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Substructure variational analysis of the vibrations of coupled fluid-structure systems. Finite element results

INTRODUCTION

Analysis of the problem of harmonic vibrations of a coupled system constituting an elastic structure partially or completely filled with a compressible liquid is proposed.

The practical application of this study is conditioned by the fact that we may neglect the damping of the vibrations due to the structure, the viscosity of the liquid, or even the acoustic radiation of the system when it is immersed in an infinite surrounding fluid media. [START_REF] Bettess | Diffraction and refraction of surface waves using finite and infinite elements[END_REF] Nevertheless whenever resonance effects are expected, it is important to determine the harmonic vibrations of the fluid-structure compound system. This is particularly so in the case of hydroelastic vibrations in aerospace engineering (studies concerning Pogo instabilities occurring on liquid propelled launchers, satellites, wing tip tanks of aircrafts), in nuclear engineering (reactors), in naval engineering (tankers, etc.), and of elasto-acoustic vibrations (solid propellant boosters, mechanical engineering, etc.).

Harmonic vibrations of fluid-structure systems have prompted theoretical and numerical investigations by the finite element method in the case of an incompressible liquid with a free surface, taking account of potential energy terms due to gravity. 3 '4 Furthermore, we have investigated prestress effects 5 ' 6 due to an internal gas (through a quasi-static approximation), and to the liquid's weight for pressurized tanks. Let us also mention a theoretical investigation concerning the vibrations of a compressible liquid undergoing irrotational flow in an elastic tank. [START_REF] Valid | Le calcul des reservoirs elastiques partiellement remplis de liquide pour la prevision de l'effet pogo[END_REF] Due to an appropriate choice of the unknown fields describing the liquid, all the variational formulations which have been introduced 3 ' 4 ' 6 are symmetric. This question of symmetry arises when the fluid is described by a scalar unknown field as for instance the potential displacement. This symmetry has nothing to do with a non-symmetric contribution due to the effect of gravity on the wetted surface of the tank. An approximate symmetric expression has been given in Reference 7. As a physical consequence of the symmetry , the formulations 3 ' 4 ' 6 result from a stationary principle of some Rayleigh quotient of two quadratic energy forms leading to a symmetric matrix eigenvalue equation after discretization. Consequently we can use the algorithms of a standard, modular finite element code for static and modal analysis of elastic structures, such as assembly procedure, static condensation and resolution of eigenvalue problems which are valid in the case of symmetric systems. More recently and for the same reasons, various symmetric variational formulations of the elasto-acoustic vibration problem have been devised. 8 Nevertheless there may be some restrictions concerning the direct use of a finite element method. In fact, the consideration of complementary physical phenomena leads to an increasing number of degrees-of-freedom and to greater requirements concerning computer time and storage for eigenvalue systems.

It appears therefore necessary to utilize an alternative approach circumventing the problem of the direct resolution of the global variational formulation by the finite element method. This approach consists in a Ritz type procedure in which the basis vectors (obtained through a finite element method) are constituted of admissible modal functions: -either 'perturbed' vibratory problem (finite perturbations of evolutive conservative systems), -or of auxiliary problems of moderate size computed by a finite element method and incorporated into a modal interaction scheme of dynamic substructure type, as in structural vibration analysis. 5 •10•25

When investigating the harmonic vibrations of an elastic tank partially filled with a liquid and taking account of gravity energy contributions, it is convenient to distinguish three types of modes constituting a complete basis of admissible shapes for the kinematic representation of the global system:

-Free surface modes. These modes are the classical sloshing modes in a rigid, motionless tank.

-Incompress ible hydroelastic modes. In these modes, we neglect the free surface gravity potential energy regarding the potential energy of deformation of the structure (by setting the gravity g = 0 into the linearized equations; the equilibrium state being still defined essentially by the gravity forces). We recall that, using the added masses 9 ' 10 concept, the hydroelastic modes of liquid propelled launchers have been economically computed for several filling levels of 1. ' d 11-1 4 lQUl s.

-Acoustic modes. These modes are the compressible waves of the liquid in a rigid, motionless tank, the free surface gravity energy terms being neglected. A modal interaction n Figure 1. Representative scheme of a fluid-structure system scheme has been already devised for the elasto-acoustic vibration problem using 'structural modes' and 'acoustic modes'. 8 Investigation of a similar approach to the study of compressibility effects on the hydroelastic modes (neglecting here the free surface modes as well as the flow of the liquid 3 ) is proposed. [START_REF] Valid | Le calcul des reservoirs elastiques partiellement remplis de liquide pour la prevision de l'effet pogo[END_REF] In a first step, we set the general equations. In a second step, we shall describe a direct finite element procedure applied to a symmetric variational formulation of the problem.

In a third step, we devise the indirect modal interaction scheme hydroelastic modes-acoustic modes using the preceding formulation.

In a fourth step, we present numerical results obtained by the two methods showing the interest and the advantage of the indirect dynamic substructure variational coupling analysis.

GENERAL EQUATIONS OF THE PROBLEM

The following notations are used (Figure 1): w =circular frequency !k =liquid domain at equilibrium n =structure domain at equilibrium �=wetter surface of the structure wall at equilibrium r =free surface at equilibrium pL(resp. For obvious reasons for economical computation, it was attempted to formulate the problem of compressible hydroelastic harmonic vibrations by means of a restricted number of unknown fields of scalar nature as far as possible, namely (p, cp) for the liquid. The governing equations of the harmonic vibrations problem are1 5 : The continuity equation in the liquid:

The constitutive relation:

1 acp+ --zp =Q in flL PLC (1) (2) 
The free surface boundary condition (with g = 0 hypothesis): Boundary conditions on an-�:

an =0 on an-� (an represents the boundary of n).

(3)

(4) (5) (6) (7)
Remark. If a part of the boundary an-� is clamped, no supplementary difficulties arise, the corresponding adjustment is left to the reader. It happens that the conservative behaviour of the mechanical systems involved does not guarantee that the standard type variational formulations corresponding to the equations of the harmonic vibration problems are symmetric in every case. For instance, in the above equations, when using the unknown fields 'P and U (by elimination of p in (1) with ( 2)), we obtain non-symmetric variational formulations of the following types: Let us denote by <& the admissible functions spm:e and by if! the couple ('P, U), we obtain: Ai(t/I, 81/1) -w 2 Az(i/I, oifl) = 0, I/IE<&, 'r/oljJ E <& [START_REF] Morand | Variational formulations for the elasto-acoustic vibration problem: finite element results[END_REF] where Ai and Az are nonsymmetric bilinear operators, and:

DIRECT APPROACH BY THE FINITE ELEMENT METHOD

A3(1/1, 81/1 ) -w 2 A4(1/1, ol/J ) -w 4 As(l/I, oifl) = o, if! E <fi, 'rl olfJ E <fi (9)
where A3, A4, A5 are symmetric bilinear operators. Non-symmetric formulations of type [START_REF] Morand | Variational formulations for the elasto-acoustic vibration problem: finite element results[END_REF] have been used for elasto-acoustic vibrations studies in References 16-19. The supplementary unknown field, namely the pressure p which has already been, introduced in Reference 8, will symmetrize the problem. Let us denote by <$ (M , t) = iw({) (M ) e i wt the velocity potential of the liquid (deriving obviously from a displacement potential of modal amplitude 'P ). The equations (1)-( 5) involve expressions containing <f> (or its spatial derivatives as A($), a<$/ at (in the interface boundary condition (5)) and <l<$/at2 in (1). Therefore, a way to obtain a symmetric standard eigenvalue problem is to make use of canonical variables, i.e. by using an intermediate independent unknown field such as a($/at or -pL(a($/at) which represents the dynamic pressure in the liquid. The interface boundary conditions (4) and (5) will still be expressed in terms of 'P and not p, because the equation ( 1) is expressed with A'P and p and does not contain spatial derivatives of p. This means physically that the 'kinetic' energy of the liquid is represented here by ! JnL Pd grad q; 1 2• Such a situation has previously occurred in the case of incompressible harmonic vibrations with gravity energy terms. The intermediate supplementary unknown field introduced was 71, the modal amplitude of the vertical displacement of the free surface. 3 '4 We shall now apply the classical test function method 2 0 to derive, when using the Green formula and the Neumann type boundary conditions of the problem (1)-( 7); the weak mixed symmetric variational formulation of the problem in terms of ( U, p, q; ).

Let us denote by Cf8* the vector space of admissible functions of the problem: Cf8* = {( U, p, q; )iq; = 0 on r, plus appropriate mathematical regularity properties.}. Then, we set the following governing functional: Find (U, p, q;) E Cf8* and w2 E �+such that:

0 = s[ 2 p � c z LL p2 + i L Tr [o-( U)s ( U)] J -w28[ -- 2 
1 J. pd grad q;l 2+ \ J pq;+pL f q;U.n+! f pU2] (10)

OL C OL l: 2 0
In equation ( 10)

1 f 2 • -- p 2
pLC2 OL represents the 'potential' energy of the liquid,

• i L Tr [o-(U)s(U)
] represents the 'potential' energy of the structure,

• --2 1 J. PLI grad q; 1 2 + \ J. pq; +PL f q; U. n represents, the 'kinetic' energy of the liquid,

OL

c OL l:

----d<p/ an

• i L pU2 represents the 'kinetic' energy of the structure.

Discretization of the mixed variational formulation (10)

The finite element method is used. 5•10•27 The nodal unknowns corresponding to U, p and q; will be denoted by{U}, {p } and {q; }.{q;r} denotes the nodal values of {q;} on the free surfacer, the remaining nodal unknowns being denoted by {q;i }.

We obtain then the following eigenvalue matrix system: [START_REF] Morand | Analyse dynamique de systemes conservatifs evolutifs. Discussion des croisements de modes[END_REF] together with the constraint {q;r} = {O}. We shall denote by Fi. (Ci. C{) and (Di, D'[) the truncated matrices obtained by setting {q;r} = {O} in the system [START_REF] Morand | Analyse dynamique de systemes conservatifs evolutifs. Discussion des croisements de modes[END_REF]. K(resp. Q) designates the matrix discretizing the bilinear form associated with the potential 'energy' of the structure (resp. of the liquid). M designates the matrix associated with the 'kinetic' energy of the structure. -F corresponds to the discretization of the opposite of the 'kinetic' energy of the liquid t JnL PLI grad q; 1 2.

If k represents the number of nodal unknowns {q; }, the rank of F is (k -1 ). Alternatively, Fi is inversible.

( C, CT) and (D , D T) designate respectively the matrices discretizing the coupling terms between U. n and q;, and p and q;. System (11) contains a linear relation, independent of w, between the three unknown fields (see the third equation) which can be written as follows after setting the Dirichlet condition { <pr}= {O}:

C"{ { U} + D"{ {p }-Ft {Cl't} = {O} (12 )
We therefore obtain, after elimination of {<,c>t}, the following reduced matrix system:

{ [ K O J -2[M+C1 F ;1c : Sym . ] }{Vl={o} 0 Q (1)
D1F;1c : D1F;1Dt

p J 0 ( 13 
)
As one can see, system (13) exhibits an 'added mass' matrix. From the computational point of view, in a first step the elementary matrices corresponding to -F, (C, CT) and (D, DT) are formed. Then, using a standard modular finite element code, 22 we form the hypermatrix:

[ � � �] CT DT -F (14) 
The 'added mass' matrix is then obtained through a standard static condensation algorithm: 2 2

[ C1F;1c"{ D1F;1c'[ (15) 
After calculating the 'stiffness' matrix of the problem, the system ( 13) is solved by using standard eigenvalue solvers 22 (for instance inverse iteration with shift).

Remark.-The formulation (13) is not directly obtained in terms of ( U, p ). The unknown cp is present through the concept of added mass theoretically introduced later. A direct formulation from the equations expressed in terms of U and p would have led to a non-symmetric formulation since p plays the role of cp .

The continuum reduced problem: The added mass concept for compressible hydroelastic vibrations

Denoting by UL the modal amplitude of the displacement field in the liquid, the evaluation of the quantity ! Jn L P L u t describing the inertial properties of the liquid can be done as follows.

The irrotational field UL derives from the displacement potential <p which satisfies the equations 

MA( u i u )=t f PL u t =t f PLJ gradrpu,pl 2 p p OL OL (17) 
This quadratic form represents the 'kinetic' energy of the liquid expressed in terms of U and p and therefore is called the compressible hydroelastic 'added mass'.

The computation of MA is carried out by using the following property.

An extremal property of the compressible hydroelastic 'added mass':

It can be shown, following the methods usually employed for deriving similar properties in elasticity and conduction problems (see Reference 5, chapter 3), in hydroelasticity 1 4 ' 2 3 and hydrocapillary 2 3 ' 2 4 vibration problems, that:

M A( u' u) = -Min {� f Pd grad 'P l 2 -\ f pep-f PL<pU . n} pp !k C! k l:
<p E {cp I 'P = 0 on r}

(18)
The function 'P solution of (18) satisfies the system (16), while it is easy to demonstrate that the value of the quantity in brackets in [START_REF] Dowell | Acousto elasticity[END_REF] for this value of 'P represents the so-called 'added 11).ass' defined by [START_REF] Wolf | Structural-acoustic finite element analysis of the automobile passenger compartment[END_REF] (the proof needs an integration by parts of (18) for 'P satisfying the system (16)).

The resolution of the principle ( 18) by the f inite element method is made as follows. In the first step the matrix [START_REF] Morand | An efficient variation-iteration procedure applied to a mixed formulation of hydroelastic vibration problem. Finite element results[END_REF] is formed and in a second step, a static condensation procedure is applied, which leads to the 'added mass' matrix [START_REF] Germain | Cours de Mecanique des Milieux Continus[END_REF]. It should be noted that this procedure i:ealizes the following two steps: the search of the field <p solution of the stationary principle [START_REF] Dowell | Acousto elasticity[END_REF] and the search of the corresponding value of the functional in question.

The following 'reduced' variational formulation is then obtained: Find ( U , p) E <tJ and w 2 E IR + such that [START_REF] Petyt | Finite element analysis of the noise inside a model aircraft fuselage[END_REF] <tJ is the vector space of admissible functions of the problem (it may contain any kinematic homogeneous constraint on U) and M A corresponds to the definition (18). We have thus realized a procedure which corresponds to the application of a symmetric variational formula tion 1 0 of an integral boundary equation describing the liquid through a Green operator computed by a standard static condensation procedure, such as one of those existing in finite element codes. The discretization of the principle [START_REF] Petyt | Finite element analysis of the noise inside a model aircraft fuselage[END_REF] leads to the previously discussed matrix equation [START_REF] Berger | Methodes de calcul des vibrations d'un systeme evolutif couple fluide-structure: Application au lanceur Ariane[END_REF]. The computation of the matrices [START_REF] Morand | An efficient variation-iteration procedure applied to a mixed formulation of hydroelastic vibration problem. Finite element results[END_REF] and [START_REF] Germain | Cours de Mecanique des Milieux Continus[END_REF] and the resolution of (13) constitute the direct finite element approach. We shall now discuss the indirect substructure approach, as announced in the introduction. For this purpose the tools defined in this section will be useful.

INDIRECT APPROACH OF THE COMPRESSIBLE HYDROELASTIC PROBLEM BY A VARIATIONAL MODAL INTERACTION SCHEME

Generalities

Let us recall that a vibratory system S constitutes: -a vector space <tJ of admissible functions, -two bilinear symmetric, positive definite forms K and M mapping <tJ x <tJ into IR + and correlated to the 'kinetic' and 'potential' energies of the system. The couple I{! E <tf, A E IR + is a vibration mode of S if:

K(I{!, 81{!)-AM(I{!, 81{!) = 0 (20)
The set of eigenfunctions corresponding to an eigenvalue A is a vector subspace<€;. c <€.In most cases the eigenvalue sequence is numerable and discrete, and the dimension of <€;. is finite. Finally, the eigenfunctions satisfy various orthogonality relations such that: Without going into details, let us mention that the mathematical space 2 0 involved here for the hydroelastic problem as well as the properties of the 'potential' and 'kinetic' operators 21 lead to the preceding properties of the eigenmodes. Furthermore, the variational property [START_REF] Duvaut | Les Inequations en Mecanique et en Physique[END_REF] expresses the stationarity of the following 'Rayleigh quotient': for the eigenfunction I{!.

Vibratory subsystems 25

[A]= K(I{! , 1/1 ) M(I{!, I{!)' [START_REF] Loden | User's manual for the Rexbat program[END_REF] Let us split the admissible space <€ into the direct sum of two supplementary subspaces written as follows: [START_REF] Morand | Deux theoremes de congruence relatifs aux vibrations de Iiquides couples a des structures[END_REF] This relation expresses the fact that every I{! belonging to <€ can be written uniquely as the sum of an element 1/1 1 belonging to the subspace <€ 1 c <€ and an element 1/1 2 belonging to the subspace <€2 c <€: [START_REF] Morand | Variational formulations of the hydrocapillary vibration problems. Finite element results[END_REF] The restriction to <€ 1 (resp. <€ 2) 0£ the variational problem of the initial vibratory system S defines the 'vibratory subsystem' S1(resp. S2). The relation [START_REF] Morand | Deux theoremes de congruence relatifs aux vibrations de Iiquides couples a des structures[END_REF] defines a decomposition of S into two vibratory subsystems S 1 and S2 which constitutes, by definition, a dynamic substructure analysis of the vibratory system.

Dynamic substructure scheme analysis

The two subsystems S1 and S2 previously defined are uncoupled if: [START_REF] Morand | Analyse variationnel/e des methodes de sous-structuration dynamique[END_REF] On the contrary, let us analyse the variational coupling of two discretized subsystems:

Let I/It--, I{!{ be the I modal functions of S1 generating the approximate admissible space <€� c <€ 1 (h denotes a discretization parameter) andlet I{!�,--, I{!� be J modal functions of S2 generating the approximate admissible space<€ � c <€ �.Let ai, --, a1 and f3i. --, {3J be the unknown amplitudes of the modal functions composing a solution of [START_REF] Duvaut | Les Inequations en Mecanique et en Physique[END_REF].

Then the restriction of S to '(J� EB '(J� leads to the following matrix system: [START_REF] Valid | Influence du ballottement dans !es reservoirs des bouts d'ai!es sur !es modes propres de vibration d'un avion[END_REF] where {a}={a i, --, a1} and{/3}={/3 1 , --,/3J}. (Ki,M1) and (K2,M2) are correlated to the vibration properties of each subsystem S1 and S 2 .

In the case of moderately coupled subsystems S 1 and S 2 , the advantage of this procedure is clear. Each subsystem is computed for instance by a finite element method, the global system is then solved when using the preceding results as basic functions through a Ritz method applied to the variational formulation of the global system S.

The choice of the decomposition [START_REF] Morand | Deux theoremes de congruence relatifs aux vibrations de Iiquides couples a des structures[END_REF] is imposed by the smoothness properties of the functions belonging to the admissible class '(J (for instance, C 0 -continuity across the common boundary when applying the classical structural dynamic substructure methods 2 5 ).

Compressible hydroelastic vibrations with free surface-decomposition of the admissible class

The basic formulation is the principle [START_REF] Petyt | Finite element analysis of the noise inside a model aircraft fuselage[END_REF]. The admissible class '(J is split into the direct sum of the two following subclasses: [START_REF] Oden Andj | An Introduction to the Mathematical Theory of Finite Elements[END_REF] according to:

In fact, there is no relation between p and U into the admissible class '(J (it will not be the case if the tank is completely filled with a liquid as we shall see later). The decomposition [START_REF] Arnold | Methodes Mathematiques de la Mecanique Classique[END_REF] is then rigorous.

Decomposition of the variational principle [START_REF] Petyt | Finite element analysis of the noise inside a model aircraft fuselage[END_REF] The restriction of the principle [START_REF] Petyt | Finite element analysis of the noise inside a model aircraft fuselage[END_REF] to the two subclasses leads to the two following variational formulations:

1) Variational principle on '(JH E governing the incompressible hydroelastic vibrations

The restriction to the class �H E is:

0 = S[ w 2 ] = 8 H.n Tr[a(U)e(U) M A( �I�)+ Ho pU 2 (29)
The discretization of (29) corresponds to the matrix equation [START_REF] Berger | Methodes de calcul des vibrations d'un systeme evolutif couple fluide-structure: Application au lanceur Ariane[END_REF] with the constraint {p} = {O}.

(29) corresponds to the added mass formulation of incompressible hydroelastic vibrations. 11-1 4

2) Variational principle on '(J Ac governing the acoustic vibrations

The restriction to the class '(J Ac is:

(30)
(the discretization of (30) corresponds to [START_REF] Berger | Methodes de calcul des vibrations d'un systeme evolutif couple fluide-structure: Application au lanceur Ariane[END_REF] with the constraint { U} = {O}). The formulation (30) corresponds to the problem of compressible waves of the liquid in a rigid, motionless tank with a homogeneous Dirichlet condition on the free surface according to the system: Variational coupling by the modal interaction scheme Let l/frE, --. , l/f1fE be I incompressible hydroelastic modes (computed with (29)) and l/J f' c , --, l/J 'f c be J acoustic modes (computed with (30) or (32) or any suitable other method), these two series of modes being normalized such that their generalized mass is equal to unity.

Then the modes of the global system are searched according to:

(33)

The unknown amplitudes a ; , {3i must satisfy the extremely reduced eigenvalue problem dis cretizing the symmetric variational formulation Ptc denotes the pressure for the acoustic mode ft c and ur E . n the normal displacement of the wetted part of the structure for the hydroelastic mode l/J� E .

Remark. It is worth noting that the coupling between the hydroelastic and the acoustic modes is realized through the mass matrix ('mass coupling'). In fact, the hydroelastic incompressible approximation corresponds to a quasi-static treament of the liquid similar to the Guyan procedure 25 used in structural substructure analysis.

Compressible hydroelastic vibrations without free surface (full tank)

This case is similar to the one studied in Reference 8.

The equation ( 3) disappears and the added mass is defined as follows:

l!l q; = -� p in fk <€Ac corresponds to the acoustic vibrations in a rigid motionless enclosure (we search the acoustic field <p of zero mean value in the OL solution of the wave equation). <g HE . corresponds to the vibrations of the coupled fluid-structure system taking into account quasi-statically the inertial and elastic effects due to the compressibility of the liquid.

As a subsidiary remark, we emphasize the analogy with the Guyan decomposition in structural dynamics according to the following formulae Without entering into details the final reduced size coupled system is as follows: 

2 -w {3 () (43) 

NUMERICAL RESULTS

The two methods have been applied to the case of an axisymmetric tank completely filled with a compressible liquid. Figure 2 shows the tank with three associated clamped flanges. We present here the axisymmetric modes of the tank decomposed into uncoupled symmetric and antisym metric modes due to the symmetry with respect to the medium plane perpendicular to the axis of revolution. The number of degrees-of-freedom used in the direct formulation (equations (14) The choice of the number of modes involved is done a posteriori according to a frequency criterion in the range of interest.

Tables I and II present the results concerning the two methods. The gain of time is in the ratio of 1 up to 3, in this example, showing therefore the advantage (for the same order of accuracy) of the substructure method. The numerical results obtained demonstrate the validity of the variational indirect dynamic substructure approach for the case of coupled systems. We have neglected in the present study the sloshing modes of the liquid, which are important in the studies of the vibrations of wing tip tanks.26 As announced in the introduction, the method can be easily extended to the sloshing case by using decomposition into three admissible classes:�= �swsHrNaEB�HEEB�AC• This extension will be the purpose of future publications. Furthermore this approach easily allows the physical discussion of eigenmode interaction.28

APPENDIX I

Compressible hydroelastic vibrations with a free surface. Derivation of the mass coupling term in the 'substructure' analysis

Using the definition of the added mass through [START_REF] Wolf | Structural-acoustic finite element analysis of the automobile passenger compartment[END_REF] and ( 16) and denoting, by 'P H � and <,e>Ac the velocity potential functions corresponding to the two classes �HE and �Ac (equations (27) and ( 28)), the mass coupling which is only involved in the added mass computation is given by: 

  p) = uniform mass density of the liquid (resp. the structure) c =uniform sound velocity in the liquid p =modal amplitude of the instationary pressure field in the liquid cp =modal amplitude of the displacement potential field in the liquid U =modal amplitude of the displacement field in the structure er =Cauchy stress tensor function of U through the linear law of the hyperelastic media (prestress effects are neglected in the present analysis) c; =deformation tensor of the elastic media n =unit exterior normal to the considered surface div = divergence symbol of an operator Tr = Trace symbol of an operator g = gravity IR + = real set (;,:O).

'P = 0

 0 on r Interface liquid-wall boundary conditions: -kinematic a'P = U. n on � an -dynamic (pressure exerted by the liquid on �) un = PLW 2 ({)n on � Dynamic equilibrium equation in the structure: [divu(UW +pw 2 U= O in n

  Symmetric mixed variational formulation. Introduction of the pressure field p.

  (1), (3), (4): 1 f:.. cp = ---2 P m fk PLC acp = U. n on :l'.(16 ) an <,c> =O on f The system (16 ) is a well-posed Neumann-Dirichlet problem which, for given U and p, leads to a unique solution cp through the mapping: G: (U, p)� <,c>u,p G is the Green function of the system (16 ). Let us define the following quadratic form denoted MA(• I • ) and defined by:

  with K (I{!;, I/Ii) = M (I{!;, I/Ii ) = 0 '}'; = K(l/I;, I{!;) 'generalized rigidity'} µ,; = M(I{!;, I{!;) 'generalized mass' (A; ;e Ai)(21) of eigenmode I{!;.

2 w.

 2 :l<p +----z 'P = 0 c in QL B<p = 0 on � (31) an <p = 0 on r As the question of symmetry of the functional does not arise for a rigid, motionless tank, the problem can be solved in terms of <p by using the weak variational formulation corresponding to (31): (32) then p is obtained through p = PLW 2 <p (equation (2)).

1 .

 1 [START_REF] Petyt | Finite element analysis of the noise inside a model aircraft fuselage[END_REF]:{ [)?�a�� f�2I ---� --J -w 2 [The coupling terms B ;i are given by (see Appendix I):1,,-;; i ,,,-;;

  the continuity equation (mass balance equation) expressed in terms of U and p, and with the uniqueness condition ( 38) We then are able to define the Green operator of the problem: G: ( U, p) � <p. The equation (3 7) defines the admissible class for the couple ( U, p): <e={(U,p)l f U.n+ � f p=o} � P L C OL (let us recall that (37) is not necessary in the case of a free surface). It is easy to decompose ( �) according to (39) (40)Each element of the decomposition (40) must belong to the class <e, i.e. satisfying the condition (37). An easy way to do so is to choose a function p defined by: leading to the decomposition:

  ) denotes a static deformation of !h which corresponds to the resolution of a static elasticity problem with imposed displacement Ur( Ur= values of U1 on r) on the common boundary r and zero forces acting on a02 -r. Thus, we find the modes of 01 quasi-statically completed in 02 and the clamped modes of 02 (the Guyan approximation consists in disregard ing these latter modes).

U

  and W represent coupling between the hydroelastic modes due to quasi-static effects of the liquid.

Figure 2 .

 2 Figure 2. Full tank scheme with the second antisymmetric mode shape (dashed line)

  ,

( 15 )

 15 and (13) without the constraint {<Pn} = {O} and taking account of the rank of the matrix F) is 598. The number of degrees-of-freedom used in the substructure formulation is 129 for the incompressible hydroelastic subsystem and 215 for the acoustic subsystem. In the variational coupling we have retained (through a frequency criterion) 5 hydroelastic incompressible modes (denoted in Tables I and II by HE, I) and 2 acoustic modes (denoted in Tables I and II by AC):

  f d HE d AC P L gra <,0 • gra 'P flL After integration by parts and using the equations (16) satisfied by <p HE (by setting p = 0): f d HE d Ac J Ac acp HE J Ac u HE 1 J Ac HE PL gra <p • gra <p = PL'P --= PL'P . n = Ac2 p U . n

Table I .

 I Axisymmetric modes (frequencies Hz)

		Indirect method	
	HE,I	AC	Coupling	Direct method
	51•23 212 •16 249•73 360•72 411•14	148•08 445•08	49•19 169•75 239 •40 331•28 393•86	49•43 169 •95 236-35 324 •46 372•21
	HE,I			
	168•92 310•70 361•88 407•22			

Table II .

 II Symmetric modes (frequencies Hz)

	Indirect method	
	AC	Coupling	Direct method
	296•38 594 •12	148•35 271•73 340•02 412•5	148•20 269•67 333•31 395•78
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APPENDIX II 'D isplacements' variational principle

It can be shown that the vibration coupled problem expressed in terms of the liquid (resp. the structure) displacement field Udresp. U) arise from the following symmetric variational principle:

Hn PLC 2 (div Ud 2 + Hn Tr[CT(U)e(U) (44)

plus mathematical regularity properties.

The straightforward application of this principle may lead to numerical difficulties connected with the satisfaction of the admissible class of functions. Moreover, in the three-dimensional case, the number of nodal unknowns may be prohibitive.

Remark-Another '(U, p) formulation' can be obtained through the following minimal property of added mass:

'eL(U, p) = { UdUL. n = U. n