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MIXED VARIATIONAL FORMULATION OF FINITE ELEMENT ANALYSIS OF ACOUSTOELASTIC/SLOSH FLUID-STRUCTURE INTERACTION

A general three-fi eld variational principle is obtained for the motion of an acoustic fluid enclosed in a rigid or flexible container by the method of canonical decomposition applied to a modified form of the wave equation in the displacement potential. The general principle is specialized to a mixed two-field principle that contains the fluid displacement potential and pressure as independent fi elds. This principle contains a free parameter a. Semidiscrete finite-element equations of motion based on this principle are displayed and applied to the transient response and free-vibrations of the coupled fluid-structure problem. It is shown that a particular setting of a yields a rich set of formulations that can be customized to fit physical and computational requirements. The variational principle is then extended to handle slosh motions in a uniform gravity field, and used to derived semidiscrete equations of motion that account for such effects.

INTRODUCTION

AN ELASTIC CONTAINER (the structure) is totally or partly filled with a compressible liquid or gas (the fluid). The fluid structure system is initially in static equilibrium in a steady body force field such as gravity or centrifugal forces. We consider small departures fr om equilibrium that result in forced or free vibratory motions. To analyze these motions the fluid is treated as a linear acoustic fluid, i.e. compressible but irrotational and inviscid. The purpose of the present work is to:

(i) derive variational equations of motion based on a mixed variational principle for the fluid subsystem; and (ii) obtain semi-discrete equations of motion following spatial discretization of the coupled problem by the finite element method.

The derivation of the mixed variational principle for the fluid is based on the method of canonical equations advocated by Oden & Reddy (1983) for mechanical applications.

The most general dynamical principle derived in this paper contains three primary variables: the pressure-momentum vector, the dilatation-velocity vector, and the displacement potential.

The general principle is specialized to a two-field functional of Reissner type that has pressure and displacement potential as primary variables, as well as a free coefficient a that parametrizes the application of the divergence theorem. The coupled variational equations are discretized by the finite element method, and semidiscrete equations for a rigid container established. Linkage with the structure is then made to establish coupled semidiscrete equations of motion for a flexible container. By appropriate selection of the coefficient a a continuum of finite element formulations results. One particular setting yields a rich set of symmetric and unsymmetric formulations for the transient and free-vibrations elastoacoustic problems. From this set, selections can be made to satisfy various physical and computational criteria. The implications of these selections as regards efficiency and numerical stability are discussed.

The variational formulation is then extended to cover slosh motions in a uniform gravity field. It is shown that the surface slosh equations may be incorporated as Galerkin terms in several forms, and that one of these forms merges naturally with the mixed variational principle to form an augmented functional. Semidiscretization of this functional produces finite element equations of motions that may be used for a rigid or flexible container.

GOVERNING EQUATIONS

The three-dimensional volume domain occupied by the fluid is denoted by V. This volume is assumed to be simply connected. The fluid boundary S consists generally of two portions

(1) Sd is the interface with the container at which the normal displacement dn is prescribed (or found as part of the coupled fluid-structure problem), whereas SP is the "free surface" at which the pressure p is prescribed (or found as part of the "fluid slosh" problem). If the fluid is fully enclosed by the container, as is necessarily the case for a gas, then S P is missing and S = Sd. The domain is referred to a Cartesian coordinate system (x1, x2, x3) grouped in vector x.

The fluid is under a body force field b which is assumed to be the gradient of a time independent potential fJ(x), i.e. b = VfJ. All displacements are taken to be infinitesimal and thus the fluid density p may be taken as invariant.

We consider three states or configurations: original, from which displacements, pressures and forces are measured; current, where the fluid is in dynamic equilibrium at time t; and reference, which is obtained in the static equilibrium limit of slow motions. should be noted that In many situations the original configuration is not physically attainable. Table 1 summarizes the notation used in relation to these states.

FIELD EQUATIONS

The governing equations of the acoustic fluid are the momentum, state and continuity equations. They are stated below for the current configuration, and specialized to the reference configuration later. The momentum (balance) equation expresses Newton's second law for a fluid particle:

(2)

The continuity equation may be combined with the linearized equation of state to produce the constitutive equation that expresses the small compressibility of a liquid:

p t = -K Vdt = -p c2Vdt, ( 3 
)
where K is the bulk modulus and c = VKfP the fluid sound speed. If the fluid is incompressible, K , c � oo. This relation is also applicable to nonlinear elastic fluids such as gases undergoing small excursions from the reference state, if the constitutive equation is linearized there so that K = p0 ( d p I dp )0•

The boundary conditions are (4)

where d� is either prescribed or comes from the solution of an auxiliary problem as in fluid-structure interaction, and p may be either prescribed or a function of d n and b, as in the surface-wave ("slosh") problem.

INTEGRAL ABBREVIATIONS

In the sequel the following abbreviations for the volume and surface integrals are used:

(f)v �f {t dV, [g]s �f L g dS, [g]sd � f f g dS, etc. sd (5)
That is, domain-subscripted parentheses (square brackets) are used to abbreviate volume (surface) integrals. Abbreviations for function inner-products are illustrated by The general integral of this equation for a simply connected domain is

(f, g)v �f {tg dV, def f t i i (f, g)vx t = fg dV dt , t o V [/, g]sdx t �f f t 1 f fg dS dt, etc.
dt = V 1jl+a+bt, (6) (7) (8)
where 1Jl' = 'ljlt(x, t) is the displacement potential, a= a(x) and b = b(x) are time independent vector functions, and t denotes the time. If accelerationless motions (for example, rigid body motions) are precluded by the boundary conditions, then a and b vanish. Replacing (it= Vljl' into the momentum equation ( 2) we get

Vp' = -pVljlt + V/3, (9) 
which, when spatially integrated, gives

pt = - pljlt + f3 + C(t), (10) 
where the scalar C(t) is not spatially dependent. Next, integrate the constitutive equation ( 3) over V and apply the divergence theorem to Vd:

(p')v + (pc2Vdt)v = (pt)v + [ pc2d �] s = 0. ( 11 
)
Inserting pt from (10) into the above equation furnishes a condition on C(t) from which

2 1 2 C(t) = - pc [d�]s + [!__ ( 1jft)v --(f3)v = - pc [d�]s + pljlt -(3, ( 12 
) v v v v
where v = (l)v is the fluid volume and J = (f)vlv denotes the volume average of a function f defined over V. Substituting C(t) into (10) we get 2 p ' = -p( ljl' -1j/) + ( /3 -/3) -� [d�]s .

(13) v

In the static limit of very slow motions, the inertia terms may be neglected and we recover the reference solution (1988).

TRANSIENT MOTIONS

Subtracting the constitutive relations at the current and reference states we get

p = -pc2'il21Jl = pc2s, ( 15 
)
where s = -'il21jJ is called, following [START_REF] Lamb | [END_REF], the condensation. Subtracting equation ( 14) from (13) yields On equating (15) and ( 16) we get modified forms of the wave equation that account for mean boundary surface motions:

s = 'il21Jl = 1jJ � 1{y + _! [d n ]s, or c2('il21Jl -'il21Jl) = 1jJ -1µ. c v ( 17 
)
The second form follows from -vs= [d n ] s, which is a consequence of the divergence theorem. For an incompressible fluid, c� oo and [d n ] s = 0, and from the first of equations ( 17) we recover the Laplace equation V21Jl = O.

ADJUSTING THE DISPLACEMENT POTENTIAL

If the transient displacement potential is modified by a function of time,

'ljJ = 1jJ + P(t), ( 18 
)
where 1jJ is the potential of equations ( 8)-( 17), we may choose P(t) so that c 2 ijJ = V 2 '1jJ = -s for any t, then we obtain the classical wave equation c 2 \1 2 '1jJ = ijJ, or (:t:c 2 v 2 )w = 0.

(

) 19 
In the sequel it is assumed that this adjustment has been made. In this section we derive multifield variational principles for the fluid domain following the canonical decomposition method advocated by Oden & Reddy (198 3). This method is applicable to self-adjoint boundary value problems (BVP) of the form

Au=f in D, ( 21 
)
where u is the unknown function, f the data, A a symmetric linear operator, and D the domain of existence of the solution. For time-dependent problems D is the tensor product of the time domain (typically 0 to t) and the volume V. To apply this method, the operator A is factored as

Au= W*EWu = f, ( 22 
)
where Wa nd E are linear operators in V and W* is the adjoint of W. This is called a canonical decomposition. This decomposition may be represented as the operator composition sequence 

THE WAVE EQUATION

The classical wave equation ( 19) is not a good basis for the canonical decomposition (22). Its principal drawback is that the pressure field does not appear naturally as an intermediate variable in equations (23). A better form for our purposes is obtained by taking the Laplacian of both sides of ( 19), and multiplying through by the density p: pV2( 1jJ -c2V21/J) = 0, whence A= pv2(:;2 -c2v2), f =O .

(25)

A suitable canonical decomposition is A= W*EW, where

iV-

[ a ] W= _:; ' E=p [ � �l W* = [ -iV�v2 ] =-WT at ' (26) 
in which i = v=I. Boldface symbols are used for W and E because these are 4 x 1 and 4 x 4 matrices, respectively. The operator product sequence ( 23) becomes

[ iV'!jJ J [iv] e = W 'ljJ = -V21/J = s ' 0 _Ee_ [ ipV-rjJ ] -[im] ---pc2V21/J -p ' W*o = pV21jJ -pc2V41/J = 0. ( 27 
)
The intermediate fields e and o are 4 x 1 column vectors. These vectors are partitioned into their temporal and spatial derivative subvectors for convenience in subsequent manipulations. Note that the transient pressure p appears naturally as the spatial component of o. The temporal components of e and o are the complex velocity iv and complex specific momentum im, respectively.

The boundary portions Su and Sa of equations ( 24) are relabeled Sd and S P , respectively, to match the notation (1). Boundary and initial conditions may be stated as 

L(u, r, o) = Lv +Ls= !(Ee, e)vxt+ ( o, W 'ljl -v)v xt -(f, 1J>)vxt + (Os , B 'ljl -g)sdxt -(h, 1J> s h P xt> (30)
where L v and Ls collect volume and surface terms, respectively. On inserting equations (27-29) into (30) we get

Lv = !(Ee, e)vxt +(a, W'ljJ -e)v xt = f'1 f [ !p(-vTv +c2s2)-mT (V�-v )-p(V21jJ+s)]dV dt, J ,o J v - 1'1 [f ( 01/J -) f -0 1/J J
Ls -(as, B'ljJ -g)sdxt -(h, 1/Js)s pxt = p -0 -dn dS + P-;; -dS dt.

to Sd n

Sp on

The body force term (f, 1/J )vxt vanishes and does not contribute to Lv.

Two FIELD PRINCIPLES (31)

A two field principle of Reissuer type can be derived from the functional L by enforcing the inverse constitutive equations e = E-10 a priori. The resulting principle, which allows 1/J and a to be varied simultaneously, is l>R( 1/J, a) = 0, where 32) where Rs = Ls and . 1 -1

R( 1/J, a) = Rv +Rs = -!(E-10, a)vxt + (CJ, W'ljJ )vxt -(f , 1/J )vxt + ( CJ s, B'ljJ -g)sdxt -(h, 1/Js)spxt • (
Rv( 1/J, a) = -2(E a, a)vxt + (a, W'ljJ )vxt = f'1 f ( _!_m Tm-P2 2 -mT V � -pV 2 1/J ) dV dt. J to J v 2p 2pc ( 33 
)
The specific momentum disappears as an independent field if we enforce m = p V � a priori, whereupon the functional R becomes a function of 1/J and p only and the volume term contracts to R v ( 'l/J, p) = f L (-!p(V�) T V� -� ::2 -pV21/J) dV dt.

To check R = Rv( 1/J, p) +Rs we form its first variationt {JR= -(pV2ijJ + vz p, tJ'ljJ)vxt-(-;p + V21/J, l>p) + [P a i p +o p ' fJ'ljJJ

pc Vxt on On Sxt [ _ 01/J J [ a 'l/J -J . I t -P -p, l> -0 + - 0 -dn, l>p -(pV'ljJ, fJV'l/J ) v t �• n Spxt n

Sdxt

Setting l> R = 0 provides the field equations, boundary and initial conditions.

t The variation of the kinetic energy integral term may be expressed in two different ways,

6(pV1µT, Vlµ)vxr = (pV2iµ, 6'f/J)vxr-[p 0 0 lP , 6'f/J] + (pV1µ, 6V'f/J)v 1:�, n Sxt 6(pV1µT, Vlµ)vxr = (pV2iµ, 6'f/J)vxr + [p 0 0 1µ , 61µ] -(pV21µ, b'f/J)v 1:�, n SXt (34) ( 35 
)
depending on whether integration by parts is performed first in time or space, respectively. The first form, which provides physically significant initial conditions, is used in constructing equation (35). 

Jsd an Js p an

Let 0 :5 a:::; 1 be the portion of that term to be transformed. Insert p V2'1jJ = ap V21jJ + (1-a)pV21jJ in equation ( 35) and apply the relation ( 36) to CYpV2'1jJ to get

Rtxv = f [L ( !p(V1 p)TV1p -� ::2 + a('V1/J)T'Vp -(1-a)p'V2 1/J) dV J a � J a 1/J J -CY p-dS-a p-dS dt. s d an S p 8n (37)
Finally, replace the Laplacian V21jJ left over in (37) by c-2;p to arrive at the parametrized two-field functionalt

R<X(1/J, p) = R tx v +Rs= f [L (-!p(Vt p)TV1 p -� ::2 + a(V1/J)TVp -(1-CY)�f) dV + ( p[(l -a) a'ljJ -an] dS + f (p -ap) a'ljl ds] dt. ( 38 
)
Js d

an

Sp 8n

The highest spatial derivative index for both primary variables 'ljJ and p is.1, except if a= 0, in which case it is only 0 for p. The finite element interpolation in V may be expressed as

'ljJ (x, t) = N"'(x) lfl (t), p (x, t) = NP(x)p(t), (41) 
wh ere \fl and p are computational column vectors that contain n "' and n P nodal values of 'ljJ and p, respectively, and N"' and NP are corresponding row-vector arrays of dimensionless shape functions. The specified displacement over Sd is interpolated by dn

(x, t) = nTd(x, t) = nTNAx)d, = N�n(x)d, ( 42 
)
where n is the external-normal unit vector on Sd, Nd contains the displacement shape functions of the enclosing container, Ndn are these shape functions projected on the outward normal n on Sd, and d contains nodal displacement values. For now the container displacements will be assumed to be prescribed, hence the superposed tilde.

In the following three Sections, 5-8, we shall assume that the prescribed-pressure 

The integration with respect to time is dropped as it has no effect on the variation process described below.

CONTINUITY REQUIREMENTS

The interelement continuity requirements of the shape functions of 'ljJ and p depend on the index of the highest spatial derivatives that appear in Ro:. If a =f. 0, this index is 1 for both 'ljJ and p and consequently C 0 continuity is required. It is then natural to take the same shape functions for both variables,

with both vectors \fl and p of equal dimension and evaluated at the same nodes. Then some of the matrices in ( 45) coalesce as H=F,

The case a = 0 is exceptional in that no spatial derivatives of p appear. One can then choose c-1 (discontinuous) pressure shape functions; for example, constant over each fluid e lement. If this is d one, obviously (48) because 1jJ must be C 0 continuous. Furthermore, the dimensions of p and \fl will not be generally the same.

SINGULARITY OF H

For later use, we note that matrix H (as well as F if different from H) before the application of any essential boundary conditions at fluid nodes, is singular because He=O,

where e denotes the vector of all ones. This follows from ( 45) and expresses the fact that a constant potential generates no pressures or displacements. p JT -p -1 G p T Td ' where J = (1-a-)V + a-F.

THE FLEXIBLE-CONTAINER EQUATIONS OF MOTION

If the fluid is enclosed in a flexible container, the boundary displacements d are no longer prescribed on Sd but must be incorporated in the problem by including them on the left-hand side of the equations of motion. In the sequel, vector d collects all structural node dis placements, of which d is a subset on Sd. Matrix i, suitably expanded with zeros to make it conform to d, becomes T. We shall only consider here the case in which the container is modeled as a linear undamped structure for which the standard mass/stiffness semidiscrete equation of motion is Md+ Kd = fd +Tp, (53) where Mis the mass matrix, K the tangent stiffness matrix at the reference state, Tp is the pressure force on the structure, and fd is the externally applied force on the structure. Note that K in general must account for container prestress effects through the geometric stiffness. Combining equations ( 52) and ( 53) we get the coupled system

[ ! 0 pH -(1 -a) DT -(l��) D ]{ ! } � T ]{!}={-(l�a) f "' }• -p 1G p 0 (54) If a =0, then [ ! �� fl { ! }+ [ _� �T _;� J { ; } � {-: .} (55)
There is little than can be done beyond this point, as the shape functions for p and tp will be generally different. Although the pressure may be constant over each element, no condensation of p is possible in the dynamic case.

If a= 1, then

[ � p� �]{!} + [ ! : - F T ]{!} = {�}• (56) 0 0 0 p -TT F T -p-1 G p 0
Note that all these systems, ( 54) through ( 56), are symmetric.

IDENTICAL SHAPE FUNCTIONS

Further progress in the case a= 1 can be made if we assume, as discussed in Section 5.2, that the shape functions for p and 'ljJ coincide. Taking then (47) into account, equation ( 56 (59)

UNSYMMETRIC ELIMINATION

If equation ( 58) is used to eliminate the pressure vector from (57) we obtain (60)

Conversely, eliminating the displacement potential vector gives (61)

Unlike previous systems, both ( 60) and ( 61) are unsymmetri c. Thus, the straightfor ward elimination of a field variable, be it p or 1/J, causes symmetry to be lost. These forms will be called unsymmetri c two-field forms, or U2 for short. System (60) reduces to (59) if the container is rigid.

REFORMULATIONS OF THE TRANSIENT RESPONSE EQUATIONS

S3 FORMS

Starting from equations ( 57) and ( 58) it is possible to derive three more symmetric forms that are formally equivalent. One is obtained by differentiating the last matrix equation twice in time, transforming the first equation via ( 58), and finally including (58) premultiplied by p-1G as third matrix equation:

(62

)
Another one is obtained by integrating the first matrix equation of ( 57) twice in time, using ( 58) to eliminate the pressure, and including Kd -Kd = 0 as trivial equation:

[: ; fl{:J + [ -�T �:: -n{�}�rn. (63) where superposed stars denote integration with respect to t. The four symmetric forms, ( 57), ( 62), ( 63) and ( 64), will be called symmetri c three field forms, or S3 forms for short. It should be noted that there is no symmetric S3 form ** with a state vector consisting of d, p and d .

.2. S2 FORMS

Each of the S3 forms has a statically condensable matrix equation that allows one field to be eliminated. For example, the last matrix equation of ( 57) is -TTd + H'Pp-1Gp = 0 which can be solved for the pressure vector p if G is nonsingular. Assuming that all matrix inverses indicated below exist (more will be said about this later), the condensation process yields four two-field symmetric forms:

(65) (66) (67) (68)

These will be called symmetric two-field forms, or S2 forms for brevity. The condensation process reduces the number of degrees of freedom but is detrimental to matrix sparsity. The last property may be recovered to some extent by taking advantage of factored forms of the matrices affected by the inverses; for example

Corresponding expressions for the matrices in ( 66)-( 68) are given by [START_REF] Felippa | Symmetrization of the contained compressible fluid vibration eigen problem[END_REF].

ADVANTAGES AND RESTRICTIONS

The eight symmetric forms (S3 and S2), plus the two unsymmetric forms (U2), represent ten formulations of the Rrbased fluid-structure interaction problem for the identical-shape-function case. Although formally equivalent, they may have different behavior in terms of numerical stability arid computational efficiency. The following items may affect the choice among the various forms.

• Matrix sparseness retention. Matrices G and M are often diagonal. The S2 forms that involve G-1 and M-1, whether in direct or factored form, are (other things being equal) preferable to the others.

• Existence of inverses. If the fluid does not have a free surface, H is singular on account of (49), and consequently (65) does not exist. If the container has some unsuppressed rigid body modes, K is singular and consequently (68) does not exist.

• Applied force processing. Forms ( 63) and ( 67) require that the applied structural forces, fd, be integrated twice in time before being used. Both S2 forms ( 67) and ( 68) require additional matrix-vector operations on the force vectors. These disadvan tages, however, disappear in the free-vibrations case discussed in Section 8.

• Explicit versus implicit time integration. If M and G are diagonal, both unsymmetric forms ( 60) and ( 61) are attractive for explicit time integration because the leftmost coefficient matrices are upper and lower triangular, respectively. Therefore, equa tions may be solved directly in a forward or backward direction without prior factorization. No symmetric form exhibits a similar property.

• Physical limit conditions. Those collected in Table 2 are of interest in the applications. Recommended forms, if applicable, are preferable because of numeri cal stability or suitability for perturbation analysis. Of all conditions listed in Table 2 the incompressible fluid case is of central importance. There must be a free surface S P , else the contained fluid would behave as a rigid body. Consequently H is nonsingular. Setting G = 0 in equation ( 66) we obtain the so-called added mass equations ( 70) The considerations of Section 7.3 apply for the most part to these ten eigensystems. However, matrix symmetry is more important in free vibrations than in the transient response problem. This is because eigensolution extraction methods that take advantage of sparsity are more highly developed for the symmetric eigenproblem than for its unsymmetric counterpart. An up-to-date exposition of those methods is given by [START_REF] Parlett | The Symmetric Eigenvalue Problem[END_REF].

Q)� [ : � : ]{ * �: } = [ -��T -: : -� ]{ * �: } ' 0 0 K Um -K 0 0 Um (76) [ 0 0 -M ]{ Um } [M 0 O ]{ Um } w� 0 pG -pTT �;' = 0 pH 0 �;' . -M -pT -K Um 0 0 0 Um (77)
The presence of zero eigenfrequencies ( wm= 0 roots) may cause serious numerical difficulties in some eigensystem formulations. Two sources of such roots may be distinguished: rigid body structural modes, and the constant-potential mode.

RIGID-BODY STRUCI'URAL MODES

If the container is not fully supported, Kur = 0 for structural rigid body eigenmodes Dr• If His nonsingular eigensystems ( 74)-( 75), their condensed versions ( 78)-( 79), as well as the two U2 eigensystems, preserve such modes. To verify this assertion, substitute (84) into the Rayleigh quotients (A.12) or (A.15) of the eigensystems. If His singular, form (79), which contains u-1, does not exist, whereas (74) preserves the modes if there exist q, modes such that Hq, +Tu, = 0. Eigensystems ( 76)-( 77) and ( 80) do not generally preserve rigid-body modes, whereas (81), which contains K-1, does not exist.

CONSTANT POTENTIAL MODE AND SPECTRUM CONTAMINATION

Suppose the container is supported so K is nonsingular but the enclosed fluid has no pressure-specified surface S P . If so, H is singular because of (49). Both U2 eigensystems then possess an w = 0 root which conventionally will be assigned modal index 0. This root is associated with the following left/right eigenvectors Eigensystem (82): Eigensystem (83): D o= 0, q0 = e, u� = K -1Te, n0 = K-1Te, r0 = e, u� = 0, q�=e, r�= e.

(

) ( 85 
) 86 
This statement is readily verified by taking the Rayleigh quotients (A.12). The eigenpairs (85-86) are collectively called constant potential mode or CPM. The existence and computational implications of this mode have been discussed by [START_REF] Geradin | Eigenvalue analysis and transient response of fluid structure interaction problems[END_REF]. The mathematical interpretation of ( 85) is "dual" to that of a structural rigid-body mode. Under a rigid-body motion the displacements are nonzero but the strains and stresses vanish. Under the CPM the potential is nonzero but fluid displacements and dynamic pressures vanish. But unlike rigid-body modes, the CPM has no physical significance: it is spurious.

According to the eigenfunction theory summarized in the Appendix, all non-CPM modes (um, qm, rm) or ( 82) and ( 83 As regards the symmetric forms, eigensystems ( 74) and ( 78) are adversely affected by the singularity of H and should not be used. This is because substituting the CPM left eigenvector (85) into either one, with rm= 0 for (74), produces a Rayleigh quotient for w of the form 0/0. This means that both coefficient matrices have a common null space (the CPM) and every w is an eigenvalue. Such an eigenproblem is called defective (see Appendix). If one attempts to numerically solve "untreated" defective eigenproblems, nonsensical results can be expected because the whole spectrum is likely to be contaminated.

SLOSH MOTIONS IN A GRAVITY FIELD

A liquid with a free surface in equilibrium in a time-independent acceleration field may exhibit surface waves, informally called "slosh" motions. From an applications standpoint the most important acceleration fields are gravity and rotational motion, the latter being of interest in rotating tanks. In this section we shall be content with formulating slosh effects in a uniform gravity field. More general fields, including time-dependent body forces, may be variationally treated by the method of canonical decomposition of the non-homogeneous wave equation, but that general method will not be followed here as it is not necessary for the gravity case.

The fluid volume Vi s in equilibrium in the reference state discussed in Section 3.1 under the time-invariant body force per unit of volume b = V/3, where f3 is a potential field. As noted above we restrict developments here to a gravity field of strength g uniform in space and time. The boundary S P is then the equilibrium free surface normal to the gravity field. The axes (xv x2, x3) are selected so that g acts along the -x3 = -z axis. Hence, {3 = -pgz + B, where Bis an arbitrary constant. If we chose B so that {3 vanishes at the free surface z = z0, then f3 = -pg(z -z0).

(89)

In the so-called hydrostatic approximation for small-amplitude gravity waves [START_REF] Kinsman | Water Waves[END_REF], sloshing is considered equivalent to a free surface pressure P =ft + pg dn =ft + pg rJ, a1jl

where = dn = -on S P. an

Here ft, as before, denotes the prescribed part of the pressure (for example, atmospheric pressure) and TJ is called the elevation of the liquid with respect to the equilibrium free surface. This approximation assumes that the displacements are infinitesimal and that the z-acceleration of the slosh motion is negligible.

VARIATIONAL PRINCIPLE

For the variational derivation of "slosh equations" it is advantageous to choose the elevation T/ as an independently varied field. This choice simplifies the reduction to surface unknowns as well as the treatment of more complex interface conditions such as capillary effects.

To incorporate slosh effects into the mixed variational principles based on the functionals studied in Section 4, it is convenient to follow a Galerkin technique by adding weighted forms of (88) to their first variation. The following combinations may be considered:

±(pft-pgrJ , o a 1JI ) ± ( a 1Jl _ TJ , op) ' an S P an S p ±(p -ft-pg rJ, op )s p ± (�� -TJ, OTJ ) s, p Of these the first expression, with signs -and +, offers two advantages: (i) it is derivable from a functional, and (ii) it combines naturally with the S P integral in the first variation (35). Of the "base" parametrized functional R"' the most computationally advantageous choice is again a= 1. The expanded functional (40), denoted as R1" in the sequel, is (92) where R1v is the volume integral of (40). Note that setting TJ = 0 restores R1•

FINITE ELEMENT DISCRETIZATION

In addition to the assumptions (41), ( 42) and ( 46) we interpolate 'Y/ as 'Y/ = N11t) on SP, (93) where column vector t) contains n11 fluid elevations at nodes on SP, and row vector N11 contains the corresponding elevation shape functions. The semidiscrete quadratic form for (92), again excluding the time integral, is R i 11 ( '11 , p, tJ) = -!plifTH\if-_!:._ pTGp +pT(H-Qp+)lJl-pT'fT(i+ pgt)T(Q11 +'l'-!Sq)-lJITf11,, The + subscripts in Q11 + and Qp+ convey that the nonzero, "surface" portion of these matrices is augmented with zeros to conform to vectors lJI and p. To display this structure, 'I', p and related matrices are partitioned as

Q11 + = [ Q 'l O], (96) 
where 'l's contains potentials at n11"' nodes of elements connected to SP, and Ps contains n11 pressures on SP. The dimensions of Q11 and QP are n 11 x n11 "'. In general n11 < n11"' (in fact, about one half). Also typically n11 « n "' = n P as the latter pertain to a volume mesh. If 'Y/ is interpolated by the same surface functions asp, i.e. N11 =N P on SP, then

Q 'l =Qp=Q, Q11 + = [ Q O],
(97)

THE RIGID CONTAINER

The following equations of motion for the rigid but mobile container are obtained on rendering (94) stationary:

[pH 0 O J { tP } [ 0 0 0 0 P__ + H -Qp+ 0 0 0 pgt) Q . . + (98) 
Assuming G and S to be nonsingular and identical p and 'fJ shape functions so that equation ( 97) holds, the nodal pressures and elevations may be statically condensed from (98) thus producing the single matrix equation pHtP + (P + R+)'I' = f"' + p(H -Qp+)G -1'fT(i,

where (100)

The rank of R+ and R is the same as that of S, that is, n.,, . For most real liquids, acoustic and slosh motions take place in very different time scales. This is the basis for the common assumption in slosh analysis that the fluid is incompressible, i.e. c-Hx', G� 0 and R � oo. If G� 0 the response of the above system tends is forced to occur in the displacement-potential subspace defined by the second matrix equation of ( 98):

( H ---Qp +) 'I' = Td.

(101)

For simplicity let us assume that the container is not only rigid but motionless, that is,

d = 0. The incompressible-fluid equations become p[ " _; H s v ]{'!'•} + [R O ]{'I'•} = {f"'}, Hsv ffvv 'l'v 0 0 'l'v 0 ( 102 
)
subject to the constraint ( H ---Qp +) 'I' = 0. Subvector 'l'v may be statically condensed from these two relations, which may be combined as the system

[ p H , O ]{ \jls } [ R 0 0 j,"1 + H s -Qs (103) 
where#."' are Lagrangian multipliers (in fact, the pressures at nodes of 'I',), and System ( 106) is the counterpart of (65). If the fluid is treated as incompressible, a subspace reduction procedure similar to that used in Section 9.3 can be invoked.

Q , = [ �].

SLOSH VIBRATIONS

Algebraic eigenproblems to investigate slosh vibrations may be constructed following essentially the same techniques as in Section 8, and reduced to S P node elevations and pressures. We illustrate the reduction technique for the incompressible fluid held in a motionless rigid container. The eigenproblem associated with (103), suppressing the modal index m for simplicity, may be written as

w2[ p H s O ]{q s } = [ � H s -Q T ]{ qs } O 0 r"' H Q 0 r"' (108) 
where qs and r"' are the modal amplitudes of 'l's and ""' ' respectively. The last matrix equation in (98) provides Q'l's = S11, or Qqs = Sz, where z is the vector of modal amplitudes of lJ, i.e. and rs are Lagrange-multiplier modal amplitudes at nodes of lJ. This generalized symmetric eigensystem of order 2n 71 provides n 71 solutions to the slosh eigenproblem. A similar technique may be followed for the flexible container case. This finite element reduction-to-surface technique provides an alternative to boundary integral methods (see [START_REF] Khabazz | Dynamic behavior of liquid in elastic tanks[END_REF][START_REF] Deruntz | Added mass computation by the boundary integral method[END_REF]. (1984), [START_REF] Felippa | Symmetrization of the contained compressible fluid vibration eigen problem[END_REF][START_REF] Felippa | Some aspects of the symmetrization of the contained compressible fluid eigenproblem[END_REF][START_REF] Felippa | Symmetrization of coupled eigenproblems by eigenvector augmentation[END_REF] and [START_REF] Ohayon | Fluid-structure modal analysis. New symmetric continuum-based formula tions. Finite element applications[END_REF] (1988) proposed a functional identical to R 0 in V but with a different Sd boundary term. (As noted in Section 4.5, R 0 supplies only a restricted variational principle.)

The present derivation may be further extended in the following directions: 

  of both sides of equation (2) yields curld t =0.

  fluid [ dn ]s = 0 but c � oo; thus, it would be incorrect to conclude that p0 = f3 -{3. A counterexample to this effect is provided by Ohayon & Felippa

  where e and a denote intermediate field variables in D. The three equations (23) are called the kinematic, constitutive and balance equations, respectively, in mechanical applications. The canonical representation of boundary conditions on the surface S =Su U Sa is (24) where Bs and B1 are surface operators, g and h denote boundary data, and Us= YsU and as= r sa are extensions of u and a to the boundary S. The extension operators Ys and Ds often involve normal derivatives.

B

  'ljl(x, t) = g(x, t) on Sd, B*o(x, t) = h(x, t) on S P , d(x, t0) = do(x) or m(x, t0) = m 0 (x), d(x, t 1 ) = d1(x) or m(x, t1) = m1(x).(28) Here B and B* are time-independent 4 x 1 and 1x4 vectors, respectively, related to the canonical Bs and B; operators of (24) by B = Bsys and B* = s;rs, where Ys (a scalar) and rs (a 4 x 4 matrix) are boundary extension: operators for 1J > and o, respectively. Comparison with (4) and the use of Green's function reveals that BI=-B;=[O 0 0 1], rs=I, h = -p . (29) 4.3. THREE FIELD PRINCIPLE The most general variational principle for the canonical decomposition (26) allows the three fields: 1/J, e, and o, to be varied independently. The principle may be stated as DL( 'ljl, e, o) = 0, where the functional L is (Oden & Reddy, 1983) 

  family of variational principles can be obtained by transforming all or part of the last term in (34), viz. pV2'1jJ, by the divergence theorem (Green's first formula for the Laplace operator) l pV2'1jJ dV + l (V'ljJ )TVp dV = ( p a'lj l dS = ( p a'ljl dS + ( p a'ljl dS. (36) v v Js an

  The two interesting limit cases are of course CY= 0 and CY= 1, for which Ro( 1/J, P ) = f t ' [l (-!p(Vtp)TVt p _ ! p2 2 _ P f) dV 10 v 2 p c c + f p(a'ljl -an) dS + ( p a'lj l ds ] dt, (39) s. an Jsp an R1( 'lj l , p) = L [L (-!p(Vt pfVt p -� ::2 + (V'!jJ fVp) dV -f pdn dS -( (p -p) a 'lj l ds] dt. (40) DISCRETIZATION OF R txIn the following we derive semidiscrete finite-element equations of motion based on the Rtx functional (38). The volume V is subdivided into fluid finite elements. Over each fluid element the state is represented by the primary variables 'ljJ and p, which are defined as functions of position in the usual shape-function interpolation procedure.

  boundary conditions are exactly satisfied by the finite element interpolation, i.e. p == p on SP. If so, the SP integral of Ra: simplifies to ( (1 -a)p o 'ljJ dS, a= 1. Inserting expressions (41) and (42) into the functional (38), with the simplified SP integral (43), yields the semidiscrete quadratic form Ra:(\fl, p) = -�•Tu\jl-_!_ p TGp + a\flTFp + (1 -a) [ lflTVp-tjf Tnp + lp Tf"']-pT T d, (44) 2p where u = L VN�VN"' dV = uT, F = L vN;vN"' dV, D = L c-2N�Np dV, v = L (VnN1/J )TNP dS,

  6. TRANSIENT RESPONSE EQUATIONS6.1. THE RIGID-CONTAINER EQUATIONS OF MOTIONSince Rx contains time derivatives of order up to 2 in \fl, the appropriate Euler Lagrange variational equation is oR = (aR"' _ � oR_"' a2 a�"') o aR°' 6 = a a\fl at a'P + at2 a\fl \fl+ ap P o, which applied to ( 44) yields [pH -.P + a-Fp -(1 -a-)Dp + (1 -a-)Vp + (1 -a-)f" ']6'P = 0, ( -p-1Gp + a-FTtp -(1-a-)DTljf + (1-a-)VTtp -'fTd]6p = 0. These equations can be presented in partitioned matrix form as (50) ( 5 1) [ pH -(1-a-)D]{-.p} + [O J ]{'P} = {-(1_ -_a-)f" '} ( 5 2 ) -(1-a-)D T 0

0

  ) simplifies to [ � p� !]{!} + [ ! : -.. T ]{!} = {�}• (57) The second matrix equation gives pHW +Hp= 0. Since His non-negative definite we must have p=-p•. �� This is the discrete analog of the continuous relation (20) for the dynamic over pressure. For future use note that if the container is rigid, (57) reduces to -p -1Gp +H'I' =G• +H'I' =TTd.

  Finally, differentiating the first matrix equation of (63) twice in time, moving pTTd to the left, and including Md -Md= 0 as trivial equation, we get

  two eigenproblems that correspond to the systems (60) and (61

  ) for m * 0, Wm =I= 0 satisfy the bi-) [� p�T ]{Dm} = eT(TTK-1Mttm + pT TK-1Tqm + Gqm) = 0. (88) qm

  d * 0 the force term in (103) must be appropriately modified. 9.4. THE FLEXIBLE CONTAINER For a flexible container the equations of motion accounting for fluid compressibility are Eliminating 11 and p by static condensation yields where

  lJ = zei w1• Using these relations we can transform the eigen problem (108) tow2[ pg 0 S o]{z } [ c Q T -c ]{ z }

  10. CONCLUDING REMARKS Displacement-potential formulations are of practical interest in fluid-structure transient-response and vibration analysis as they provide the basis for effective numerical computations. Some recent applications are presented by Felippa & DeRuntz (1984), Geers & Ruzicka (1984), Geradin et al. (1984), Morand & Ohayon (1979), Nicolas-Vullierme & Ohayon (1984), Ohayon (1987) and references therein. The preceding treatment unifies a number of previous continuum-based and algebraic statements of the coupled problem given by Morand & Ohayon (1979), Ohayon & Valid

  The inhomogeneous wave equation c V 'ljJ -'ljJ = f, f i= 0, when the body force field b(x, t) is time-dependent and V 2 b i= 0. Additional forcing terms appear in the equations of motion. These are of interest for slosh of fluids in rotating containers and in the seismic analysis of tanks.

  Transient motions are the difference between current and reference states. It

	Quantities
	Displacements
	Velocities
	Boundary displacements*
	Displacement potential Pressures ( + if compressive) Body forces
	Density

* Positive along outward normal

TABLE 1 Notation

 1 

		for fluid states			
	Domain	Original	Reference Current Transient
	v v s v v v v	0 0 0 0 0 0 p	do do do n 'I/lo p o b=Vj:l p	d' d' d� 'I/! ' p ' b=Vf:l p	d=d'-d0 d=d' -d0 dn=d�-d� 'lj! = 'lj! '-'lj! o P = p ' -p o

  . Other potential-based finite element formulations of the coupled problem have been studied by Olson & Bathe (1985) and Liu & Uras (1988). Olson & Bathe used the velocity potential </> = 1jJ, which introduces gyroscopic terms. Liu & Uras

t If a* 1, {JR°'= 0 is a restricted variational principle because the substitution V21jJ = c-2-ijJ holds only at the exact solution.
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where Ma is the added mass of the coupled system, Ma = M + pTH-1TT.

Recommended form(s)

(60), ( 61), ( 62), (66) (57), (65) (64), (68) (64), (68)

(71)

• Preservation of structural rigid body motions. This is discussed in more detail in Section 8.5 in conjunction with the free-vibration eigenproblem. It is sufficient to say that forms ( 63)-( 64) and ( 67)-( 68) do not generally preserve such motions and are inappropriate for treating unsupported structm:es (for example, liquid tanks in orbit).

• Presence of constant potential mode (CPM). This is covered in detail in Section 8.6.

If the fluid is totally enclosed by the container so that there is no free surface, forms ( 57) and ( 65) should not be used.

FREE VIBRATIONS

To obtain the elastoacoustic free-vibrations problem, we make the standard substit utions d = u e irot , 'I' = qeiw t , P = rei"'',

where i = V-1 and w is the circular frequency, into the transient response equations.

Thus we obtain ten algebraic eigenproblems, eight symmetric and two unsymmetric, which are displayed below. General properties of these eigensystems are summarized in the Appendix. In the following eigenproblem statements, subscript m is a mode index. The following eigenvector relations should be noted:

(73)

For the unsymmetric forms given in Section 8.3 one must distinguish between left and right eigenvectors. Superscript L is applied to left eigenvectors wherever necessary; otherwise right eigenvectors are assumed.

S3 FORMS

The four eigenproblems that correspond to the systems (57), ( 62)-( 64) are

APPENDIX A: THE GENERALIZED ALGEBRAIC EIGENPROBLEM Some facts about the algebraic eigenproblem are collected here for co _ nvenient reference. These facts are relevant to the study of the free vibrations of the coupled tlutd-structure system.

A.1. THE STANDARD UNSYMMETRIC EIGENPROBLEM

The standard eigenproblem for a real unsymmetric square matrix A may be stated as Ax;=A;X;, which is the Rayleigh quotient for unsymmetric matrices. Ifµ, = 0 and yi Ax, = 0, (A.4) takes the undetermined form 0/0 so every A., is an eigenvalue. In such a case the eigenproblem (A.1) is said to be defective.

A.2. THE STANDARD SYMMETRIC PROBLEM

If A is symmetric, then x, = y,, µ, = 1 and equation (A.3) reduces to the usual orthogonality

whereas equation (A.4) becomes the usual Rayleigh quotient for a unit length vector:

A., =xi Ax,.

A.3. THE GENERALIZED UNSYMMETRIC EIGENPROBLEM

The generalized unsymmetric eigenproblem is Ax,=A.,Bx,, As in Section A.1, if (A.12) takes on the form 0/0 for some i, every A i is an eigenvalue and the eigenproblem (A.7) is said to be defective ; mathematically, A and B share a common null space.

A defective eigenproblem cannot be solved numerically by conventional root-extraction methods because the 0/0 roots contaminate the entire spectrum. 

A.4. THE GENERALIZED SYMMETRIC EIGENPROBLEM