 11), ( 16), ( 17), [START_REF] Ohayon | Transient and modal Analysis of bounded medium fluid-structure problems[END_REF]. Let W be the admissible class ( m constant or not assembled, C 0 continuity for p and qi, C 1 continuity for q" and q k). Using the test functions procedure by projection of equation ( 9) on bp, equation ( 11) on bm , equations ( 16), ( 17), [START_REF] Ohayon | Transient and modal Analysis of bounded medium fluid-structure problems[END_REF] on b qi , b q n, b q k> one obtains:

Find w2 E IR+ and (m, p, q)E W such that �( m , p, q) = K2(p, p) + K1 (q, q) + C1(p, m) + C2(p, q)-w 2 [M1 (q, q) + 81 (m, m)] (32

)
is stationary on W: 

I. The admissible space W must contain the boundary conditions m = 0, or p = 0 which is here a Di richlet condition (plus the usual ones on q if any). Of course, p can be eliminated statically. 2. In the preceding formulations (32), (33), in order to recover accurate pressure the d p/ds term appears in the functional. It would be easy, after integrating by parts, to relax any c0 continuity on p, i.e. p may be taken constant on each beam element, or non-assembled if p is of higher order. For the sake of brevity, this modified functional is not presented here. 3. This extended formulation contains of course two fluid sc alar unknowns, but they represent the pressure p and the 'mass-flow' dual variable m. This is not the case for the displacement potential and pressure formulation, as the displacement-potential does not represent m. Even this extended formulation presents advantages with this respect.

NUMERICAL FINI TE ELEMENT RES UL TS

For the st ructural beam, we used the classical interpolation, i.e. linear for q; and cubic for q .. and qk. For the fluid variables, we used a linear interpolation for m in the formulation (24) (and a linear interpolation for p in formulation (32)). Those elements were incorporated on our set of research computational code ASTRONE F (Analyse de Structures a l'ONERA par elements finis) on a UNI V AC 1100/80 system. The finite element computation has been carried on a st andard planar p1pmg system (Figure 2) already used in References 7 and 24, and for which experimental results were available. The system is excited at A by a sinusoidal force of unit amplitude. The characteristics of the system are the following: Both free and forced vibration analysis have been done and Figure 3 represents the so -called mobility of the system at A (ratio of axial acceleration to axial force). The natural frequencies obtained with this analysis, which can be compared with the experimental results represented on Figure 3, are 22•2, 48• 1 Hz (error less than 1 •5 per cent). For higher modes, further investigations are needed in order to analyse some damping effects.

CONC LUSIONS

We have presented two new symmetric variational formulations, the first one involving a scalar 'mass-flow' variable for the fluid, while the second one involves in addition the pressure variable. The formulations may be classified as non-standard displacements fluid-structure formulations containing coupling terms. Those formulations can be easily implemented in any finite element program with standard modal and transient algorithms.

Extensions are under examination in order to study the coupled system formed by a pipe connected with a liquid-filled tank. Improvements in order to take account of the ovalization phenomenon,25 new transient procedures,26 and nonlinear effects27 are the purpose of future works, together with a finite element analysis of an elasto-acoustic beam undergoing flow and viscosity effects. 2 [START_REF] Belytschko | Fluid-structure interaction in light water reactor systems[END_REF] 
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