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MIXED VARIATIONAL FORMULATION OF FINITE
ELEMENT ANALYSIS OF ACOUSTOELASTIC/SLOSH

FLUID-STRUCTURE INTERACTION

C. A. FELIPPA 
Department of Aerospace Engineering and Center for Space Structures and Controls, 

University of Colorado, 
Boulder, CO 80309 U.S.A.

AND 

R. OHAYON 
Office National d'Etudes et de Recherches Aerospatiales, 92322 Chiitillon, France

A general three-field variational principle is obtained for the motion of an acoustic fluid
enclosed in a rigid or flexible container by the method of canonical decomposition applied 
to a modified form of the wave equation in the displacement potential. The general 
principle is specialized to a mixed two-field principle that contains the fluid displacement 
potential and pressure as independent fields. This principle contains a free parameter a. 
Semidiscrete finite-element equations of motion based on this principle are displayed and 
applied to the transient response and free-vibrations of the coupled fluid-structure 
problem. It is shown that a particular setting of a yields a rich set of formulations that can 
be customized to fit physical and computational requirements. The variational principle is 
then extended to handle slosh motions in a uniform gravity field, and used to derived 
semidiscrete equations of motion that account for such effects. 

1. INTRODUCTION

AN ELASTIC CONTAINER (the structure) is totally or partly filled with a compressible liquid 
or gas (the fluid). The fluid structure system is initially in static equilibrium in a steady 
body force field such as gravity or centrifugal forces. We consider small departures 
from equilibrium that result in forced or free vibratory motions. To analyze these 
motions the fluid is treated as a linear acoustic fluid, i.e. compressible but irrotational 
and inviscid. The purpose of the present work is to: 

(i) derive variational equations of motion based on a mixed variational principle for 
the fluid subsystem; and 

(ii) obtain semi-discrete equations of motion following spatial discretization of the 
coupled problem by the finite element method. 

The derivation of the mixed variational principle for the fluid is based on the method of 
canonical equations advocated by Oden & Reddy (1983) for mechanical applications.
The most general dynamical principle derived in this paper contains three primary 
variables: the pressure-momentum vector, the dilatation-velocity vector, and the 
displacement potential. 

The general principle is specialized to a two-field functional of Reissner type that has 
pressure and displacement potential as primary variables, as well as a free coefficient a 
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that parametrizes the application of the divergence theorem. The coupled variational 
equations are discretized by the finite element method, and semidiscrete equations for 
a rigid container established. Linkage with the structure is then made to establish 
coupled semidiscrete equations of motion for a flexible container. By appropriate 
selection of the coefficient a a continuum of finite element formulations results. One 
particular setting yields a rich set of symmetric and unsymmetric formulations for the 
transient and free-vibrations elastoacoustic problems. From this set, selections can be 
made to satisfy various physical and computational criteria. The implications of these 
selections as regards efficiency and numerical stability are discussed. 

The variational formulation is then extended to cover slosh motions in a uniform 
gravity field. It is shown that the surface slosh equations may be incorporated as 
Galerkin terms in several forms, and that one of these forms merges naturally with the 
mixed variational principle to form an augmented functional. Semidiscretization of this 
functional produces finite element equations of motions that may be used for a rigid or 
flexible container. 

2. GOVERNING EQUATIONS 

The three-dimensional volume domain occupied by the fluid is denoted by V. This 
volume is assumed to be simply connected. The fluid boundary S consists generally of 
two portions 

(1) 

Sd is the interface with the container at which the normal displacement dn is prescribed 
(or found as part of the coupled fluid-structure problem), whereas SP is the "free 
surface" at which the pressure p is prescribed (or found as part of the "fluid slosh" 
problem). If the fluid is fully enclosed by the container, as is necessarily the case for a 
gas, then SP is missing and S = Sd. The domain is referred to a Cartesian coordinate 
system (x1, x2, x3) grouped in vector x.

The fluid is under a body force field b which is assumed to be the gradient of a time
independent potential fJ(x), i.e. b = VfJ. All displacements are taken to be infinitesimal 
and thus the fluid density p may be taken as invariant. 

We consider three states or configurations: original, from which displacements, 
pressures and forces are measured; current, where the fluid is in dynamic equilibrium 
at time t; and reference, which is obtained in the static equilibrium limit of slow 
motions. Transient motions are the difference between current and reference states. It 

Quantities 

Displacements 
Velocities 
Boundary displacements* 
Displacement potential 
Pressures ( + if compressive)
Body forces 
Density 

* Positive along outward normal

TABLE 1 
Notation for fluid states 

Domain Original 

v 0 
v 0 
s 0 
v 0 
v 0 
v 0 
v p 

Reference Current Transient 

do d' d=d'-d0 
do d' d=d'-d0 
do n d� dn=d�-d� 'I/lo 'I/!' 'lj!='lj!'-'lj!o 
po p' P =p' -po 

b=Vj:l b=Vf:l 
p p 
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should be noted that In many situations the original configuration is not physically 
attainable. Table 1 summarizes the notation used in relation to these states. 

2.1. FIELD EQUATIONS 

The governing equations of the acoustic fluid are the momentum, state and continuity 
equations. They are stated below for the current configuration, and specialized to the 
reference configuration later. The momentum (balance) equation expresses Newton's 
second law for a fluid particle: 

(2) 

The continuity equation may be combined with the linearized equation of state to 
produce the constitutive equation that expresses the small compressibility of a liquid: 

pt= -KVdt = -pc2Vdt, (3) 

where K is the bulk modulus and c = VKfP the fluid sound speed. If the fluid is
incompressible, K, c � oo. This relation is also applicable to nonlinear elastic fluids
such as gases undergoing small excursions from the reference state, if the constitutive 
equation is linearized there so that K = p0( dp I dp )0• 

The boundary conditions are 

(4) 

where d� is either prescribed or comes from the solution of an auxiliary problem as in
fluid-structure interaction, and p may be either prescribed or a function of dn and b, as
in the surface-wave ("slosh") problem. 

2.2. INTEGRAL ABBREVIATIONS 

In the sequel the following abbreviations for the volume and surface integrals are used: 

(f)v �f {t dV, [g]s �f L g dS, [g]sd �ff g dS, etc.
sd 

(5) 

That is, domain-subscripted parentheses (square brackets) are used to abbreviate 
volume (surface) integrals. Abbreviations for function inner-products are illustrated by 

(f, g)v �f {tg dV,
deffti i

(f, g)vxt = fg dV dt, 
to V [/, g]sdxt �fft1 f fg dS dt, etc.

t0 sd 

3. THE DISPLACEMENT POTENTIAL

3.1. THE REFERENCE STATE 

Taking the curl of both sides of equation (2) yields 

curldt =0. 

The general integral of this equation for a simply connected domain is 

dt=V1jl+a+bt, 

(6) 

(7) 

(8) 
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where 1Jl' = 'ljlt(x, t) is the displacement potential, a= a(x) and b = b(x) are time
independent vector functions, and t denotes the time. If accelerationless motions (for
example, rigid body motions) are precluded by the boundary conditions, then a and b 
vanish. Replacing (it= Vljl' into the momentum equation (2) we get 

Vp' = -pVljlt + V/3, (9) 

which, when spatially integrated, gives 

pt= -pljlt + f3 + C(t), (10)

where the scalar C(t) is not spatially dependent. Next, integrate the constitutive
equation (3) over V and apply the divergence theorem to Vd: 

(p')v + (pc2Vdt)v = (pt)v + [pc2d�]s = 0. (11) 

Inserting pt from (10) into the above equation furnishes a condition on C(t) from which

2 1 2 C(t) = -
pc 

[d�]s + [!__ ( 1jft)v - - (f3)v = -
pc 

[d�]s + pljlt -(3, (12) 
v v v v 

where v = (l)v is the fluid volume and J = (f)vlv denotes the volume average of a 
function f defined over V. Substituting C(t) into (10) we get

2 
p' = -p( ljl' -1j/) + (/3 -/3) -� [d�]s. (13) v 

In the static limit of very slow motions, the inertia terms may be neglected and we 
recover the reference solution 

2 
p0 = (/3 - {3) -� [d�]s· 

v 
(14)

For an incompressible fluid [ dn]s = 0 but c � oo; thus, it would be incorrect to conclude
that p0 = f3 -{3. A counterexample to this effect is provided by Ohayon & Felippa
(1988). 

3.2. TRANSIENT MOTIONS 

Subtracting the constitutive relations at the current and reference states we get 

p = -pc2'il21Jl = pc2s, (15) 

where s = -'il21jJ is called, following Lamb (1945), the condensation. Subtracting 
equation (14) from (13) yields 

.. ....- pc2 
P = -p('ljJ-'ljJ)--[dn]s• (16) 

v 

On equating (15) and (16) we get modified forms of the wave equation that account for 
mean boundary surface motions: 

s = 'il21Jl = 
1jJ � 1{y + _! [dn]s, or c2('il21Jl - 'il21Jl) = 1jJ -1µ.

c v 
(17) 

The second form follows from -vs= [dn]s, which is a consequence of the divergence 
theorem. For an incompressible fluid, c� oo and [dn]s = 0 ,  and from the first of 
equations (17) we recover the Laplace equation V21Jl = O. 
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3.3. ADJUSTING THE DISPLACEMENT POTENTIAL 

If the transient displacement potential is modified by a function of time, 

'ljJ = 1jJ + P(t), (18)

where 1jJ is the potential of equations (8)-(17), we may choose P(t) so that
c2ijJ = V2'1jJ = -s for any t, then we obtain the classical wave equation

c2\12'1jJ = ijJ, or (:t:- c2v2)w = 0. (19) 

In the sequel it is assumed that this adjustment has been made. If so, C(t) vanishes and 
equation (16) reduces to 

p=-p'ljJ. (20) 

4. MIXED VARIATIONAL PRINCIPLES

4.1. CANONICAL DECOMPOSITION 

In this section we derive multifield variational principles for the fluid domain following 
the canonical decomposition method advocated by Oden & Reddy (1983). This method
is applicable to self-adjoint boundary value problems (BVP) of the form 

Au=f in D, (21) 
where u is the unknown function, f the data, A a symmetric linear operator, and D the 
domain of existence of the solution. For time-dependent problems D is the tensor 
product of the time domain (typically 0 to t) and the volume V. To apply this method, 
the operator A is factored as 

Au= W*EWu = f, (22) 

where W and E are linear operators in V and W* is the adjoint of W. This is called a 
canonical decomposition. This decomposition may be represented as the operator 
composition sequence 

Wu=e, Ee=a, W*a=f, (23) 

where e and a denote intermediate field variables in D. The three equations (23) are
called the kinematic, constitutive and balance equations, respectively, in mechanical 
applications. The canonical representation of boundary conditions on the surface 
S =Su U Sa is

(24) 

where Bs and B1 are surface operators, g and h denote boundary data, and Us= YsU
and as= r sa are extensions of u and a to the boundary S. The extension operators Ys
and Ds often involve normal derivatives. 

4.2. THE WAVE EQUATION 

The classical wave equation (19) is not a good basis for the canonical decomposition 
(22). Its principal drawback is that the pressure field does not appear naturally as an 
intermediate variable in equations (23). A better form for our purposes is obtained by 
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taking the Laplacian of both sides of (19), and multiplying through by the density p: 
pV2( 1jJ - c2V21/J) = 0, whence A= pv2(:;2 - c2v2), f =O. (25) 

A suitable canonical decomposition is A= W*EW, where 

iV-[ a ] 
W= _:; ' E=p [� �l W* = 

[-iV�v2] =-WTat ' (26) 

in which i = v=I. Boldface symbols are used for W and E because these are 4 x 1 and
4 x 4 matrices, respectively. The operator product sequence (23) becomes 

[ iV'!jJ J [iv]
e = W'ljJ = -V21/J = s ' 0 _Ee_ 

[ ipV-rjJ ]- [im]- - -pc2V21/J - p '
W*o = pV21jJ - pc2V41/J = 0. (27)

The intermediate fields e and o are 4 x 1 column vectors. These vectors are partitioned
into their temporal and spatial derivative subvectors for convenience in subsequent 
manipulations. Note that the transient pressure p appears naturally as the spatial
component of o. The temporal components of e and o are the complex velocity iv and
complex specific momentum im, respectively.

The boundary portions Su and Sa of equations (24) are relabeled Sd and SP, 
respectively, to match the notation (1). Boundary and initial conditions may be stated 
as 

B'ljl(x, t) = g(x, t) on Sd, B*o(x, t) = h(x, t) on SP, 
d(x, t 0) = do(x) or m(x, t 0) = m0(x), d(x, t1) = d1(x) or m(x, t1) = m1(x). (28)

Here B and B* are time-independent 4 x 1 and 1x4 vectors, respectively, related to 
the canonical Bs and B; operators of (24) by B = Bsys and B* = s;rs, where Ys (a 
scalar) and rs (a 4 x 4 matrix) are boundary extension: operators for 1J> and o, 
respectively. Comparison with (4) and the use of Green's function reveals that 

BI=-B;=[O 0 0 1], rs=I, h = -p . (29) 

4.3. THREE FIELD PRINCIPLE 

The most general variational principle for the canonical decomposition (26) allows the 
three fields: 1/J, e, and o, to be varied independently. The principle may be stated as
DL( 'ljl, e, o) = 0, where the functional L is (Oden & Reddy, 1983)

L(u, r, o) = Lv +Ls= !(Ee, e)vxt+ (o, W'ljl -v)vxt-(f, 1J>)vxt

+ (Os, B'ljl - g)sdxt - (h, 1J>shPxt> (30)
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where Lv and Ls collect volume and surface terms, respectively. On inserting 
equations (27-29) into (30) we get 

Lv =!(Ee, e)vxt +(a, W'ljJ - e)vxt

= f'1 f [!p(-vT v+c2s2)-mT (V�-v)-p(V21jJ+s)]dVdt, J,o Jv 

- 1'1 [f (01/J - ) f -
01/J J Ls - (as, B'ljJ -g)sdxt - (h, 1/Js)spxt = p -0 - dn dS + P-;;- dS dt.

to Sd n Sp on 
The body force term (f, 1/J )vxt vanishes and does not contribute to Lv. 

4.4. Two FIELD PRINCIPLES 

(31) 

A two field principle of Reissuer type can be derived from the functional L by
enforcing the inverse constitutive equations e = E-10 a priori. The resulting principle,
which allows 1/J and a to be varied simultaneously, is l>R( 1/J, a) = 0, where

R( 1/J, a) = Rv +Rs = -!(E-10, a)vxt + (CJ, W'ljJ )vxt - (f, 1/J )vxt 

+ ( CJs, B'ljJ - g)sdxt - (h, 1/Js)spxt· (32)

where Rs = Ls and 
. 

1 -1 Rv( 1/J, a) = -2(E a, a)vxt + (a, W'ljJ )vxt

= f'1 f (_!_mTm- P2 
2 -mTV� -pV21/J) dV dt.Jto Jv 2p 2pc (33) 

The specific momentum disappears as an independent field if we enforce m = p V � 
a priori, whereupon the functional R becomes a function of 1/J and p only and the
volume term contracts to 

Rv('l/J, p) = f L (-!p(V�)TV� -� ::2 -pV21/J) dV dt.
To check R = Rv( 1/J, p) +Rs we form its first variationt

{JR= -(pV2ijJ + vzp, tJ'ljJ)vxt- (-;p + V21/J, l>p) + [P aip +op' fJ'ljJJpc Vxt on On Sxt 

[ _ 01/JJ [a'l/J - J . 
It - P -p, l>-0 + -0 -dn,  l>p - (pV'ljJ, fJV'l/J)v t�·n Spxt n Sdxt 

Setting l>R = 0 provides the field equations, boundary and initial conditions.

t The variation of the kinetic energy integral term may be expressed in two different ways, 

6(pV1µT, Vlµ)vxr = (pV2iµ, 6'f/J)vxr- [p 0
0
lP, 6'f/J] + (pV1µ, 6V'f/J)v 1:�, n Sxt 

6(pV1µT, Vlµ)vxr = (pV2iµ, 6'f/J)vxr + [p 0
0
1µ , 61µ] - (pV21µ, b'f/J)v 1:�,n SXt 

(34) 

(35) 

depending on whether integration by parts is performed first in time or space, respectively. The first form, 
which provides physically significant initial conditions, is used in constructing equation (35). 
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4.5. PARAMETRIZATION 

A one parameter family of variational principles can be obtained by transforming all or
part of the last term in (34), viz. pV2'1jJ, by the divergence theorem (Green's first
formula for the Laplace operator) 

l pV2'1jJ dV + l (V'ljJ)TVp dV = ( p a'ljl dS = ( p a'ljl dS + ( p a'ljl dS. (36)v v Js an Jsd an Jsp an 
Let 0 :5 a:::; 1 be the portion of that term to be transformed. Insert p V2'1jJ = ap V21jJ +
(1- a)pV21jJ in equation (35) and apply the relation (36) to CYpV2'1jJ to get

Rtxv = f [L ( !p(V1p)TV1p - � ::2 + a('V1/J)T'Vp - (1- a)p'V2 1/J) dV

J a� J a1/J J - CY p- dS- a p- dS dt.sd an Sp 8n (37) 

Finally, replace the Laplacian V21jJ left over in (37) by c-2;p to arrive at the
parametrized two-field functionalt 

R<X(1/J, p) = Rtxv +Rs= f [L (-!p(Vtp)TV1p - � ::2 + a(V1/J)TVp - (1- CY)�f) dV

+ ( p[(l - a) a'ljJ -an] dS + f (p - ap) a'ljl ds] dt. (38)Jsd an Sp 8n 
The highest spatial derivative index for both primary variables 'ljJ and p is.1, except ifa= 0, in which case it is only 0 for p. The two interesting limit cases are of course
CY= 0 and CY= 1, for which

Ro( 1/J, P) = ft' [l (-!p(Vtp)TVtp _ ! p22 _Pf) dV
10 v 2pc c 

+ f p(a'ljl -an) dS + ( p a'ljl ds] dt, (39) s. an Jsp an 
R1( 'ljl, p) = L [L (-!p(VtpfVtp - � ::2 + (V'!jJfVp) dV

-f pdn dS - ( (p - p) a'ljl ds] dt. (40) sd Jsp on 

5. FINITE ELEMENT DISCRETIZATION

5.1. DISCRETIZATION OF Rtx
In the following we derive semidiscrete finite-element equations of motion based on 
the Rtx functional (38). The volume V is subdivided into fluid finite elements. Over
each fluid element the state is represented by the primary variables 'ljJ and p, which are
defined as functions of position in the usual shape-function interpolation procedure. 

t If a* 1, {JR°'= 0 is a restricted variational principle because the substitution V21jJ = c-2-ijJ holds only at 
the exact solution. 

8



The finite element interpolation in V may be expressed as 

'ljJ(x, t) = N"'(x)lfl(t), p (x, t) = NP(x)p(t), (41)

where \fl and p are computational column vectors that contain n"' and nP nodal values
of 'ljJ and p, respectively, and N"' and NP are corresponding row-vector arrays of
dimensionless shape functions. The specified displacement over Sd is interpolated by 

dn(x, t) = nTd(x, t) = nTNAx)d, = N�n(x)d, (42) 

where n is the external-normal unit vector on Sd , Nd contains the displacement shape
functions of the enclosing container, Ndn are these shape functions projected on the
outward normal n on Sd , and d contains nodal displacement values. For now the
container displacements will be assumed to be prescribed, hence the superposed tilde. 

In the following three Sections, 5-8, we shall assume that the prescribed-pressure 
boundary conditions are exactly satisfied by the finite element interpolation, i.e. p == p 
on SP. If so, the SP integral of Ra: simplifies to 

( (1 -a)p
o'ljJ 

dS,Jsp an 
(43) 

which vanishes for a= 1. Inserting expressions (41) and (42) into the functional (38),
with the simplified SP integral (43), yields the semidiscrete quadratic form 

Ra:(\fl, p) 
= -�•Tu\jl-

_!_
pTGp + a\flTFp + (1 - a)[lflTVp- tjfTnp + lpTf"']-pTTd, (44)

2p 

where 

u = L VN�VN"' dV = uT, F = L vN;vN"' dV,

D = L c-2N�Np dV, v = L (V nN1/J)TNP dS, (45) 

The integration with respect to time is dropped as it has no effect on the variation 
process described below. 

5.2. CONTINUITY REQUIREMENTS 

The interelement continuity requirements of the shape functions of 'ljJ and p depend on
the index of the highest spatial derivatives that appear in Ro:. If a =f. 0, this index is 1 
for both 'ljJ and p and consequently C0 continuity is required. It is then natural to take
the same shape functions for both variables, 

(46) 

with both vectors \fl and p of equal dimension and evaluated at the same nodes. Then
some of the matrices in ( 45) coalesce as 

H=F, (47) 

The case a = 0 is exceptional in that no spatial derivatives of p appear. One can then
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choose c-1 (discontinuous) pressure shape functions; for example, constant over each 

fluid e lement. If this is done, obviously 

(48) 

because 1jJ must be C0 continuous. Furthermore, the dimensions of p and \fl will not be
generally the same. 

5.3. SINGULARITY OF H 
For later use, we note that matrix H (as well as F if different from H) before the
application of any essential boundary conditions at fluid nodes, is singular because 

He=O, (49) 

where e denotes the vector of all ones. This follows from ( 45) and expresses the fact
that a constant potential generates no pressures or displacements. 

6. TRANSIENT RESPONSE EQUATIONS

6.1. THE RIGID-CONTAINER EQUATIONS OF MOTION

Since Rx contains time derivatives of order up to 2 in \fl, the appropriate Euler
Lagrange variational equation is 

oR = (aR"' _ � oR_"' a2 a�"')o aR°' 6 = 
a a\fl at a'P + at2 a\fl \fl+ ap P o, 

which applied to ( 44) yields 

[pH-.P + a-Fp - (1 -a-)Dp + (1 -a-)Vp + (1 -a-)f"']6'P = 0,

(-p-1Gp + a-FTtp - (1- a-)DTljf + (1-a-)VTtp -'fTd]6p = 0.

These equations can be presented in partitioned matrix form as 

(50) 

(51) 

[ pH -(1-a-)D]{-.p}+[O J ]{'P}={-(1_-_a-)f"'} (52)-(1-a-)DT 0 p JT -p-1G p TTd ' 
where J = (1-a-)V + a-F. 

6.2. THE FLEXIBLE-CONTAINER EQUATIONS OF MOTION 

If the fluid is enclosed in a flexible container, the boundary displacements d are no 
longer prescribed on Sd but must be incorporated in the problem by including them on
the left-hand side of the equations of motion. In the sequel, vector d collects all
structural node displacements, of which dis a subset on Sd. Matrix i, suitably expanded
with zeros to make it conform to d, becomes T. We shall only consider here the case in
which the container is modeled as a linear undamped structure for which the standard
mass/stiffness semidiscrete equation of motion is 

Md+ Kd=fd +Tp, (53) 

where Mis the mass matrix, K the tangent stiffness matrix at the reference state, Tp is
the pressure force on the structure, and fd is the externally applied force on the
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structure. Note that K in general must account for container prestress effects through the
geometric stiffness. Combining equations (52) and (53) we get the coupled system [! 0 

pH 
-(1 - a)DT -(l��)D ]{!}

�
T ]{!}={-(l�a)f"'}· 

-p 1G p 0 
(54) 

If a =0, then [! �� fl{!}+ [ _� �T _;�J{;} �{-:.} (55) 

There is little than can be done beyond this point, as the shape functions for p and tp 
will be generally different. Although the pressure may be constant over each element, 
no condensation of p is possible in the dynamic case. 

If a= 1, then [� p� �]{!} + [ ! : -
F
T ]{!} = {�}· (56) 

0 0 0 p -TT FT -p-1G p 0 

Note that all these systems, (54) through (56), are symmetric. 

6.3. IDENTICAL SHAPE FUNCTIONS 

Further progress in the case a= 1 can be made if we assume, as discussed in Section
5.2, that the shape functions for p and 'ljJ coincide. Taking then (47) into account,
equation (56) simplifies to [� p� !]{!} + [ ! : -..

T ]{!} = {�}· (57) 
0 0 0 p -TT H -p-1G p 0 

The second matrix equation gives pHW +Hp= 0. Since His non-negative definite we 
must have 

p=-p•. ��
This is the discrete analog of the continuous relation (20) for the dynamic over
pressure. For future use note that if the container is rigid, (57) reduces to 

-p-1Gp +H'I' =G• +H'I' =TTd. (59) 

6.4. UNSYMMETRIC ELIMINATION 

If equation (58) is used to eliminate the pressure vector from (57) we obtain

(60)
11



Conversely, eliminating the displacement potential vector gives 

(61) 

Unlike previous systems, both (60) and (61) are unsymmetric. Thus, the straightfor
ward elimination of a field variable, be it p or 1/J, causes symmetry to be lost. These
forms will be called unsymmetric two-field forms, or U2 for short. System (60) reduces
to (59) if the container is rigid. 

7. REFORMULATIONS OF THE TRANSIENT RESPONSE EQUATIONS

7.1. S3 FORMS 

Starting from equations (57) and (58) it is possible to derive three more symmetric 
forms that are formally equivalent. One is obtained by differentiating the last matrix 
equation twice in time, transforming the first equation via (58), and finally including 
(58) premultiplied by p-1G as third matrix equation: 

(62) 

Another one is obtained by integrating the first matrix equation of (57) twice in time, 
using (58) to eliminate the pressure, and including Kd - Kd = 0 as trivial equation: 

[: ; fl{:J+[-�T �:: -n{�}�rn. (63) 

where superposed stars denote integration with respect to t. Finally, differentiating the
first matrix equation of (63) twice in time, moving pTTd to the left, and including 
Md - Md= 0 as trivial equation, we get 

[_� 0 
pG 
-pT 

(64) 

The four symmetric forms, (57), (62), (63) and (64), will be called symmetric three field 
forms, or S3 forms for short. It should be noted that there is no symmetric S3 form ** 
with a state vector consisting of d, p and d . 

7 .2. S2 FORMS 

Each of the S3 forms has a statically condensable matrix equation that allows one field 
to be eliminated. For example, the last matrix equation of (57) is -TTd + H'P -p-1Gp = 0 which can be solved for the pressure vector p if G is nonsingular. Assuming 
that all matrix inverses indicated below exist (more will be said about this later), the
condensation process yields four two-field symmetric forms: 

(65) 
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(66) 

(67) 

(68) 

These will be called symmetric two-field forms, or S2 forms for brevity. The 
condensation process reduces the number of degrees of freedom but is detrimental to 
matrix sparsity. The last property may be recovered to some extent by taking 
advantage of factored forms of the matrices affected by the inverses; for example 

Corresponding expressions for the matrices in (66)-(68) are given by Felippa (1985). 

7.3. ADVANTAGES AND RESTRICTIONS 

The eight symmetric forms (S3 and S2), plus the two unsymmetric forms (U2), 
represent ten formulations of the Rrbased fluid-structure interaction problem for the 
identical-shape-function case. Although formally equivalent, they may have different 
behavior in terms of numerical stability arid computational efficiency. The following 
items may affect the choice among the various forms. 

• Matrix sparseness retention. Matrices G and M are often diagonal. The S2 forms that
involve G-1 and M-1, whether in direct or factored form, are (other things being
equal) preferable to the others.

• Existence of inverses. If the fluid does not have a free surface, H is singular on
account of (49), and consequently (65) does not exist. If the container has some
unsuppressed rigid body modes, K is singular and consequently (68) does not exist.

• Applied force processing. Forms (63) and (67) require that the applied structural
forces, fd, be integrated twice in time before being used. Both S2 forms (67) and (68)
require additional matrix-vector operations on the force vectors. These disadvan
tages, however, disappear in the free-vibrations case discussed in Section 8.

• Explicit versus implicit time integration. If  M and G are diagonal, both unsymmetric
forms (60) and (61) are attractive for explicit time integration because the leftmost
coefficient matrices are upper and lower triangular, respectively. Therefore, equa
tions may be solved directly in a forward or backward direction without prior
factorization. No symmetric form exhibits a similar property.

• Physical limit conditions. Those collected in Table 2 are of interest in the
applications. Recommended forms, if applicable, are preferable because of numeri
cal stability or suitability for perturbation analysis. Of all conditions listed in Table 2
the incompressible fluid case is of central importance. There must be a free surface
SP, else the contained fluid would behave as a rigid body. Consequently H is
nonsingular. Setting G = 0 in equation (66) we obtain the so-called added mass
equations

(70) 

13



Limit condition 

Incompressible fluid ( c � oo)
Cavitating fluid (c�O) 
Stiff container 
Hyperlight container 

 TABLE 2 

Limit conditions 

Matrix 
expression 

G�o 
G�oo 
K�oo 
M�o 

where Ma is the added mass of the coupled system,

Ma = M + pTH-1TT.

Recommended 
form(s)

(60), (61), (62), (66) 
(57), (65) 
(64), (68) 
(64), (68) 

(71) 

• Preservation of structural rigid body motions. This is discussed in more detail in
Section 8.5 in conjunction with the free-vibration eigenproblem. It is sufficient to say 
that forms (63)-(64) and (67)-(68) do not generally preserve such motions and are 
inappropriate for treating unsupported structm:es (for example, liquid tanks in 
orbit).

• Presence of constant potential mode (CPM). This is covered in detail in Section 8.6.
If the fluid is totally enclosed by the container so that there is no free surface, forms 
(57) and (65) should not be used. 

8. FREE VIBRATIONS

To obtain the elastoacoustic free-vibrations problem, we make the standard 
substitutions 

d = ueirot, 'I' = qeiwt, P = rei"'', fd = 0, (72) 

where i = V-1 and w is the circular frequency, into the transient response equations.
Thus we obtain ten algebraic eigenproblems, eight symmetric and two unsymmetric, 
which are displayed below. General properties of these eigensystems are summarized 
in the Appendix. In the following eigenproblem statements, subscript m is a mode 
index. The following eigenvector relations should be noted: 

(73) 

For the unsymmetric forms given in Section 8.3 one must distinguish between left and 
right eigenvectors. Superscript L is applied to left eigenvectors wherever necessary;
otherwise right eigenvectors are assumed. 

8.1. S3 FORMS 

The four eigenproblems that correspond to the systems (57), (62)-(64) are 

(74) 

(75) 
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Q)�[: � :]{*�:} = [-��T -:: -�]{*�: }'
0 0 K Um -K 0 0 Um (76) [ 0 0 -M ]{Um} [M 0 O]{Um}w� 0 pG -pTT �;' = 0 pH 0 �;' .
-M -pT -K Um 0 0 0 Um (77) 

8.2. S2 FORMS 

(78) 

(79) 

(80) 

(81) 

8.3. U2 FORMS 

Finally, the two eigenproblems that correspond to the systems (60) and (61) are

(82) 

(83) 

8.4. COMPUTATIONAL CONSIDERATIONS 

The considerations of Section 7.3 apply for the most part to these ten eigensystems. 
However, matrix symmetry is more important in free vibrations than in the transient 
response problem. This is because eigensolution extraction methods that take 
advantage of sparsity are more highly developed for the symmetric eigenproblem than 
for its unsymmetric counterpart. An up-to-date exposition of those methods is given by 
Parlett (1980). 

The presence of zero eigenfrequencies ( wm = 0 roots) may cause serious numerical 
difficulties in some eigensystem formulations. Two sources of such roots may be 
distinguished: rigid body structural modes, and the constant-potential mode. 

8.5 RIGID-BODY STRUCI'URAL MODES 

If the container is not fully supported, Kur = 0 for structural rigid body eigenmodes Dr· 
If His nonsingular eigensystems (74)-(75), their condensed versions (78)-(79), as well 
as the two U2 eigensystems, preserve such modes. To verify this assertion, substitute 

(84) 
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into the Rayleigh quotients (A.12) or (A.15) of the eigensystems. If His singular, form 
(79), which contains u-1, does not exist, whereas (74) preserves the modes if there
exist q, modes such that Hq, +Tu, = 0. Eigensystems (76)-(77) and (80) do not
generally preserve rigid-body modes, whereas (81), which contains K-1, does not exist. 

8.6. CONSTANT POTENTIAL MODE AND SPECTRUM CONTAMINATION 

Suppose the container is supported so K is nonsingular but the enclosed fluid has no
pressure-specified surface SP. If so, H is singular because of (49). Both U2
eigensystems then possess an w = 0 root which conventionally will be assigned modal
index 0. This root is associated with the following left/right eigenvectors 

Eigensystem (82): 

Eigensystem (83): 
Do= 0, q0 = e, u� = K-1Te, 
n0 = K-1Te, r0 = e, u� = 0,

q�=e, 
r�= e. 

(85) 

(86) 

This statement is readily verified by taking the Rayleigh quotients (A.12). The 
eigenpairs (85-86) are collectively called constant potential mode or CPM. The 
existence and computational implications of this mode have been discussed by Geradin 
et al. (1984). The mathematical interpretation of (85) is "dual" to that of a structural 
rigid-body mode. Under a rigid-body motion the displacements are nonzero but the 
strains and stresses vanish. Under the CPM the potential is nonzero but fluid 
displacements and dynamic pressures vanish. But unlike rigid-body modes, the CPM 
has no physical significance: it is spurious. 

According to the eigenfunction theory summarized in the Appendix, all non-CPM 
modes (um, qm, rm) or (82) and (83) for m * 0, Wm =I= 0 satisfy the bi-orthogonality
conditions 

(0 eT)[p
�
T 

�Jt:}=eT(pTTum+Grm)=O, (87) 

(eTTK-1 eT)[� p�T]{Dm} = eT(TTK-1Mttm + pTTK-1Tqm + Gqm) = 0. (88) qm 
As regards the symmetric forms, eigensystems (74) and (78) are adversely affected by 
the singularity of H and should not be used. This is because substituting the CPM left 
eigenvector (85) into either one, with rm= 0 for (74), produces a Rayleigh quotient for
w of the form 0/0. This means that both coefficient matrices have a common null space
(the CPM) and every w is an eigenvalue. Such an eigenproblem is called defective (see
Appendix). If one attempts to numerically solve "untreated" defective eigenproblems, 
nonsensical results can be expected because the whole spectrum is likely to be 
contaminated. 

9. SLOSH MOTIONS IN A GRAVITY FIELD

A liquid with a free surface in equilibrium in a time-independent acceleration field may 
exhibit surface waves, informally called "slosh" motions. From an applications 
standpoint the most important acceleration fields are gravity and rotational motion, the 
latter being of interest in rotating tanks. In this section we shall be content with 
formulating slosh effects in a uniform gravity field. More general fields, including 
time-dependent body forces, may be variationally treated by the method of canonical 
decomposition of the non-homogeneous wave equation, but that general method will 
not be followed here as it is not necessary for the gravity case. 
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The fluid volume V is in equilibrium in the reference state discussed in Section 3.1 
under the time-invariant body force per unit of volume b = V/3, where f3 is a potential
field. As noted above we restrict developments here to a gravity field of strength g 
uniform in space and time. The boundary SP is then the equilibrium free surface normal
to the gravity field. The axes (xv x2, x3) are selected so that g acts along the -x3 = -z 
axis. Hence, {3 = -pgz + B, where Bis an arbitrary constant. If we chose B so that {3 
vanishes at the free surface z = z0, then

f3 = -pg(z -z0). (89) 

In the so-called hydrostatic approximation for small-amplitude gravity waves (Kinsman, 
1965), sloshing is considered equivalent to a free surface pressure 

P =ft + pgdn =ft+ pgrJ,
a1jl 

where TJ = dn = - on SP.an (90) 

Here ft, as before, denotes the prescribed part of the pressure (for example, 
atmospheric pressure) and TJ is called the elevation of the liquid with respect to the
equilibrium free surface. This approximation assumes that the displacements are 
infinitesimal and that the z-acceleration of the slosh motion is negligible. 

9.1. VARIATIONAL PRINCIPLE 

For the variational derivation of "slosh equations" it is advantageous to choose the 
elevation T/ as an independently varied field. This choice simplifies the reduction to
surface unknowns as well as the treatment of more complex interface conditions such 
as capillary effects. 

To incorporate slosh effects into the mixed variational principles based on the 
functionals studied in Section 4, it is convenient to follow a Galerkin technique by 
adding weighted forms of (88) to their first variation. The following combinations may 
be considered: 

±(p-ft-pgrJ, o
a1JI) ± (a1Jl _TJ, op) ' 
an SP an Sp 

±(p -ft- pgrJ, op )sp ± (�� - TJ, OTJ) s, p 

Of these the first expression, with signs - and +, offers two advantages: (i) it is 
derivable from a functional, and (ii) it combines naturally with the SP integral in the
first variation (35). Of the "base" parametrized functional R"' the most computationally 
advantageous choice is again a =  1. The expanded functional (40), denoted as R1" in
the sequel, is 

(92) 

where R1v is the volume integral of (40). Note that setting TJ = 0 restores R1•
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9.2. FINITE ELEMENT DISCRETIZATION 

In addition to the assumptions (41), (42) and (46) we interpolate 'Y/ as

'Y/ = N11t) on SP, (93) 

where column vector t) contains n11 fluid elevations at nodes on SP, and row vector N11 
contains the corresponding elevation shape functions. The semidiscrete quadratic form 
for (92), again excluding the time integral, is 

Ri11('11, p, tJ)
= -!plifTH\if-

_!:._
pTGp +pT(H-Qp+)lJl-pT'fT(i+ pgt)T(Q11+'l'- !Sq)-lJITf11,, (94)

2p 

where 

Q1j+ = L N!VN"' dS, 
Sp 

S=L NTN dS=ST '1 '1 ' Sp 

Qp+ = J. N;vN"' ds, 
Sp 

f.p= L VN�p.
SP 

(95) 

The + subscripts in Q11+ and Qp+ convey that the nonzero, "surface" portion of these
matrices is augmented with zeros to conform to vectors lJI and p. To display this
structure, 'I', p and related matrices are partitioned as 

Q11+= [Q'l O],

(96) 

where 'l's contains potentials at n11"' nodes of elements connected to SP, and Ps contains
n11 pressures on SP. The dimensions of Q11 and QP are n 11 x n11"'. In general n11 < n11"' (in
fact, about one half). Also typically n11 « n"' = nP as the latter pertain to a volume
mesh. If 'Y/ is interpolated by the same surface functions asp, i.e. N11 =NP on SP, then 

Q'l =Qp=Q, Q11+ = [Q O], (97) 

9.3. THE RIGID CONTAINER 

The following equations of motion for the rigid but mobile container are obtained on 
rendering (94) stationary: [ pH 0 OJ{ tP } [ 0 

0 0 0 P__ + H - Qp+ 
0 0 0 pgt) Q .. + 

(98) 

Assuming G and S to be nonsingular and identical p and 'fJ shape functions so that
equation (97) holds, the nodal pressures and elevations may be statically condensed 
from (98) thus producing the single matrix equation 

pHtP + (P + R+)'I' = f"' + p(H - Qp+)G-1'fT(i, (99) 
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where 

(100) 

The rank of R+ and R is the same as that of S, that is, n.,,. For most real liquids,
acoustic and slosh motions take place in very different time scales. This is the basis for 
the common assumption in slosh analysis that the fluid is incompressible, i.e. c-Hx', 
G� 0 and R � oo. If G� 0 the response of the above system tends is forced to occur in
the displacement-potential subspace defined by the second matrix equation of (98): 

(H ---Qp+)'I' = Td. (101) 

For simplicity let us assume that the container is not only rigid but motionless, that is, 
d = 0. The incompressible-fluid equations become

p["
_; Hsv ]{'!'•} + [R O]{'I'•} = {f"'}, Hsv ffvv 'l'v 0 0 'l'v 0 (102)

subject to the constraint (H ---Qp+)'I' = 0. Subvector 'l'v may be statically condensed
from these two relations, which may be combined as the system 

[pH, O]{\jls} [ R
0 0 j,"1 + Hs-Qs (103) 

where#."' are Lagrangian multipliers (in fact, the pressures at nodes of 'I',), and 

Q, = [�]. (104) 

If d * 0 the force term in (103) must be appropriately modified.

9.4. THE FLEXIBLE CONTAINER 

For a flexible container the equations of motion accounting for fluid compressibility are 

Eliminating 11 and p by static condensation yields

where 

+]{; }={�}·-s pg1] 0 
(105) 

(106) 

(107) 

System (106) is the counterpart of (65). If the fluid is treated as incompressible, a 
subspace reduction procedure similar to that used in Section 9.3 can be invoked. 
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9.5. SLOSH VIBRATIONS 

Algebraic eigenproblems to investigate slosh vibrations may be constructed following 
essentially the same techniques as in Section 8, and reduced to SP node elevations and 
pressures. We illustrate the reduction technique for the incompressible fluid held in a 
motionless rigid container. The eigenproblem associated with (103), suppressing the 
modal index m for simplicity, may be written as

w2[pHs O]{qs} = [ � Hs -QT]{qs} 
O 0 r"' H Q 0 r"' (108) 

where qs and r"' are the modal amplitudes of 'l's and ""' ' respectively. The last matrix
equation in (98) provides Q'l's = S11, or Qqs = Sz, where z is the vector of modal
amplitudes of lJ, i.e. lJ = zeiw1• Using these relations we can transform the eigen
problem (108) to 

w2[pg0S o]{ z} [ c QT -c]{ z}0 rs 
= Q - c 0 rs ' (109) 

in which 
(110) 

and rs are Lagrange-multiplier modal amplitudes at nodes of lJ. This generalized
symmetric eigensystem of order 2n71 provides n71 solutions to the slosh eigenproblem. A
similar technique may be followed for the flexible container case. This finite element 
reduction-to-surface technique provides an alternative to boundary integral methods 
(see Khabazz, 1970; DeRuntz & Geers, 1978).

10. CONCLUDING REMARKS

Displacement-potential formulations are of practical interest in fluid-structure 
transient-response and vibration analysis as they provide the basis for effective 
numerical computations. Some recent applications are presented by Felippa & DeRuntz
(1984), Geers & Ruzicka (1984), Geradin et al. (1984), Morand & Ohayon (1979),
Nicolas-Vullierme & Ohayon (1984), Ohayon (1987) and references therein. The
preceding treatment unifies a number of previous continuum-based and algebraic 
statements of the coupled problem given by Morand & Ohayon (1979), Ohayon & 
Valid (1984), Felippa (1985, 1986, 1988) and Ohayon (1987). Other potential-based 
finite element formulations of the coupled problem have been studied by Olson &
Bathe (1985) and Liu & Uras (1988). Olson & Bathe used the velocity potential </> = 1jJ,
which introduces gyroscopic terms. Liu & Uras (1988) proposed a functional identical
to R0 in V but with a different Sd boundary term. (As noted in Section 4.5, R0 supplies
only a restricted variational principle.) 

The present derivation may be further extended in the following directions: 
2 2 .. 

(1) The inhomogeneous wave equation c V 'ljJ - 'ljJ = f, f i= 0 ,  when the body force
field b(x, t) is time-dependent and V2b i= 0. Additional forcing terms appear in the
equations of motion. These are of interest for slosh of fluids in rotating containers 
and in the seismic analysis of tanks. 

20



(2) Retaining the specific momentum m as independent field in functional (33).
(3) Inclusion of additional physical effects: capillarity, cavitation and viscosity. 
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APPENDIX A: THE GENERALIZED ALGEBRAIC EIGENPROBLEM 

Some facts about the algebraic eigenproblem are collected here for co
_
nvenient reference. These 

facts are relevant to the study of the free vibrations of the coupled tlutd-structure system. 

A.1. THE STANDARD UNSYMMETRIC EIGENPROBLEM 

The standard eigenproblem for a real unsymmetric square matrix A may be stated as 

Ax;=A;X;, (A.1) 

where A., are the eigenvalues (which may be complex), and x, the corresponding right
eigenvectors normalized to unit length. The eigenproblem for the transposed matrix is 

(A.2) 

This problem has the same eigenvalues but in general the eigenvectors y, will be different. The y, 
are called left eigenvectors of A because they satisfy the problem yi A= A.,y,; this in turn explains
the qualifier 'right' applied to x,. The system of left and right eigenvectors of A satisfies
bi-orthogonality relations: 

yix; = {o 
µ, 

if U=j, 

ifi=j. 
(A.3) 

Thisµ, is called the �ondition number of A., with respect to the eigenproblem (A.1); it is always
less or equal than 1 m absolute value, and may be zero in pathological cases. (The closer to l, 
the better conditioned A., is.)

Premultiplying (A.1) by y, and assuming thatµ, =fo 0 yields

(A.4) 

which is the Rayleigh quotient for unsymmetric matrices. Ifµ, = 0 and yi Ax, = 0, (A.4) takes the
undetermined form 0/0 so every A., is an eigenvalue. In such a case the eigenproblem (A.1) is
said to be defective. 

A.2. THE STANDARD SYMMETRIC PROBLEM 

If A is symmetric, then x, = y,, µ, = 1 and equation (A.3) reduces to the usual orthogonality
condition 

if i * j,
if i = j. 

whereas equation (A.4) becomes the usual Rayleigh quotient for a unit length vector: 

A., =xi Ax,. 

A.3. THE GENERALIZED UNSYMMETRIC EIGENPROBLEM 

The generalized unsymmetric eigenproblem is 

Ax,=A.,Bx,, 

(A.5) 

(A.6) 

(A.7) 

where A and B are unsymmetric real matrices. Assuming that 0-1 exists, this problem can be
reduced to the standard problem 

(A.8) 

in which C = e-1A. The transposed problem is

CTz, = ATB-Tz, = A.,z,. (A.9) 
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Defining BTyi = zi, this eigenproblem can be transformed to

A TYi = AiBTYi· 
The bi-orthogonality conditions (A.3) become 

T TB TBT {o zi xi = Yi xi = xi Yi = µi
The Rayleigh quotient (A.4) generalizes to 

A. = y;Ax, = y"[Ax,
' y"[Bxi µi 

if i =I= j, 
if i = j. 

(A.10) 

(A.11) 

(A.12) 

As in Section A.1, if (A.12) takes on the form 0/0 for some i, every Ai is an eigenvalue and the
eigenproblem (A.7) is said to be defective ; mathematically, A and B share a common null space.
A defective eigenproblem cannot be solved numerically by conventional root-extraction methods 
because the 0/0 roots contaminate the entire spectrum. 

A.4. THE GENERALIZED SYMMETRIC EIGENPROBLEM 

If both A and B are symmetric, 

xi = yi, 
and we recover the usual orthonormality conditions 

if i =l=-j, 
if i = j. 

(A.13) 

(A.14) 

In mechanical vibration problems for which B is the mass matrix, µ; is called the generalized
mass. Finally, (A.12) reduces to the usual Rayleigh quotient 

A- = x"[Ax; 
' x"[Bx; · (A.15) 
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