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Explicit thickness integration for three-dimensional shell elements applied to non-linear analysis

INTRODUCTION

Today the use of composite materials is increasing in industry, in particular in aeronautics for aircraft, space shuttles, satellites and the like. Very often we encounter structures including curved panels with one dimension smaller than the others and made ofmultilayered composite materials.

So it is necessary for modelling correctly these structures to have thin or moderated thick shell elements that take into account transverse shear effects that are important in composite materials and coupling between membrane and bending effects appearing with curvature. It is also very important in an industrial context to have elements with a reduced number of degrees of freedom (D.O.F.) and for which a great number of plies does not imply a prohibited increase of computational time (a number of plies equal to 15 0 can be encountered in industrial structures).

The buckling and post-buckling analysis of curved structures with classical degenerated 3-D shell elements (multilayer composite or sandwich panels) requires a very important computa tional time 1•2 because it is necessary to use a fine mesh to obtain good results and the computational time needed for each element becomes important when the number of plies is high (four or eight Gauss-points are needed in each ply when using reduced integration with the classical shell element). Another important aspect in post-buckling analysis is the time necessary to solve the non-linear system of equations and the number of increments necessary to determine the post-buckling behaviour of a given structure. This last point is not studied in this paper and many authors have proposed efficient and/or automatic incremental/iterative strategies to solve this family of problems. 3 • 4 In this paper we study only formulation of the degenerated 3-D shell element in order to obtain a finite element for which the numerical thickness integration ply by ply is replaced by an explicit integration. The first paper concerning explicit thickness integration applied to linear analysis with a constant inverse Jacobian was published in 1971. 5 Some studies on linear analysis of multilayered shell elements with explicit integration can be found in the literature (see References 1 and 6), but there exist only a few studies on geometrical-nonlinear analysis with 3-D degen erated shell elements with explicit thickness integration.

So the present element does not require evaluation of several quantities at Gauss-points in each layer across the thickness direction (normal to the middle-surface and referred to the thickness variable t).

This requires two aspects to be studied in this paper:

1. First, we write expansions into power series of t of the quantities dependent on the thickness variable. That is the case for the inverse of the Jacobian matrix J and for the linear and non-linear strain-displacement matrices called BL and �L-2. Then, we can perform explicit thickness integration with a limited number of terms in the previous expansions. This requires us to define equivalent elasticity matrices of several orders taking into account membrane, bending, shear and coupling effects.

So with this method, the 3-D stiffness matrices are reduced to 2-D. This problem is simple for plate elements but more difficult for shell elements because of their curvature.

MULTILAYER COMPOSITE SHELL ELEMENT

In this study we use continuum based shell elements with the degenerated solid approach first presented by Ahmad et a l.7 in 1970. These elements are very simple from the mathematical point of view ( C 0 continuity) compared with those based on the approach using the classical shell theory8-1 0 (stress resultant shell elements).

The 3-D degenerated shell element can be used to describe multilayered composite or sandwich shell structures. This element is first defined7 as a degenerated solid element, the thickness being small compared with the longitudinal di mensions, so the element has two nodes corresponding across the thickness and three D.O.F. per node: the three displacements u;, v;, w; along the global axes of the structure. So this element has a quadratic interpolation (Serendipity, shape functions) along the two directions of the middle-plane ( �. '1) and a linear interpolation through the thickness (t). A total of 48 D.O.F. is needed for one element.

The extension of this element 7 is based on the Mindlin-Reissner11 kinematical hypotheses which means that the length of a fibre normal to the middle-surface of the shell can be considered as constant during the deformation, because the displacement and rotation effects are more important than the deformation effects of the fibre. This allows us to suppress one D.O.F. among the six necessary for the two nodes being on the same normal. So the considered element has five D.O.F. per node, this node being situated at the middle-surface of the shell element (see Figure 1) instead of the two nodes previously defined, situated at the top and bottom faces of the element.

These five D.O.F. are of hybrid type (three displacements ( u;, v;, w;) along the global axes of the structure and two rotations (ex;, {3; ) around two directions defining the tangent plane to the middle-surface of the shell element). The total number of D.O.F. per element is equal to 40.

In this study, the 8-noded degenerated shell element is used as defined in Figures 1 and2. The complete 3-D constitutive relations are modified to take into account the fact that this model is a bi-dimensional one as it is used for modelling thin or moderated thick shells. So we can neglect the normal stress u 33 in comparison with u11 and u22• It is possible to show (see Reference 12) that this approximation, valid for the Cauchy stress u 33 defined in he deformed configuration, is also valid for the 2nd Piola-Kirchhoff stress S 33 defined in the reference configuration of the structure (in the case of a total Lagrangian formulation). The material of each layer of the element is considered as linear, elastic and can be of isotropic or orthotropic type. With the previous assertions we can write the constitutive law in the orthotropic system (elk, e 2 k> e 3 k) of each layer k (see Figure 2) in the following form: We can write the geometrical interpolation6 as where <x y z) = global co-ordinates of the point defined by ( �. 17, t) where < ) = { } T <x; Y; Z;) =global co-ordinates of the node i. It is important to note here that this definition of the kinematic interpolation is linearized with respect to rotations. This approximation is valid only for moderated nodal rotations, up to 20 degrees. 1 3 Many authors have proposed formulations valid for large rotations (see References 14 to 21), but it is not the aim of this paper to discuss this aspect.
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In a following paper we will present how we take account of large rotation using an updated Lagrangian formulation, the kinematical interpolation (4) being the same.

TANGENT STIFFNESS MATRIX AND INTERNAL FORCE VECTOR

When considering a finite element incremental non-linear problem, we can write it in the following form 3 using tangent stiffness matrix KT, correction of nodal displacements vectotr bd, external force vector r ext and internal force vector fin!:

(5)

We must compute the expressions of the tangent stiffness matrix KT and of the internal force vector f;ni • The tangent stiffness matrix can be expressed as22 [START_REF] Vlachoutsis | Explicit integration for three-dimensional shell finite elements[END_REF] where KL is the linear (classical) stiffness matrix, KNL the non-linear stiffness matrix due to non-linear terms of strains and Ka is the stress-stiffness matrix.

Linear stiff ness matrix

The linear stiffness matrix is expressed as [START_REF] Ahmad | Analysis of thick and thin shell structures by curved finite elements[END_REF] I JI = det J is the determinant of the Jacobian matrix J defined by equation (20), BL the linear strain-displacement matrix and E is the (6 x 6) constitutive matrix (in the global co-ordinate system) at the considered point of the element. This matrix can be expressed in function of ck previously defined (1) by two transformations.

The first one is the rotation of angle ak around v 3 which transforms Ck in a new (5 x 5) matrix Ek expressed in the local system (see Figure 2). This transformation can be written in the following form where T a k is function of the components of the transformation (rotation) matrix:

E k = T a1. Ck T ak
The second one gives E c6 x 6, expressed in the global axes system; we write E = TTE,;T (8) (9) Tis a (5 x 6) matrix given in the expression which defines the transformation between global and local axes systems.

So E is dependent on the considered point of the shell because the local axes system changes at each point of the shell middle-surface and because mechanical properties change through the thickness of the laminate. This change is due to various fibre orientations or to different mechanical characteristics of each ply.

The Green-Lagrange strain vector is defined in the Appendix, split into a linear part and a non-linear part as [START_REF] Sanders | Nonlinear theories for thin shells[END_REF] BL is the linear strain-displacement matrix, strains being expressed in the global axes system EL= BLd [START_REF] Reissner | The effect of transverse shear deformation on the bending of elastic plates[END_REF] where d is the nodal displacement vector defined as

dT = (d) = (u1 V1 w1 IX1 /31 U2 V2 W2 IX2 /32 • • • Us Vs Ws ixs /3s) (12)
The expression of t T in the global axes system is [START_REF] Fezans | Analyse lineaire et non lineaire geometrique des coques par elements finis isoparametriques tridimension nels degeneres[END_REF] The strain vector t ' with respect to the local axes (see Figure 2) is put into the following form using T (previously defined in (9)). The matrix BLc6x4o> can be written using (4) as

BL=HQL ( 15 
) (16a) (16b) (17) 
where Lc9 x 4 0, is the matrix giving the derivatives of displacements with respect to intrinsic element co-ordinates ( �. 1'/, t) and contains the derivatives of the shape functions (N;, i = 1, 8)

L = [L 1 L 2 ... L s ]
See the Appendix for the expression of V.
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Using Q<9 x 91 we obtain displacement derivatives with respect to global co-ordinates (x, y, z). Q can be written as

[ r '

Q= 0

where Oc 3x3 1 is the (3 x 3) zero matrix. 

(20)

H<6
x 91 is the localization matrix used to identify linear strains in the expression of the derivatives of global displacements with respect to global co-ordinates. This matrix, defined in the Appendix, contains only constant terms equal to 0 or 1.

Non-linear stiff ness matrix

The non-linear stiffness matrix is expressed as (see Reference 22) [START_REF] Stanley | Continuum-based resultant shell elements[END_REF] where BNL is the non-linear strain-displacement matrix and is expressed in the global axes system like this: [START_REF] Mahe | Analyse non lineaire geometrique des coques par un element fini isoparametrique degent':re a 40 degres de liberte, avec integration explicite dans l'cpaisseur[END_REF] where eNL is the non-linear part of the Green-Lagrange strain vector. Each component i of e N L can be written into the following form,

t�L = td T L T Q T FiQLd for i = 1, 6 (23) 
so we adopt the following notation for BNL(6x40) where each line is equal to

d T L T Q T FiQL o x4o): d T L T Q T F i Q L d T L T Q T F z Q L d T L T Q T F3 Q L BNL = d T L T Q T F 4 Q L ( 24 
) d T L T Q T F s Q L d T L T Q T F 6 Q L Matrices Fi(i = 1, 6
) are defined as [START_REF] Naghdi | Foundations of elastic shell theory' Chapter l[END_REF] where the (3 x 3) sub-matrices Gi(i = 1, 6) can be written by identification with the classical Green-Lagrange strains (see the Appendix)

G , � [ � 0 �l G , � [ � 0 �l G , � [ � 0 �l 0 0 (26a) 0 0 0 G , � [ � 1 �l G , � [ � 0 �l G , � [ � 0 �l 0 0 0 (26b) 0 0
Stress-stiff ness matrix

The stress-stiffness matrix is expressed as (see Reference 13)

where the matrix Fs is defined with the previous expressions of Fi(i = 1, 6) as ( 28)

i= 1
So we can write it in a more convenient form using the 2nd-Piola-Kirchhoff stress tensor 2 4

S reported for the reference configuration (Lagrange formulation). We obtain [ S 0 OJ Fs (9x9) = 0 S 0 0 0 s

Internal force vector

The internal force vector is defined as (see Reference 22) 

EXPLICIT FORMULATION AND INTEGRATION

As noted in the introduction, one of the aims of this paper is to perform explicit thickness integration to the tangent stiffness matrix K T and to the internal force vector fint• First we must obtain expansions into power series of the thickness variable t (with a limited number of terms) for the matrices appearing in the formulation. The use of the theory of curved surfaces will be necessary to obtain this expansion for the inverse of the Jacobian matrix J and also for I JI = det J.

Then we will be able to perform explicit integration with respect to t.

Explicit formulation

Geometry and kinematics. According to the formulation of the element we are allowed to separate geometry and kinematic relationships in constant and linear parts. This decomposition is exact according to our hypothesis (moderated rotations in particular).

For the geometrical interpolation we obtain the two associated matrices <1> 0 (e, 17) and <I>i (e, 17)] and write (2) in the following form: o((,•l +tell ,((,•,))c (32) where In the same way we define A0(e, 17) and A 1 (�, IJ) and write the kinematical interpolation (4) as E} � u((, "' t) �A((,"' t)d � (A0 ((, •) + t A,((, •• ))d ( 33)

{ �} � p(<, •• t) �<II ( (,•• t)c � (Cll
Inverse of the Jacobian matrix J and expression of I JJ = det J. The following developments need to consider the theory of curved surfaces. Important results applied to the case of stress resultant shell elements will be found into the publications of Naghdi, 2 5 Sanders 1 0 and Koiter.9 Details of the following equations are presented in Reference 26.

Let

e=X 1 1J =X 2 t=X 3 ( 34 
)
The position vector is written [START_REF] Eriksson | On linear constraints for Newton-Raphson corrections and critical point searches in structural finite elements problems[END_REF] ro is the position vector of the corresponding point defined in the middle-surface, and a 3 is the unit normal vector at this point. R is the smallest curvature of R 1 and R2,

R = Min( I R i J, I R 2 I)
Ri, R2: principal radii of curvature.

(
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In the following developments we will use the following approximation:

x3 -�1 R
The base vectors are defined by and for a3

( x denotes vector product). 8r0 & a = axa <� = 1, 2)
a1 x a2 aJ = ---- 11 ai x a z 11
The first fundamental tensor is defined by with i5p is the Kronecker delta. The eigenvalues of the b! tensor are 1 / R1 and 1 / R 2, so the following invariants are used:

H = � b" = � (__!___ + -1 ) 2 " 2 R 1 Ri K = det[bp] = __!_____!___ Ri Ri
We obtain using ( 46) and (47) (see Reference 26)

µ = 1 -2HX3 + K(X3)2
Equations ( 2) and [START_REF] Simo | On a stress resultant geometrically exact shell model. Part IV: Variable thickness shells with through-the-thickness stretching[END_REF] show that

J=Jo-X3J1

The Jacobian matrix is given by the relation It is easy to show

[( bn){ (bn)f OJ zn = (bn)i (bn)� 0 0 0 1 n = 1, 2, ... , oo 1 3
is the (3 x 3) identity matrix, and we obtain using (60) and (64),

r 1 = J0 1 (1 3 + Jl (X3t(J1J0 1 t) I JI = (1 -2HX3 + K(X3)2) I 10 I (63) (64) (65) (66) (67) (68) 
These formulae are general because the X1 and X2 lines are not in general lines of curvature.

For the following developments, we must use the lines of curvature and put (62), ( 67) and (68) into the following form: The explicit expression of J-1 given in (70) can not be directly used to perform explicit integration, because of the unlimited number of terms in the expansion. So we must use the following approximation.

Z= r1( �. 11, t) = J0 1 (�. 11) R l 0 0 0 R z 0 0 0 0 00 ( t r n�O R l
Approximation: nth order approximation consists in neglecting the nth and higher order powers of the ratio t/R.

We adopt the following geometrical limitation that is also used by many authors such as Marlowe and Fliigge 2 7 or Batoz8 to describe thin and moderately thick shells: the domain of the shell being limited by

h 1 -< R 20 c c --�t � +- 2 2 (72) (73) 
If the thickness of the shell is constant we have h = c (in the other cases we obtain h:::::; c), so we can approximately write

It I 1 -< R 40 (74)
So we see that, if we consider the Jacobian matrix J as equal to his first term J0 into the expansion (70) with respect to t, we obtain the first order approximation and a maximum error of about 2• 5 per cent of the components of the matrix J and 5 per cent of the value of I JI that has been considered as acceptable in these developments and justified in the following examples (see Reference 6 for the use of this approximation in linear analysis).

As presented by many authors (see References 28 and 29), the use of the first order approxima tion is not sufficient to describe rigid rotations correctly. The first order approximation is presented in the following developments and in numerical examples, but the use of the second order approximation was sometimes necessary to obtain good results, for example in the case of a 'twisted beam' (see Reference 28).

One can notice that it is easy to include the second order approximation using general equations ( 70) and (71) (valid for the nth order approximation) and modifying equations (77) and (86).

In the following developments we will use the first order approximation (75a, b, c)

Linear strain-displacement matrix BL. The expression of BL = HQL is given in [START_REF] Simo | On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parameterization[END_REF] and the expressions of the matrices H, Q, L are given in [START_REF] Simo | On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory[END_REF], [START_REF] Simo | On a stress resultant geometrically exact shell model. Part IV: Variable thickness shells with through-the-thickness stretching[END_REF] and the Appendix. H is composed of constant terms, Q is independent oft because of the preceding considerations (75b). The matrix L can be split into two parts, a constant one L0 and a linear one L1 (see the Appendix):

(76) so the matrix BL will have the same form with a constant part BLO and a linear part Bu:

B d�, I'/, t) = B LO(�, I'/)+ t Bu(�, 11 ) (77)

Non-linear strain-displacement matrix BNL• To obtain the explicit expression of the matrix BNL we can consider the expression (24) and use the approximations written for L (76) and Q (75 b).

We obtain for each line <B�L) (i = 1, 6) of BNL the following expression:

<B�L) = dT(L0 + tLi)TQJFiQ0 (L0 + tLi) (i = 1, 6) (78) 
So we obtain a quadratic expression for BNL: BNde, 11, t) = BNLoce, 11) + tBNLl(e, 11)

+ t 2 BNL2(e, 11) (79) 
We are going to see how Mindlin's theory allows us to write a simpler expression for BNL•

Mindlin's theory2 3 can be written using [START_REF] Parisch | Large displacements of shells including material nonlinearities[END_REF] in the following form:

e(e, 1], t) = Em(e, 1'/) + tX r (e, 1'/)

(80)
h(e, 11) = r.(e, rJ)

(81)
where Em is the membrane strain vector, Xr is the vector of curvatures or bending effects and Ys is the transverse shear strain vector. These three vectors are independent of the thickness variable t.

As discussed by many authors such as Koiter9 and Batoz,8 in the first approximation non linear contributions appear only in the membrane part em. So we are allowed to write (82a, b, c) where tmL and EmNL are respectively the linear and non-linear parts of E m,

The formulation presented in this paper neglects non-linear terms for the curvature strains. We can see that the computational effort is not significantly increased if we include all non-linear terms. This aspect will be presented in a following paper.

So non-linear strains are independent of t and can be written as hNL:::::: 0

According to our previous notations [START_REF] Sanders | Nonlinear theories for thin shells[END_REF] and ( 15) we can write the non-linear strains as tNL = tNLO (local) tNL ::::::

tNLo (global) (83a) (83b) 
(84)

Using equation [START_REF] Mahe | Analyse non lineaire geometrique des coques par un element fini isoparametrique degent':re a 40 degres de liberte, avec integration explicite dans l'cpaisseur[END_REF] we see that BNL is also independent of t and will be written in the following form:

(85)

Remark: This allows us to simplify equation (79) and to write BNL t :::::: 0, BNLl :::::: 0.

Explicit thickness integration

Using the previous results we can perform explicit integration for each part of the tangential stiffness matrix.

Linear stiff ness matrix. The expression (7) of the matrix KL is transformed using explicit expressions (77) and (75c) of BL and I JI is order to obtain a polynomial expression (86)

As previously discussed, in the case of a multilayered material we define the global mechanical characteristics as

c f 1 D ; = -� 2 Npties 1 ti-l E' dt = L, � Ek(ct+ 1 -c�) (i = 1, 2, 3) k= 1 l (87)
the non-linear strain-displacement matrix BNL independent of t. For that reason the subscript O usually used for the constant part in the developments will be omitted for BNL because there are no higher order terms.

The decomposition of the matrix product TBNL is done in the same way as in (91):

(94)

With our assumption (see (82c) and (83b)) we have proved that only non-linear terms appear in the membrane part and not in the transverse shear part of the strains. So we can write (95)

Using the same method that we have used for the linear stiffness matrix KL, we obtain the following explicit expression for KNL with the previous assumptions: 

(98)

Equations ( 83) and (84) show that the non-linear strains ENL are independent of the thickness variable t, so equation (97) proves that the matrices P; are also independent oft.

So we can consider that the matrices P; (i = 1, 6) are equal to their values determined at the middle-surface of the shell element. The matrix L, being dependent on t as written in (76), we must put its value equal to L0 in the expression of P;: P , = L�QTF;QL0 (99)

Then we obtain the following expression by putting (99) in ( 27) :

(100)

The degree of matrix product L�QTF8QL0 with respect to t is equal to the degree ofF8• Using [START_REF] Milford | Degenerated isoparametric finite elements using explicit integration[END_REF] we see that Fs is linearly dependent on the 2n d Piola-Kirchhoff (PK2) stress tensor. We can express the PK2 stress vector as (101)

Using equations ( 77) and (85) we see that Sis a linear function of t in each layer of the shell element. So we can write the following explicit expression: S = S 0 + tS 1 S 0 and S1 are obtained by identification with (101):

S 0 = Et0 = T T E'T(BLO + !BNdd S1 = Et1 = T T E' TBLl d
The expressions ( 29) and (102) allows us to write the following expansion:

Fs = F8 0 + tF8 1
We are going to see how the explicit expression is obtained for the constant part F50• c c We first have to evaluate f 2 , F80dt: that means using [START_REF] Milford | Degenerated isoparametric finite elements using explicit integration[END_REF] 

to evaluate f 2, S 0 dt -2 -2 (102) (103a) (103b) (104) 
We prefer to evaluate the following vectorial expression and identify the components of the stress tensor S 0 with the components of the stress vector s 0 • The details are not given here and the following expression can be obtained after having performed the explicit integration with respect to t using (87):

c f 2 c S o dt = T T D1T(BLO + !BNdd -2 (105) 
We can now use equations (89a), ( 91) and (94) to separate membrane and transverse shear effects appearing in D1, as we have done for KL. We obtain c f 2 c So dt = T.;; Am (BLOm

+ ! BNLm)d + T;[ A,BLOs d -2 (106) 
We can now proceed to the identification in order to define the tensorial expression associated with S 0 .

The last identification gives the explicit expression of the (9 x 9) matrix s�;/ 2 F So dt Using the same method we define F 81 that contains D 2 in its formulation, so we obtain using (87) and (89b)

c f 2 , tS1dt = TJ;AmrBumd -2 (107)
The construction of the (9 x 9) matrix F s, is done in the same way as for F so (see Reference 26).

Internal force vector. The internal force vector fint is defined by equations ( 30) and [START_REF] Jun | Buckling behavior of laminated composite cylindrical panels under axial compression[END_REF]. So we give here the explicit expression of matrix 'I'.

The development is the same as that of KL and K NL so it is not detailed here, and one will obtain using relations (87), ( 89)-( 92) and (94)-(9 5) (see Reference 26)

'P = f 1 f 1 B[omAmBLOm + B[omAmrBLlm + Bi 1 mAmrBLom IJol d� d 17 + f 1 f 1 Bro.AsBLos +Brim Ar Bum+ B�LmAmBLOm + BiomAmBNLm I Jo I d� d l1+ f 1 f 1 B�LmAm r BL l m T T + BumAmrBNLm + BNLmAmBNLm llol d� d 17 (108) 
NUMERICAL EXAMPLES

Two numerical examples have been considered. The first one concerns critical buckling analysis and the second one post-buckling analysis. The object of these two examples is to compare the results obtained by the degenerated shell element using explicit thickness integration and that of other shell elements, degenerated or not.

Critical buckling analysis

This analysis is based on the research of the stability limit of the structure using the fact that the second variation of the energy W is equal to zero:

(109) This theory is based on a linearized expression of J 2 W. Using the expression of J W we obtain (KL+ ).( KoNL + K0.,. ))bd = {O } KL is symmetric and positive definite, K oNL and K 0 .,. are only symmetric.

(110)

In the results given in the critical buckling analysis, we neglect the influence of the matrix KoNL because its components are neglected in comparison with the components of K0.,. . This is a usual simplification which appears in the specialized literature for weakly non-linear problems before the appearance of instability.

This leads to the following simplified expression that will be retained in the sequel:

(KL+ ).K o .,. )bd = 0 (11 1)

A.; represent the ith eigenvalue of the equation ( 111) and give us the ith critical load of the considered structure. The eigenvectors represent critical buckling modes associated with the previous eigenvalues. The first mode is the most important for us because it corresponds to the first encountered on a structure. The sub-spaces iterative method is used here to find eigenvalues and eigenvectors. One will find details on this method in the study of Rutishauer.3 0 composite panels obtained with a 8-node degenerated shell element using numerical thickness integration. With this scheme, 2 x 2 x 2 = 8 Gauss-points are needed in each ply of the laminate because reduced integration is used (2 x 3 x 3 Gauss-points if classical integration is used). Here, in the case of a 16 plies-laminate this type of elements requires 128 Gauss-points (reduced integration) while the present element requires 4 Gauss-points (reduced integration). Experi mental results for this example were given by Snell and Morely. 3 2 Geometry of cylindrical panels. Geometry and loading are indicated on Figure 3 for cylindirical composite panels retained in this study.

In the first case, geometrical data are: h=2mm

R = 250 mm L = 540 mm d = 421 • 2 mm
Material properties. The material is an orthotropic laminate, the properties of each ply being:

E 1 =13 0GPa E 2 = lO GPa G1 2 = 6GPa V12 = 0•3
The laminate has 16 plies, the thickness per ply is equal to 0 •125 mm. The stack sequence referring to the x-axis is [ + 45/ -45 2 / + 45/0 4 Js. The total thickness of this laminate is equal to h = 2mm. Loading. The load is a uniform compressive force applied to the middle-surface of the laminate on the edge AB (see Figure 3) so: F = -Fx.

Finite element model. An (8 x 10) mesh is used by Jun and Hong for the quadratic Serendipity degenerated shell element with numerical reduced integration. The same mesh is used for the present element. Snell and Morley use a (20 x 10) mesh.

First buckling mode. In this study we are looking only for the value of the first critical buckling load: '1 1 .

We compare the critical load obtained by our degenerated shell element included in the finite element code ASELF (AeroSpatiale ELements Finis) with the critical load given by other elements/authors. These critical loads are also compared with experimental results as follows: The difference (in per cent) between numerical results and experimental results for the various elements is given in Table I. The number of Gauss-ponts needed for each element is also indicated in this table.

Conclusions. There is no significant difference between the results obtained by the degenerated shell element using numerical integration 3 1 and our degenerated shell element using explicit integration. This difference is about 0•5 per cent. This can be considered as a very good result, this example being a severe one for the validity of explicit integration because it involves curvature (h/R = 1/125) and multilayered composite panel (16 plies).

Jun and Hong used reduced numerical integration, and in that case a total of eight (2 x 2 x 2) Gauss-points in each ply of the laminate is necessary. In the present study. four (2 x 2) Gauss points only are necessary for the whole laminate because of explicit integration. On this example we see the interest of our formulation, the ratio of Gauss-points between numerical and explicit integration being equal to 16. The gain in computing time between the two formulations corresponds to a ratio equal to 16 for the tangent stiffness matrix or internal force vector per element (see Figure 3). That is interesting here and will be more interesting in the case of non-linear analysis, the number of tangent stiffness matrix and internal force vector evaluations becoming important.

For the first buckling load we obtain 7•4 per cent error. This can be explained not only by the mesh or the performance of the element but also because we neglect the influence of the matrix The element used by Snell and Morley gives bad results compared to degenerated shell elements using numerical or explicit integration. In this case the error for the first buckling load is equal to 13 per cent with an important number of D.O.F. (3450 instead of 1450).

Mesh refinement test.

In this test we evaluate the first buckling load for an 8-plies cylindrical panel when using three different meshes in order to compare the results obtained by the degenerated shell element using numerical integration and the degenerated shell element using explicit integration. So the buckling loads given by Jun and Hong on this test are compared to the buckling load obtained by the present study.

Geometry of cylindrical panels. The geometry is modified for this test and we have h=lmm

R = 1 50 mm L = 150 mm d = 157•05 mm
Material properties. The material is an orthotropic laminate, the pro pe rties of each ply being:

£1 = 181 GPa £2 = 10•3 GPa Gi 2 = G 1 3 = G31 = 7• 17 GPa V1 2 = 0•3 V2 3 = V1 3 = 0• 28
The laminate has eight plies and the thickness per ply is equal to 0 • 125 mm. The stack sequence referring to the x-axis is [O/ ± 60 /90]8• The total thickness of this laminate is equal to h = 1 mm.

Comparison between the two degenerated elements. The results obtained for the first buckling load given by numerical integration 3 1 and explicit integration (present study) are compared here for three different regular meshes of type (n x n):

n = 8, 10, 12
The results are given in Table II.

Conclusions. The difference between the degenerated shell element using explicit integration and the classical one using numerical integration becomes very small for the (12 x 12) mesh: about + 0• 4 per cent. This is a good result and we see that the difference between the two elements decreases, with mesh refinement.

Post-buckling analysis

Post-buckling analysis is conducted in a classical manner: the Newton-Raphson method (classical or modified) is used (see Riks 3 ). Different control techniques can be used such as load increment, displacement increment or arc length method.

A residual displacement norm criterion was adopted to determine convergence, i.e. Numerical example: Post-buckling of a cylindrical panel. In this example we study a thin cylindrical shell subjected to a concentrated load, the material being isotropic. This is a classical example used by many authors 3 • 24 • 3 4 to compare different fi nite elements suitable for geometri cal non-linear analysis of shells.

This example is also used to compare numerical performance of several non-linear numerical strategies. 3 5 Numerical data are the same for the different authors. As do the other authors, we use a total Lagrangian description as mentioned in the theoretical developments. Loading. On the complete panel we apply a concentrated load P at central point C (see Figure 4). So we apply P/4 at point C on the quarter of the panel. Mesh. We use a (3 x 3) mesh of degenerated shell elements on the panel (A, B, C, D).Explicit thickness integration is used with our element.

For this mesh we have the folJowing characteristics: The load-displacement curve obtained with our shell element for central point C, P = f(wc), is indicated in Figure 5.

A displacement control technique is used, and we have constant increments, equal to 1 mm. To obtain the total load-displacement curve indicated in Figure 5, 35 increments and 70 corrections are necessary, the modified Newton-Raphson method being used. The number of iterations per point is constant and equal to 2. The CPU time necessary to obtain this curve is equal to 68 so n a CRAY XMP-116, 17 ms being necessary to evaluate the tangent stiffness matrix for one element. So with the modified Newton-Raphson method, 7• 5 s are necessary to calculate tangent stiffness matrices and internal force vectors for the whole problem, which is not very important in comparison with the total time indicated. This time would not be more important in the case of a multilayered material using this element.

Results given by our element are compared to those given by different elements and authors mentioned here:

(i) 8-noded plate element (Horrigmoe 3 6). (ii) 16-noded degenerated shell element (cubic-Lagrangian).

Reduced numerical integratio (Fezans 1 3 ). (iii) 8-noded degenerated shell element.

Reduced explicit integration (present study).

These results are given in Table Ill. Differences between the results obtained by the degen erated element using explicit integration and the other elements are indicated in this table. These different results are indicated on Figure 6.

The load factor control technique is used by Fezans 1 3 and so he obtains results limited to the first limit point encountered for We � 9 mm.

The displacement control technique is used by Horrigmoe 3 6 (as in the present study) and results are limited by the displacement we = 14 mm.

Conclusion.

Differences between the three elements are small, in particular between the 8-noded quadratic degenerated shell element using explicit integration and 16-noded cubic degenerated shell element using numerical thickness integration.

This example shows good agreement between numerical and explicit formulation.

CP U time study

In this part we are going to see the interest of explicit formulation in the case of non-linear analysis when we consider a multilayered laminate with an important number of plies.

We give here the computational time needed to evaluate one elementary tangent stiffness matrix by the two formulations (numerical integration and explicit integration) with various numbers of plies for the laminate. For a given non-linear study, this time needs to be multiplied by the number of elements and by the number of linearizations.

In the case of numerical integration, reduced integration is used with a (2 x 2) scheme in each ply. Reduced integration with a (2 x 2) scheme on the middle-surface is also used in the case of explicit thickness integration. 

( % ) Case l/case 2 -0•7 -0• 3 0•5 -0•5 0• 3 0•4 0• 5 0•6 0•4 case l/case 3 4• 5 2•4 2• 3 1•7 2• 2 2•6 2• 6 2•0 1• 3 1• 0 0• 8 1-2 0•9 1• 2
The results appear on Figure 7 for a number of plies equal to 1, 2, 4, 8, 16 and 32. These computational times are those obtained with the finite element code ASELF on a CRAY XMP-116 computer.

The results show that the generation time is hardly smaller for the element formulated with numerical integration when the number of plies is equal to 1: then 13 ms are needed instead of 17 ms with explicit formulation. This is due to the different routines used into the two programs; for example evaluation of matrices BLom, BLO., BLlm• B N Lm and Am, Amr, Ar, A. is not made in the case of numerical integration (see equations ( 89), ( 91) and (94). When the number of plies is equal to 2 the explicit formulation has the advantage, with 17 ms instead of 22 ms. We see that, in the case of explicit formulation, the computational time is nearly equal to 17 ms when the number of plies increases. This can be explained by the fact that only the time needed to evaluate Dh = 1, 2, 3) (see equation ( 87)) increases with the number of plies.

In the case of a 128-plies laminate we obtain 26 ms for explicit formulation and 13 30 ms for numerical formulation. In this case we obtain a very important computing-time gain, but in concrete cases the explicit formulation is interesting when N plies � 2.

We must notice here that this computing-time gain is more important on an actual structure because we only have to compute once the matrices Di(i = 1, 2, 3) for a given material. We give the following example of structure we calculated with the two elements. It is composed of 48 16-plies degenerated shell elements. Ten load steps were evaluated with the modified Newton-Raphson method and so ten linearizations were performed. The computing times were Explicit integration total time 37 s matrices evaluation 8•6 s Numerical integration total time 112, 4 s matrices evaluation 84• 2 s For this example, the CPU time ratio between the two methods is equal to 3 for the whole problem and 10 for the matrices evaluation.

If the newton-Raphson method is used, CPU time ratios ai;e more important.

CONCLUSIONS

In this paper a modified formulation for three-dimensional degenerated finite elements of shells is presented which enables explicit thickness integration to be carried out in the case of geometrical non-linear analysis. Different approximations imply errors which consist in neglecting powers of several orders of the thickness to minimum radius of curvature ratio compared to unity. Numerical results are presented to prove the validity of explicit thickness integration using first order approximation, in comparison with other finite plate / shell elements, in particular the same element using full numerical integration. The maximum difference between the two models is about 3 or 4 per cent for the considered examples. Other examples were studied, in particular for h/ R •;:::;; 1/ 20, and the maximum difference between the two models was always lower than 10 per cent, and very often near 1 or 2 per cent. So the explicit integration scheme is satisfactory applied to general multilayered structures, with an important computing-time gain. No problem was detected for nodal rotations up to 30 degrees or sometimes more, but the extension of this element in the case of important nodal rotations can be obtained using an updated Lagrangian formulation that will be presented in a forthcoming paper. 
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 212 Figure 1. D.O.F. on the present 3-D degenerated shell element

  assertions required to define the geometry and kinematics of the degen erated 3-D shell element with five D.0.F. First for the 16-noded 3-D shell element with D.O.F. of displacement type we use the classical isoparametric formultion, 7 and then we extend it to the 8-noded degenerated shell element with D.O.F. of hybrid type.

<v 3 x 2 t 1

 321 ; v 3 y ; v 3 z ;) = global co-ordinates of the normal to the middle-surface at node i (2) N; (�, ri) =shape functions for 8-noded (n = 8) degenerated shell element (Serendipity type) (�, 17) = intrinsic co-ordinates on the middle-surface of the shell (�, 17)E [ -1; + 1] = thickness co-ordinate referred to c h; = nodal thickness (node i) c =constant of normalization6 at a given point (� 0 , 170) n c = L N ; (� 0 , 170)h; We can write the kinematical interpolation 6 as where (u v w) =global displacement at the point (�, Y/, t) ( u; V ; wi) = global displacement at node i ( ai p i ) = rotations around the two directions of the middle-surface of the shell (4)

( 14 )

 14 Now we can decompose the expression of local strains in two parts: in-plane part e and out-of-plane part h as with e33 being approximately equal to zero following the Mindlin hypothesis.2 3 

  can be computed using the expression of geometrical interpolation given in (2).

  fint = 'P dwhere the non-symmetric matrix 'I' can be expressed with the previous notations as

  llap = aa. ap (scalar product) The second fundamental tensor is defined by with W eingarten's formula is used as so The vectors g, are defined by µ� is defined by We define in the same way det [aap] =a det [gii] = g det [µ�] = µ

M- 1

 1 J = [:: : ::: :::] = [:! :� �J [:: : :: : the following notations referring to global axes system: It is true using (47) that We use the following notations, so equation (56) gives J 1 is defind by l gix) l aix) g; = g '. Y a; = a '. Y g,z a,z µ = det [µ�] = det M I J I = <let J I Jo I = <l et Jo I J l =µ ! Jol aiz ] can be written into the following form using (56): (µ-1 )r o � ] 1)ff = I (X3 r (bn) t i=O and (bo)� = f>! (bl)! = bff (bn}� = b:(bn-1)� = bf(bn-1);

  (96) Stress-stiffness matrix. We must first consider the expression (27) ofK., and we apply the same method and the same approximations we used for KL and KNL • The relation (27) allows us to define the ith component of the non-linear strain vector as E�L = !d TP;d where the matrices P; (i = 1, 6) are defined as P , = LTQTF , QL

Figure 3 . 0 BCv = w = 0 CDu

 300 Figure 3. Geometry and loading of the panel

(i) 3 -

 3 D-8-noded degenerated shell element with 40 D.O.F. Reduced numerical integration. (8 x 10) mesh (Jun and Hong 3 1 ) (ii) 36 D.O.F. shell element. Numerical integration. (20 x 10) mesh. Finite element code STAGSC-1 (Snell and Morley 3 2 ). (iii) 3-08-noded degenerated shell element with 40 D.O.F. Reduced explicit integration. (8 x 10) mesh. Finite element code ASELF. Present study.

  where e is the convergence tolerance parameter: e = 10-3 •(1 12) 

3

 3 Boundary conditions. Rotation around the y-axis is permitted only along the two rectilinear edges of the panel. Using symmetries we obtain the following conditions for a quarter of the panel.AB free edgeBC u=O IX = 0 CD v=O /3 = 0 DA U=V =W=0 /3 = 0

Figure 4 .

 4 Figure 4. Geometry and loading of the cylindrical shell

Number of elements: 9

 9 Number of nodes: 40 Number of D.O.F.: 14 6 (using boundary conditions)

Figure 5 .

 5 Figure 5. Load-displacement curve obtained with degenerated shell element using explicit integration
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 67 Figure 6. Load-displacement curves obtained with different shell elements

APPENDIX 0 R

 0 + V,x U,x U,y + V,xV,y + W,xW,y Yyz 2e yz V,z + W,y U,y U,z + V,yV,z + W,yW,z Yzx 2e zx W ,x + U,z U, zU, x + V,zV, x + W,zW,x Definition of local axes system (v1 , v2 , v3 ), (i, j, k) being global axes system Matrix P (local/g lobal system) = l1i + md + n1 k v2 = l2 i + m2 j + n2 k v3 = l3 i + m3 j + n3 k T = 21112 2m 1 m2 2n 1 n2 l1 m2+1 2 m1 m1 n2 + m2n1 nil2+n2l1 212 /3 2m2 m3 2n 2 n3 l2 m3 + /3m2 m2 n3 + m3 n2 n 2l3 + n312 2/3 l1 2m3 m1 2n 3n1 /3m1 + l1 m3 m3 n1 + m1n3 n3l1 + n1 l3 Interpolat ion matr ices L; Matrices L; (i = 1, n) are written in the following form, Rli, Rz ;, R3; being equal to N,,� 0 __.!. Ni, q V ixi c h• __.!. N; Vixi c h• t __.!. N• � V1 .
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Table I .

 I Comparison between numerical results and experimental results for the first critical buckling load for various finite shell elements

	Reference	Method	Critical load (daN)	Error (%)	Number ofD.O.F.	Integration points per element
	Snell and Morley32	36 D.O.F. shell element Reduced numerical integration	15 150	+ 13•0	3452	128
	STAGSC-1	20x 10 mesh				
	Jun and Hong31	40 D.O.F. shell element Reduced numerical integration 8 x 10 mesh	14320	+ 6-9	1454	128
	Present study AS ELF	40 D.0.F. shell element Reduced explicit integration 8x10 mesh	14398	+7•4	1454	4
	Snell and					
	Morley32	Experiment	13 400			

KNL in the formulation of linear buckling

(110)(111)

. This formulation of critical buckling can cause an overestimate of buckling loads, as shown by

Batoz and Jameux. 33 

Table II .

 II Critical buckling load for various meshes

	Reference	Mesh used Number of D.O.F.	8x8 946	lOx 10 1482	12 x 12 21 38	Gauss-points per element
	Jun and Hong31	40 D.O.F. shell element Reduced numerical integration	44285 (daN)	40 710 (daN)	40 505 (daN)	64
	Present study	40 D.O.F. shell element Reduced explicit integration	42 810	41 170	40 680	4
			(daN)	(daN)	(daN)	
		Difference(%) between exp!. and num.	-l 3	H	0•4	
		integration				

Table III .

 III Comparison between the different elements

		P(daN)	Difference
	Case 1 Exp!. int. (present study)	Case 2 Num. int. (Fezans13)	Case 3 Plate element (Horrigmoe37)
	O•O	0	0
	39 •7	40	38
	77-8	78	76
	110• 5	11 0	108
	139 • 5	140	13 7
	163•5	16 3	160
	184•7	184	180
	202•1	20 1	19 7
	214• 2	21 3	210
	220•8	220	218
	225 •2		223
	22 3•8		222
	217•6		21 5
	204• 8		203
	185 •1		183

Numerical example; Buckling of cylindrical panels subjected to axial compression. This example dealing with cylindrical composite shells is interesting because we can encounter this kind of structures in aircrafts, satellites, etc. Some tests have been conducted for such structures, in particular buckling analysis and post-buckling analysis with variable finite elements. Jun and Hong31 give results for cylindrical

where ck is the position along the t axis of the lower surface of the kth ply, the total number of plies being equal to Npt i e s• The other notations are defined in (8) and (9). We obtain the following expression of the linear stiffness matrix: KL= r l r l BioTTD1TBLOllolded11+ Ilf l Bio TTD 2TBL l llolded1 1 + Il rl Bi1TTD 2 TBLOllolded11+ r l r l Bi1TTD3TBullolded1 1 (88) To take into account of the numerous zeros appearing in the expressions of the matrices Di (see References 1 and 8) we adopt the following notation,

where Am concerns membrane effects, A. transverse shear effects, Amr coupling between mem brane and bending effects and Ar concerns bending effects. Matrices x and x ' are not given here because they do not appear in the following developments.

It is also possible to separate the matrix T (see the Appendix) into two parts: T m giving in-plane strains and T s giving out-of-plane strains. This can be written as T = [ �� ] with Tm( 3x6> and Ts( 2x6J

We can make the same decomposition of the matrix product T B u (i = 0, 1). We obtain [ BLOm ]

[ Bum ] T BLo = B and T BL l = B LOs Lls

The Mindlin assumption23 allows us to consider (in first approximation) the transverse shear strains as independent of the thickness variable t. Also, we can modify the previous expression (88) using Bus= 0 (92)

We obtain the explicit expression of KL where only numerical integrations appear, performed at the middle-surface of the shell, with respect to � and 1 7:

K L= rl rl BiomAmBLOm llol ded11 + r l r l Bio.A.BLos llol d e d 11 + r l r 1 (BiomAmrBum + Bi1mAmrBLOm)I J 0 I de d1 7 + f 1f 1 Bi1mAcBumllold�d1 7

In order to obtain better results in the case of very thin shells we use a uniform reduced numerical integration to evaluate this expression. 13 With this technique only (2 x 2) Gauss-points situated on the middle-surface ( t = 0) of the shell element are required if explicit thickness integration is used. When numerical thickness integration is used, (2 x 2) or 2 x (2 x 2) Gauss points are needed in each ply (reduced in-plane integration).

Non-linear stiffness matrix. We use the same technique to obtain the explicit expression of the matrix KNL using the expression [START_REF] Stanley | Continuum-based resultant shell elements[END_REF] and the equations (75b), ( 77) and (85), allowing us to consider