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INTRODUCTION

One challenge for the ophthalmologists is the know ledge and the surveillance, by a noninvasive method, of the intraocular pressure (IOP) (less than 20 mmHg for a healthy subject up to 60 mmHg and more for a diseased subject). In most cases, the increase of the IOP is due to a draining failure of the aqueous humor (Fig. 1), which is produced by the ciliary body and drained through the scleral trabeculum in Schlemm's canal. The glaucoma resulting from this IOP elevation is mainly characterized by an atrophy of the optical nerve, leading to a deficit of the visual field. A continu ous monitoring of IOP, on a 24 h basis or over several days appears as an invaluable technique for the early screening of the disease.

The clinical measurement of the IOP is usually done by using an aplanation tonometer, which determines the force (for a given surface) necessary to flatten the cornea anterior face (first anaesthetized) and equilib rate the IOP. A complete analysis of tonometry pro cedures with a finite element model of the corneos scleral shell, has been presented by [START_REF] Kobayashi | Mechanics and analysis of tonometry procedure by finite element modeling of the co--¬eo-scleral shell[END_REF].

Inspired by other studies on the influence of lung vascular hypertension on the human acoustic respirat ory impedance [START_REF] Depeursinge | Respiratory system impedance in patients with acute left ventricular --ilure: pathophysiol ogy and clinical interest[END_REF], we have investigated both experimentally and theoretically the relationship between the IOP and the eye resonance frequencies, derived from the measure of the mechan ical admittance of the eye (physical effect of the vibrating string). One aim of the study has been to evaluate the feasibility of a monitoring technique of IOP based on the measurement of the vibration modes of the eye. We present in this paper the results of the numerical calculation of the resonance frequen cies.

The mechanical model is based on an analysis of the prestress effects on the elastodynamic behavior of the system. It requires, at the beginning of the analysis, the consideration of the large deformations of the system, e.g. [START_REF] Marsden | Mathematical Foundations of Elasticity[END_REF], [START_REF] Duvaut | Inequalities in Mechanics and in Physics[END_REF], and the numerical results from a modal ana lysis, e.g. [START_REF] Meirovitch | Computational Methods in Structural Dynamics[END_REF], of the vibrations of the eye using a finite element method, e.g. [START_REF] Zienkiewicz | The Finite Element Method (3rd edn)[END_REF]. The eye is schematically considered first as a thick and second �s a thin prestressed shell filled by an inviscid barotropic compressible fluid. The thick shell obeys the Euler-Bernouilli equations and the thin shell obeys Naghdi's equations [START_REF] Naghdi | On the theory of thin elastic shell[END_REF]. The transi ent and modal analyses of the fluid-structure interaction problems have been the subject of many investigations, e.g. [START_REF] Belytschko | A fluid-structure finite element method for the analysis of reactor safety problems[END_REF]. Several variational formulations have been considered to describe the fluid-structure coupling. The structure is always described by its displacement field u. These variational formulations differ from each other by the type of variables chosen to describe the fluid behavior, i.e. the pressure p [START_REF] Craggs | The transient response of a coupled plate-acoustic system using plate and acoustic finite ele ments[END_REF], the displacement potential q, [START_REF] Nefske | Structural acoustic finite element analysis of the automobile passen ger compartment[END_REF], both combined, i.e. (u, p, t/J) formulation [START_REF] Ohayon | True symmetric variational formulation for fluid-structure interaction in bounded media[END_REF], the velocity potential [START_REF] Everstine | A symmetrical potential formulation for fluid-structure interactions[END_REF], or the displace ment [START_REF] Hamdi | A displace ment method for the analysis of vibrations of coupled fluid-structure systems[END_REF]. In this study, we retain the (u, p, <P) formulation for several reasons, the most important one being its symmetric property, conveni ent for the numerical solution by a finite element method.

As far as we know, we present in this paper one of the first works on a numerical ntodel of the dynamical behavior of human eye, where the fluid-structure coupling, the initial stress state of the shell, and the material nonlinearities of the shell are taken into account. In the first section, a summary of the formula tion of the fluid-structure mass-coupling is presented. The second section describes a biomechanical applica tion to the human eye.

MECHANICAL AND NUMERICAL MODELING

N onlinear continuum mechanics summary

The considered system consists of a linear elastic body of revolution containing an inviscid barotropic compressible fluid.

At an instant t, the system is assumed to be in a natural configuration C. The deformation and stress characterizing the structure, are measured with re spect to this natural configuration. We define a Car tesian system of axes [O, X(X 1, X 2, X 3 )] attached to C. At t 0 > t, the system is supposed to be in a static prestressed equilibrium c 0 (Fig. 2). The prestressed state of the system (due to the pressure pin the fluid) generates an initial second Piola-Kirchhoff stress tensor S0 in the structure. We assume that the gravity effect is negligible in comparison to the prestress effect and a fortiori to the stiffness effect. The c 0 prestressed configuration will be chosen as the reference config uration. For each t>t 0 , the system will take a new configuration et close to C0 (small oscillations of the system around its prestressed equilibrium state C0). The corresponding domain and boundaries are de noted by n�. n}, and n.

The position vectors r (rJ of the material points constituting the medium in Ct depend on their initial coordinates R (R1) and on the time t (R and t are the Lagrangian variables): r=r (R, t).

(1) For all t, there is a one to one correspondence between r and R from c 0 to et. The relationship r (R, t) and its inverse R (r, t) are supposed to be continuous, and continuously differentiable as needed.

Denoting by u the displacement vector of a figura tive particle of the structure (and by v the correspond ing one for the fluid), we have r = R + u.

To describe the strain-stress state of an elementary volume either of the fluid or of the structure in Ct, the symmetric, objective Green strain tensor E and the second Pio la-Kirchhoff stress tensor S are considered. We suppose that both materials of the solid and the fluid phase are hyperelastic, i.e. we assume the exist ence of an elastic potential density U from which the material stress S derives:

au S=-. oE (2)
The constitutive law for the structure is taken as Kirchhoff-St. Venant's law (an objective version of Hooke's law):

S=Hr(E)1+2µE, where ). and µ are the Lame parameter.

The constitutive law for the inviscid fluid relates the Cauchy stress a to the Eulerian pressure p by the relationship a= -pl. Knowing the relation between the second Piola-Kirchhoff stress S and the Cauchy stress a (e.g. [START_REF] Marsden | Mathematical Foundations of Elasticity[END_REF] we obtain for the fluid S= -J pc-1, where C = 2E +I is the right Cauchy Green tensor, and J is the Jacobian determinant of the trans formation r [J = det(or/oR)].

Designating the volumic mass by p0 and p t, the volume by v0 and V t of the material media in the configurations C0 and et, respectively, the conserva tion of the mass imposes: m= j dµ= f podVo= f p t dV t= f p' J dVo, Fig. 2. Fluid-structure domain in C0 configuration: O� is the solid domain delimited by its boundaries n and q, and nr the fluid domain with boundary q which constitutes the fluid-structure interface. n is the part of n by which the structure is fixed. n° is the outward normal to r�.

where we have used the relationship dV' =J dV0, hence p0 = J p'. d µ is the differential element of mass.

Variational formulation of the large deformation problem

First, the variation of the strain energy density U is oU=SoE. For the fluid, we have oUr=sr oEr = -1/2 J p C-1 oC, since oJ/oC= 1/2 JC-1 [START_REF] Marsden | Mathematical Foundations of Elasticity[END_REF] the previous expression of our can be rewritten as our=p oJ. The principle of virtual work, equivalent to the equations of motion, allows us to describe the dynamical behavior of the system. The following equations hold for the structure and the fluid where v is the displacement of the fluid: i p� ii•oudQ�+ f S, :oE, dQ? n?

Jn � r p n'•ou dn = O V OuEK, (4) Jr ;

+ r pn ' •ov dn = O V OVEK, (5) Jr ;

where K denotes the class of the kinematically admis sible displacements. Adding these variational equations yields the varia tional formulation of a fluid-structure interaction problem provided that oun = ovn. The corresponding terms vanish by expressing the equality of the normal displacements at the interface between the fluid and the structure.

Linearization

In order to simplify the previous problem, stress, strain, displacement, etc., are supposed to stay close to their equilibrium values during the oscillation of the system around its equilibrium state C0• We define this fluctuation by comparison with the equilibrium posi tion, considering that all the fluctuations of the quant ities as well as their successive derivatives, stay small, of the order of real parameter '1 � 0, with '1 � 1 and '1=0 when the system is in its equilibrium state c0.

Linearization (e.g. [START_REF] Marsden | Mathematical Foundations of Elasticity[END_REF] con sists of introducing an asymptotical development of the various quantities (stress, strain, displacements, etc.) to the first order in '1 in the variational formula tion, and then neglecting the terms of an order super ior to one, while the terms of order zero describe the system at equilibrium. So, if D0 denotes a quantity in c0 and D its instantaneous value, we have D=D0+1715,

where J5 is the fluctuation of D.

Finally, the linearized variational formulation of equation ( 4) for the structure with the surface term written in C0, is -f p ou • n° dn -p0 f ((I: Vii)n° • ou J q J q -((Vu)Tn°)ou)dn=o v oueK, (6) where w is the circular frequency of the fluid-structure system.

For the fluid, we use an alternative form of the principle of virtual work [equation ( 5)], namely a mixed variational principle involving two independ ent fields (v, p ), called the Hellinger-Reissner principle (e.g. [START_REF] Marsden | Mathematical Foundations of Elasticity[END_REF] which is retained as a convenient approach:

f Vpc5vd'2?-f c5p V•vd'2? Jor Jor v oveK, ( 7 
)
where c is the velocity of sound in the fluid.

Taking into account the equations at the static equilibrium, we also have the equivalent local equa tions of motion of the system; V•S+V• (ViiS0)+p?w2ii=O in '2?, -=U'ftO (1975) have proposed a variational symmetric (u, p, </>} mass-coupling formulation. Then this formulation has been improved by taking into account the prestress terms due to the initial stress S and the initial pressure p0 [START_REF] Morand | Internal pressure effects on the vibration of a partially filled elastic tanks[END_REF]. Starting from Hamilton's principle and using equation (7), we can obtain directly the (u, p, </>) formulation including the prestress terms [START_REF] Coquart | Modelisation mecanique et numerique des vibrations de systemes couples fluide-structure, applica tion a un systeme biomecanique precontraint: l'Oeil[END_REF]. Finally, the varia tional problem to solve is stated as follows:

Find the triplet (ii, p, </>) belonging to the product space H = Vx L2 (n?) x H1( 0?) and verifying the variational equations ( (S+ VuS0):<5Vii d!l?-p?w2 ( ii• oii dO? Jn� Jn�

-((Vii)rn°)oiidf�=O v biie v, (18) 
w

: ( bp<f>dQ?+-h ( p bp dO ?=O c Jnf pee Jn? V OpeL2('2?), ( 19 
)
-p?m2 { V<f>•Vb<f>dU?=O V b</>e H1(Q?), Jn ?

(20)

where H1 (O?) is the Sobolev space of order one defined on Qf, L2(Q?) is the space of the square integrable cvnctions on O?, and Vis a subspace of (H1 (0?))3 defined as follows:

V={we(H1(Q?))3 I w=O on q}.

A complete proof of the existence and uniqueness of a solution to this spectral problem in elastoacoustics is presented by [START_REF] Boujot | Un probleme spectral en elasto-acoustique[END_REF].

In equations ( 18)-( 20), all the contributions which are independent of m2 are called stiffness terms, while those which are dependent on w2 are called mass terms. The initial stiffness terms are given by terms depending on the initial stress in the structure s 0 and on the initial pressure p in the fluid. The term p 0 (1: Vii)n° describes the surface increase of the inter face f�, and the term p0(Vii)TnO describes the rotation of the normal n° to r�. The term involving S0 is due to the nonlinear term of the Green strain tensor E. As we can see, the coupling terms between the fluid and the structure (u, </> coupling) are mass contributions. An alternative formulation (a stiffness-coupling formula tion) which has not yet been investigated in the present research has been given by [START_REF] Ohayon | Alternative variational formulations for static and modal analysis of structures containing fluid[END_REF].

Remark: incompressible fluid

The particular case of an incompressible fluid cor responds to an infinite value of c and to p0= 0 in equations ( 18)-( 20); thus, equation (19) disappears.

Numerical modeling

The FEM is well suited for solving numerically the previous variational problem. In a first step, a dis cretization of the fluid-structure domain into finite elements interconnected by nodes is performed. In a second step, we interpolate the unknown parameters u, p, </> by using basis functions depending on nodal values. It leads to a symmetric positive definite (or semi-definite) matrix eigenvalue problem which can be solved by standard eigenvalue algorithms. In the present work, the subspace iteration method [START_REF] Bathe | Finite Element Processing in Engineering Analysis[END_REF] is retained. All the obtained discretized bilinear forms which involve the structure and fluid contribu tions and the prestress terms have been implemented in a basis code (TACT} developed by [START_REF] Curnier | TACT: a contact analysis program[END_REF]. The stiffness, mass and prestress global matrices lead to the following symmetric eigenproblem associated with the (u, p, <f>) mass-coupling formulation with u•, p", </>•as nodal unknowns:

( [ l ) [ fr[ i] ' '211 \
where K0 and Kp are the geometric stiffness due to the initial stress s0 and the initial pressure p0, whereas [CJ is the coupling fluid-structure matrix. The third equa tion gives a relation between the nodal unknowns which is used to eliminate the fluid nodal unknown </>" and to reduce the size of the eigenproblem. For performing this elimination numerically we use the static condensation algorithm [START_REF] Wilson | The static condensation algorithm[END_REF]. In the case of axisymmetric vibrations (n = 0), the rank of [M L ] is N -1, provided that the dimension of the fluid mass matrix, [ML], is N. This is due to the fact that V </> is defined within a constant. So, for m nodal fluid unknowns </>", we can only eliminate m -1 unknowns.

To calculate the initial stress terms S0 for each element, the static problem of the empty structure submitted to the internal pressure p 0 has been solved. Finally, the eigenproblem [equation ( 21)) is solved in its reduced form by the subspace iteration method.

We point out that the prestress stiffness terms, directly related to the internal pressure p 0 , will obvi ously influence the spectral content of the fluid-structure system.

Remark: concerning the incompressible fluid

The eigenproblem to solve is further reduced to

([Kc+ K0]-w2[Mc+ CM L 1 CTJ) {u"} = {O}, (22)
where the only contribution of the fluid is the added mass term [CM L" 1 CT].

APPLICATION TO THE HUMAN EYE

Human eye model

To take into account a nonsymmetrical loading of the system which is of revolution, the displacements in cylindrical coordinates (r, 8, z) are developed into Fourier series of the circumferential angle 8, with the index n [START_REF] Leissa | Vibration of Shells[END_REF]:

ro ii= L c. cos(n8) + u. sin(n8).
n=O Because of the orthogonality of the functions cos(n8) and sin(n8), for each index n, we have one eigenprob lem [equations (18-20)] to solve.

For the numerical modeling, we keep only the cos(n8) term for u, and u,, and the sin(n8) term for u8, in order to simplify and to conserve the symmetry of the linearized strain tensor. The fluid unknowns jj and </> are also developed into Fourier series, conserving only the terms in cos(n8). The development into Fourier series of the unknowns ii, jj, <f>, injected into the variational formulation [equations (18-20)] gives rise to orthogonal terms in cos(n8) cos(q8) (and sinus), which are zero for n.,;eq and equal to 1 for n=q. We have an eigenproblem not coupled in index n. Thus, for each integer range of n=O to oo, we obtain one eigenproblem to solve, with its own spectrum of eigenmodes m.

For the mechanical and numerical modeling of the eye, we use the (u, p, </>) mass-coupling formulation discretized by finite elements. We consider the human eye as a flexible shell, prestressed by IOP, constituted by two linear elastic isotropic materials (cornea and sclera) and filled by a perfect liquid interacting with the shell through their common surface. The eye geometry used in this work is identical to the one proposed by [START_REF] Kobayashi | Mechanics and analysis of tonometry procedure by finite element modeling of the co--¬eo-scleral shell[END_REF]. The material con stants of the corneoscleral shell are taken from Woo et al. (1972b): corneal Young's modulus Ee= 5.4 x 105 Pa, scleral Young's modulus E,=2.7 x 106 Pa.

The shell is first considered as thick, obeying to the Euler-Bernouilli equations. Then it will be considered as a thin shell obeying Naghdi's equations [START_REF] Naghdi | On the theory of thin elastic shell[END_REF]. In both cases the material is incompressible, i.e. with Poisson's coefficient v=0.49. Numerically, to account for the incompressibility constraint, we use a selective reduced integration method (e.g. [START_REF] Hughes | The Finite Element Method, Linear Static and Dynamic Analysis[END_REF]. The fluid will be taken as similar to water, with a volumical mass p= 10 3 kg m-3 , and a sound speed c= 1500 ms-1• A nonlinear model of the corneoscleral shell has also been developed in this work. It is based on the expression proposed by Woo et al. (1972a). A similar numerical treatment has been performed. This mater ial nonlinearity is described by the following relation:

cre=A(e•'°-1), where ere and ee are, respectively, the effective stress and the effective strain defined as follows (in principal axis): ee = t j( e 1 -1: 2 )2 +(e 2 -e3 ) 2 + ( e 3 -e 1 )2' CTe=J j(cr1 -CT 2 )2+(cr2-CT3)2+(cr3-CT1)2.

For the cornea, A= 5.4 x 10 3 Pa, a= 28.0 and for the sclera, A= 1.8 x 104 Pa, a=41.8. The computation procedures of both cases, linear and nonlinear, are presented in the Appendix.

In order to take into account the two experimental situations corresponding to the case of an enucleated and living eye, two human eye attachment models are considered, differing by the orbital constraints (see Fig. 3):

-in vitro attachment corresponds to the situation of the eye deposited on a measuring bench for in vitro measurements, the attachement is made at a single point on the back of the eye, where it is rigidly fixed (no displacement of this point is permitted). This situation is the simplest, and can be experimentally realized by suspending the eye to a syringe for the control of IOP.

-in viva attachment corresponds more closely to the physiological situation: to account for the orbital constraints, we impose that the nodes belonging to the external surface inside the orbit have only a tangential displacement (the normal displacement is zero). In our software, this constraint is imposed by the penalty method (e.g. [START_REF] Hughes | The Finite Element Method, Linear Static and Dynamic Analysis[END_REF]. The contact is modeled by 24 contact elements (3 nodes).

Preliminary considerations

A first numerical test (Table 1) shows that the fluid modes are not coupled to those of the structure. Indeed, the eigenfrequencies of the fluid and the structure do not overlap. Those of the fluid are approximately 100 times higher than those of the structure. This result allows us to consider that the fluid is incompressible.

A second numerical test concerning the influence of the prestress on the ocular frequencies (Table 1) is presented for a thin and a thick shell filled with an incompressible liquid (water). For the first modem= 1, the frequencies in both cases, thin and thick, are comparable. For the upper modes (m=2, 3, 4, 5) the frequencies of the thin shell are 1.6-2 times greater than those of the thick shell. The prestress effect is also more important on the thin shell than on the thick shell. It seems that corneoscleral shell is closer to a thick shell than to a thin shell. The ratio between the thickness and the radius of curvature of the corneo scleral shell is approximately 1/10, which is a relatively high value to enter into the frame of the theory of the thin shell. In this work, only numerical results for the thick shell are presented.

Numerical results

The vibrational modes of the eye attached at a single point on the back side (in vitro attachment, Fig. 3) are presented in Fig. 4. They have been com puted under the hypothesis of a thick shell. The five lowest frequency modes (m = 1, 2, 3, 4, 5) are given for the first three circumferential indices n=O, 1, 2. The frequency of the lowest indices mode (n=O, m= 1) is 34.0 Hz (linear model) for an initial pressure of 10 mmHg [Fig. 4(a)]. This is an axisymmetric longit udinal mode excited by the application of a coaxial force on the cornea. Among all axisymmetric modes, it has the lowest resonance frequency. The frequency increases rapidly to more than 410 Hz for higher index indices modes (n = 0, 1, 2, m = 2, 3, 4, 5).

Considering the circumferential index n = 1 [Fig. 4(b)], the displacement is not axisymmetric any more. The axis of symmetry can move; in translation, along the r-axis and in rotation of the axis, perpendi cular to the axis of symmetry. A consequence of this fact is that two rigid-body modes (zero energy, zero frequency) exist for the vibrational modes of a struc ture of revolution: a translation mode and a rotation mode of the axis perpendicular to the axis of sym metry. A geometrical description of the shape of the eigenmodes of a cylinder, for different values of the circumferential index n (0, 1, 2, ... ), is given by Leissa (1973). For the in vitro attachment of the eye (Fig. 3), the constraints imposed on the displacements only permit the rigid-rotation body mode. In our calcu lations, the resonance frequency corresponding to this mode, is not exactly zero but has the lowest resonance frequency 17.6 Hz for an initial pressure of 10 mmHg. Its corresponding eigenvector (mode shape) represents a rigid-rotation body mode, but with a nonzero frequency. This can be simply explained [START_REF] Morand | Internal pressure effects on the vibration of a partially filled elastic tanks[END_REF] by the fact that the work done by the initial pressure forces (dead loads 'frozen' in direction and in magnitude) during a movement of rotation, is neglected in our numerical model. This term affects only the rigid-rotation body mode without perturbing the upper modes. For a zero internal initial pressure, this rigid-rotation body mode is rigourously a mode of zero energy and its corresponding frequency is obvi ously zero.

For the other modes with n= 1, the resonance frequency values range from 175.8 to 294.6 Hz, and overlap the values in the case n=O, for the modes m = 2, 3, 4. Figure 4(c) describes the typical shell defor- mations corresponding to the circumferential index n = 2. The axis of symmetry stays at the same place, but the modes are not axisymmetric. The modes m= 1, 2, 3, 4, 5 have frequencies ranging from 147.0 to 417.0 Hz, which are significantly higher than the mo des with lower circumferential indices. The resonance frequencies have been reported in Table 2 for each mode compatible with the in vitro attachment (Fig. 3). Computed values are given for the linear (L) and nonlinear (NL) model of deformation. For comparison, resonance frequencies are given at different prestress states corresponding to initial inter nal pressures (IOP) of 0, 10, 40 mmHg.

The deformation of the eye shell, obtained for the in vivo attachment (Fig. 3), is presented in Fig. 5(aHc), respectively, for the circumferential indices n=O, 1, 2. The resonance frequencies computed for an IOP of 10 or 40 mmHg are significantly higher than for the in vitro attachment and range from 226.2 to 989.5 Hz in the linear case for 10 mmHg, except for the rigid rotation body mode (n= 1, m= 1).

The comments of Fig. 4 hold for Fig. 5. Table 3 summarizes the values of the frequencies computed for a linear (L) and nonlinear (NL) model at an IOP of 10 and 40 mmHg. In Fig. 5, we observe the effects of the restrictions imposed to the displacements of the shell: the normal displacements inside the ocular socket are zero. For the circumferential index value n = 1, no rigid-rotation body mode can be found anymore, since it is not permitted by the constraints on the displace ments. The particular case of the zero pressure eye shell without prestress is not studied because it does not correspond to any physiological situation.

The dependence of the resonance frequencies on the IOP for each model is illustrated in Fig. 6. Predictions given by the linear model (dotted lines) can be com pared to those of the nonlinear model. These diagrams show that the frequency dependence on IOP is mark edly increased by nonlinear effects. To quantify this frequency dependence reported in Fig. 7 circumferential indices n=O, 1, 2 and modes m = 1, 2, 3, 4, 5, we have defined a quantity called resolu tion which is the slope of the line describing the relation between pressure and frequency. The relative sensitivity of the resonance frequency to IOP defined by the frequency shift, respectively, between an IOP of 10 and 40 mmHg, divided by the frequency at 20 mmHg for the in vitro attachment, and between an IOP of 10 and 40 mmHg, divided by the frequency at 25 mmHg for the in vivo attachment, is given in Fig. 7(b) for the circumferential indices n=O, 1, 2 and modes m= 1, 2, 3, 4, 5. The relative sensitivity of the resonance frequency to IOP is quite independent of the mode number, except for the low indices mode: the sensitivity of the lowest index mode n = 0, m = 1 is about half that of higher modes. On the contrary, the sensitivity of the rigid-rotation body mode (n = 1, m = 1, in vitro attachment) appears deceptively import ant and we must admit that it is prone to dramatic calculation errors. A good stability of the sensitivity becomes apparent from the calculation and should make the indirect estimation of IOP from the fre quency shift less prone to errors.

DISCUSSION

To our knowledge, very few theoretical and experi mental works have been published on the problem of eye vibrations; the comparison of the predictions of the numerical model developed in this paper with results from other groups is not yet possible. The feasibility of the realization of a vibration tonometer was established more than 30 years ago [START_REF] Hargens | Tonometry chal lenge for electronics[END_REF][START_REF] Roth | Acoustic probe for intra ocular pressure measurement[END_REF]Dyster-Aas and Krakau, 1962;[START_REF] Keiper | The vibration tonometry I. Principles and design[END_REF][START_REF] Sarin | The vibration tonometer II. Clinical tests[END_REF]. However, the measurements were performed at fixed frequency and aimed to compare the mechanical impedance with standard applanation tonometry. These results cannot be used for a straightforward comparison with out predictions. The frequency de pendence of the mechanical impedance of the eyeball has not been established precisely to our knowledge. Detailed measurements are in progress in our laborat ory and will be published later. Preliminary results have been obtained concerning the frequency depend ence of the experimental mechanical admittance of enucleated pig's eyes [START_REF] Coquart | Modelisation mecanique et numerique des vibrations de systemes couples fluide-structure, applica tion a un systeme biomecanique precontraint: l'Oeil[END_REF]. A narrow reson-ance peak well localized at low frequency (around 15 Hz) can be observed. The viscosity of the internal liquid contributes to flatten the resonance peak (ex perimentally narrow), but has no influence on the resonance frequency. This consideration justifies the hypothesis of an inviscid internal liquid in our model. In this work, the human eye is modeled by a (non)Jinear elastic shell of revolution filled by an incompressible inviscid liquid. The calculation of the vibration modes has been performed under the hypo thesis of small deformations and small displacements around the prestressed configuration. In fact, the corneoscleral shell is filled by two liquids: the vitreous (viscous as egg white) and the aqueous humor (�water) separated by the lens. These materials are incompressible and both have an approximate vol umic mass close to that of water. The liquid (water) just brings an added mass term considering its incom pressibility in our numerical model, and both liquid media can be assimilated to a single medium. The presence, inside the eye, of the optical lens with different mechanical properties has not been con sidered in the numerical calculations. It is not ex pected, however, to play an important role at low resonance frequencies.

One of the basic hypotheses of this model is the prestressed state of the eye. Regarding the viscoelastic properties of the corneoscleral shell, [START_REF] Kobayashi | Vi--²oelastic properties of human cornea[END_REF] have shown that they can be neglected for a pressurized eye. These experiments were done at very low frequency. The visoelastic properties of the ocular shell are not taken into account in the present model. The resonance frequencies of the eye are low for the first modes, so the viscoelastic properties of the shell do not seem to play an important role on the reson ance frequencies either.

Two models have been considered for the attach ment of the eye: they correspond to the extreme situations, which can be met under the experimental conditions. In vitro attachment corresponds to a com pletely free eye, which is fixed only at a single point on the back, whereas in vivo attachment corresponds to the case where the eye can move inside the periorbital (1981) in his FEM model of the eye deformation.

Reality is somewhere between in vitro and in vivo attachment and the predictions of the model con cerning the resonance frequencies must be considered as indicative values of the possible outcome of the experimental investigations.

The nonlinear properties of the corneoscleral shell first accentuate its rigidity, and tend to increase the apparent stiffness of the shell, and consequently, its resonance frequencies and second, they contribute favorably to increase the sensitivity of the resonance frequency to the IOP.

Calculations show that the ocular resonance fre quencies and the resolution are higher for in vivo attachment (Fig. 3) than for in vitro attachment. So, the in vivo configuration, which is the configuration of interest for ophthalmologists, is more favorable to watch the evolution of the ocular resonance frequen cies, and to deduce IOP's evolution, than in the in vitro one. The resolution (0.47 and 1.61 Hz per mmHg for the first mode and 1.73 and 4.31 Hz/mmHg for the second mode, respectively, for the linear and nonlinear cases) increases with the mode number for the axisym metric modes (n = 0, m = 1, 2, 3, 4, 5). This could sug gest that a detection of 1 mmHg variation or less will be easier if a high resonance mode is excited. Tech nically, it is also easier to excite an axisymmetric mode (n=O) than a nonaxisymmetric mode (n;?; 1).

The sensitivity of the resonance frequency to IOP variations is larger for high-frequency modes. How ever, the calculation of the relative sensitivity obtained by dividing the frequency shift by the frequency of the considered mode, shows that the trend is not clear cut: the lowest frequency mode (n=O, m== 1) has a relative sensitivity (0.08 and 0.15 for in vitro attachment, 0.06 and 0.19 for in vivo attachment, respectively, for the linear and nonlinear cases) which is only about half that of the higher frequency modes (n = 0, 1, m = 2, 3, 4, 5, n = 2, m = 1, 2, 3, 4, 5) for which the best relative sensitivities are found: 0.25 and 0.39 for in vitro attachment, 0.18 and 0.32 for in vivo attachment, respectively, for the linear and nonlinear cases (the value of 1.3 obtained for the rigid-body mode for in vitro attachment n = 1, m = 1, must be considered as aberrant). An optimal sensitivity could be found for modes m = 2, 3, 4.

This work establishes the basis of an indirect method for the estimation of IOP. This method ap pears as a complementary technique to the applan- eye. The numerical model yields quantitative predic tions of the values of the modal frequencies and of their shift with variable IOP. It gives also invaluable indications on the influence of the mechanical proper ties of the corneoscleral shell. The role and per formance of an exciting device can also be deduced from a detailed understanding of the vibration modes of the eye. These results suggest that a performant IOP monitoring technique could be based on the quasi continuous measurement of the resonance frequency.

The modalities of the use of such an instrument should be derived from the predictions of this model, as well as from experimental investigations.

modulus at the center of each element of the mesh by an iterative process. When the convergence is reached, these tangent modulus are stored in an external file. Then, we consider that the corneoscleral shell filled by the liquid behaves as a linear elastic material, vibrat ing around its prestress equilibrium position with small displacements and deformations. The new elas tic modulus is read from the external file.

Fig. 1 .

 1 Fig. 1. Human eye meridian section.

  +(ViiS0)n° -pn° + p0 (I: Vii)n°-p0 (Vii)Tn° =0 onn, (9) S0n°=0 on r?, (10) U=O onn, (11) ii• n°=v • n° on n, (12) p?w2v-Vp=O inn?, (13) and considering the conservation of the fluid mass in nr. (14) (u, p, <f>) mass-coupling formulationAs previously mentioned, this formulation is re tained for its symmetric form, thus allowing the use of a numerical standard solution code. Taking the curl of equation (14), observe that curl v=O (for m#O), thus v derives from a potential </>: v = V <f>, and the fluid motion is irrotational. Introducing this new variable in the equations of motion and in the mass conserva tion equation, one has for the fluid:

  Starting from the equations of motion, Berger et al.

Fig. 3 .

 3 Fig. 3. Attachments and meshes used for the kinematics studies: in vitro attachment corresponds to an in vitro experimental situation, and in vivo attachment describes an in vivo situation. The shell is discretized by 48 linear quadrilateral elements (4 nodes), 8 for the co--®ea and 40 --r the sclera. The --uid domain is discretized by 132 quadratic quadrilateral elements (8 n--¢es) and 20 quadratic triangular elements (6 nodes).The contact is modeled by 24 contact elements (3 nodes).

Table 1 .

 1 Numerical preliminary tests for the human eye model: (i) resonance frequencies of the five first modes (m= 1, 2, 3, 4, 5) of the empty shell (thin and thick) for the circumferential index n=O; (ii) resonance fr equencies of the first five modes (m = 1, 2, 3, 4, 5) of the internal liquid contained in the shell considered as rigid for the circumferential index n = O; (iii ) resonance frequencies of the first five modes (m = l, 2, 3, 4, 5) of the filled prestressed shell (thin and thick) at IOPs ofO, 10, 40 mmHg for the circumferential index

0

  structure mesh m = l,F= 147.0Hz m = 2, F= 238.6Hz 0 m = 3, F = 294.8 Hz m = 4, F = 354.1 Hz m=5,F=417.0Hz

Fig. 4 .

 4 Fig. 4. Finite element mesh and first mode shapes of the human eye for an IOP = 10 mmHg considering in vitro attachment, for different values of the circumferential index: (a) n=O; (b) n= l; (c) n=2. The problem after static condensation has 191 degrees of freedom for n =0, 288 for n = 1 and 282 for n = 2.

Fig. 5 .

 5 Fig. 5. Finite element mesh and first mode shapes of the human eye for an IOP = 10 cHg considering in vivo attachment, for different values of the circumferential index: (a) n=O; (b) n= 1; (c) n=2 The problem after static condensation has 192 degree s of freedom for n = 0, 290 for n = 1 and 282 for n = 2.

  Fig. 7. (a) Calculated resolution-mode number relationship; (b) relative frequency shi---mode number relationship (the relative frequency shift is obtained by the differen--| between the frequency at an IOP of 40 mmHg and the frequency at 10 mmHg, divided by the frequency at 20 and 25 mmHg, respectively, --r in vitro and in vivo attachment).

  

  (a) for the

	317.2	431.7	492.8	686.6
	326.2	451.3	516.6	714.7
	348.l	494.0	588.8	791.9
	181.2	254.7	312.8	343.9
	184.0	261.0	325.6	370.0
	191.5	277.7	355.2	426.2

Table 2 .

 2 Dependence of the resonance frequencies of the five first modes on IOP and on the circumferential index n=O, I, 2, --r in vitro attachment

		Pressure		
	n	(mmHg)	Model	
	0	0 10 40	L NL L NL L NL	33.3 34.0 36.1 38.4
		0 10 40	L NL L NL L NL	0.0 17.6 17.9 31.2 32.2
	2	0 10 40	L NL L NL L NL	133.3 147.0 148.4 171.6 198.6

Table 3 .

 3 Dependence of the resonance frequencies of the five first modes on IOP and on the circum--rential index n=O, 1, 2, for in vivo attachmentLinear caseNon linear case

		Pressure			Mode numbers		
	n	(mmHg)	Model		2	3	4	5
	0	10 40	L NL L NL	226.2 227.4 240.3 275.6	358.3 361.6 410.1 490.9	485.5 489.3 565.2 646.3	704.6 710.3 810.4 949.6	989.5 996.7 1140.2 1303.7
		10 40	L NL L NL	160.2 159.9 169.5 184.1	276.5 278.4 312.4 368.6	416.6 418.3 478.2 549.4	587.5 591.6 707.5 798.7	829.1 830.3 877.3 959.5
	2	10 40	L NL L NL	175.2 176.8 214.6 243.9	365.6 367.9 425.1 482.2	502.1 505.8 582.0 670.2	701.9 707.1 831.9 946.5	995.2 1--V1.8 1148.3 1315.0

ation tonometry, rather than an alternative to it. The method yields a precise measurement of the IOP variations but does not allow measurement of the absolute IOP. Before the beginning of the follow up of the IOP by the method of the resonance frequency, a calibration with the Goldmann tonometer is required.

The measurement of the resonance frequency or of the frequency dependence of the mechanical impedance of the eye should found the basis of an IOP monitoring apparatus. Through a convenient technical approach, the measurement will be preformed in a purely non invasive way, by avoiding direct contact with the cornea. A monitoring of IOP on a 24 h basis is targeted.

CONCLUSION

Mechanical and numerical modeling of a coupled fluid-structure system has been developed in this work. It yields a description of the vibrating behavior of a complex prestressed biologic system: the human APPENDIX The computational procedure runs as follows.

Linear case

The stress values, produced by an internal pressure on the internal surface of the empty shell, are first calculated in statics, at the integration points for all structural finite elements. These values are stored on an external file. Then they are read in a second pass for the calculation of the geometrical initial stress stiffness terms, used for solving the vibration problem of an eye. In our study, this calculation procedure is re peated for different internal pressures values ranging from 0 to 40 mmHg in the in vitro case and from 10 to 40 mmHg in the in vivo case, in steps of 5 mmHg.

N onlinear case

In the first step, a static solution of the problem of the corneoscleral shell submitted to an internal pres sure (still storing the stress at the integration points of each element) gives, for each pressure, the new tangent