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PARAMETRIC UPDATING OF A FINITE ELEMENT MODEL FROM EXPERIMENTAL MODAL CHARACTERlSTICSt

The finite element model updating process developed at ONERA is based on the minimisation of input errors in the dynamic equilibrium equations. The reaction forces due to incorrect stiffness or mass matrix of the model are used to localise the predominant errors and, afterwards, to find correcting parameters, in order to have a prediction model as close as possible to the real structure. We present the recent evolution of the method with numerical applications to an axisymmetric composite structure and to a truss system.

INTRODUCTION

The problem to be solved is to improve the mechanical characteristics of a finite element model from experimental vibrational data. Such a model, made as near as possible to the real structure, can be used as a reference to solve associated problems.

There are two types of method: the global method [1, [START_REF] Berman | Automated dynamic analytical model improvement[END_REF] where the authors build the stiffness and mass matrix directly from measured modal characteristics and the local method where one searches to correct the model at elementary level.

The latter method can be divided into two types using the output errors and the input errors [START_REF] Cottin | [END_REF][START_REF] Natke | Updating computational models in the frequency domain based on measured data: a surYey[END_REF].

In the first group, we find the works of Sidhu and Ewins [START_REF] Sidhu | Proceedings of the 2nd !MAC[END_REF], Lallement [START_REF] Lallement | [END_REF], Zhang [START_REF] Zhang Qiang ; Tiiese | Identification modale et parametrique de structures mecaniques auto-adjointes et non auto-adjointes[END_REF] and Boutin and Petiau [8) and the GARTEUR group papers [START_REF] Te Ur | DFVLR, MBB (FRG)[END_REF]. Most of these authors first localise the predominant errors.

The method developed at ONERA belongs to the second group [START_REF] Berger | Proceedings of the 2nd !MAC[END_REF][START_REF] Berger | Recalage d'un modele par elements finis a partir de donnees experimentales de type vibratoire-Concept de localisation d'erreurs[END_REF][12]. In the following, we intend to describe the evolution of this method over the past ten years, and detail the results obtained thus far. The method described uses the concept of reaction forces (input theorectically null of an eigenvalue problem). With those forces, on the one hand, we localise the dominant errors, and on the other hand, we calculate the correcting parameters of the model, by minimisation of a norm relative to those reactions.

FORMULATION OF THE PROBLEM

HYPOTHESIS

Only the stiffness (or mass) matrix is assumed to be erroneous; in the following the formulation will be presented with an incorrect stiffness matrix. The measures, frequencies and eigenmodes are assumed smoothed and without noise.

GENERALITIES

One difficulty comes from the fact that the measures are known for only a reduced number of finite element mesh nodes and so it is necessary to complete each eigenmode, globally, the three methods which are presented here depend on how the eigenmode is completed.

1 2.3. MATRIX FORMULATION
For each experimental eigenmode k, the dynamic equilibrium equations can be written as

(Ko+� AiKi-w�x.M){ Uk } = { O} J U Ex• Rk (1)
where: K0 =stiffness matrix of the initial model; Ki= elementary stiffness matrix extended to the size of system (1 ); Ai= relative error of mechanical characteristic of finite element j; M =mass matrix of the initial model (assumed to be correct); UEx• =measured degrees of freedom; w�x. =experimental eigenvalue; Uk= part of unknown displacement; Rk = reaction forces. For each given Ai (initially, Ai= 0 'v'j), we can extract from equations (1)

Uk and Rk. It is the first method used to complete displacement UEx,. and is used to apply null forces on the unmeasured dof.

Remark. The computation of Uk is possible only if the subsystem of (1) relative to Uk is inversible; it means that w�-'• must not be an eigenvalue of system (1) where all the measured dof are clamped; that condition is verified if we look at the low eigenfrequencies and if the measured dof are regularly distributed on the whole structure.

LOCALISATION OF ERRORS

Using the reaction forces, we can build an error function with discrete values, given by g; = m;x JJr;kll/m�x ( m;x llr; k l l)

where II r;k II is the norm of the reaction force at node i and for eigenmode k.. The denominator is a normalisation factor to I. The function g; is used to determine the finite elementj which is concerned with dominant errors, and taken account of in equations (1). Let AT= {A1, A2, ••• , Arn}, the column of the m correcting parameters relative to erroneous finite element determined as before.

We start from A= 0 and, at each iteration p, we linearise the reaction forces Rk(Ap) around A P :

Rkr•• = Rk, + V Rkp"1Ap
then, we minimise the cost function:

By the Gauss-Newton method, we have to solve

(r. <v R r v Rk )) .1Ap = -r. v R r Rk . k p p k p p (3) (4) 
(5)

From equation (1 ) , we calculate aRk/ i'JAi which is a component of the gradient matrix

V Rk. We find ( 6 
)
where vk is the complete displacement v r = { u r' u �xJ and Bk is the matrix of basic complete displacements obtained by solving (I) with the following successive imposed measured values:

U[,={ 100 ... 0} U[,={ O 1 0 ... O} Uf.={ 000 ... 1}
where n is the number of measured dof.

Bk is analogous to the so-called boundary function of the substructuring problem; the algorithm generating that matrix is present in most finite element codes.

Remarks. (1)

We assumed the structure to be free-free, if it is clamped, the reaction forces at clamped boundaries are natural reactions and must not be present in the cost function.

(2) When the number of Aj is important, the above method becomes expensive due to the computation of aRk/aAj.

METHOD 2

This method is based on the pseudo-linearity of equations (I). The computation of displacement Uk is the same as in method 1.

If A is the solution, it must verify the following relation:

F0(A ) + F(,1 ) A + F1 (A ) = 0 ( 7 
)
where F0 is the column of nodal forces relative to the q measured eigenmodes Fo(A ) T ={ (Ko V1 ) r, (Ko V2 ) r, .. . , ( K0 Vq ) T} F(A ) is the matrix of elementary modal forces relative to the m erroneous finite elements. F1 (A ) is the column of inertia forces for the q eigenmodes F1(A ) T ={ -w�x 1 (MV1 ) T, -w�x 2 (MV2 ) T, ... , -w�x. (MVq ) T} .

By application of the implicit function theorem of equation [START_REF] Zhang Qiang ; Tiiese | Identification modale et parametrique de structures mecaniques auto-adjointes et non auto-adjointes[END_REF], we have to find, at iteration p, Ap+I e.g. F0(.1p ) + F(Ap ) Ap+i + F1 (Ap ) = 0 .

Letting: .1A P = Ap+i -A P , and using equations (I) rewritten here as

F0(Ap ) + F(Ap ) Ap + F1 (Ap ) = S(Ap ) (8) ( 9 
)
where ST(Ap ) = { (O , R{ ), (O , Rf), ... , (O , R; ) }. We find by subtracting equation (9) from equation ( 8)

F(Ap ) .1A P + S(Ap ) = 0. ( 10 
)
Formally, equation (10 ) can be written as [START_REF] Berger | Recalage d'un modele par elements finis a partir de donnees experimentales de type vibratoire-Concept de localisation d'erreurs[END_REF] where we separate the measured and unmeasured dof.

This last system leads to an optimisation problem with constraints and can be difficult to use if we are dealing with a bidimensional model having two types of dof displacement and rotation, and where the errors are localised at joints which connect several types of elements such as beams and bars, because of this we are seeking a method avoiding the appearance of constraints.

METHOD 3

Here, we try to complete the displacement U Ex, in order to have reaction forces on all the dof in the right-hand-side of equations (1 ).

Let T, the matricial operator, be

T = K0+2: >.-iKi-wi,M.
Then, we solve successively the three following static problems:

(12)

so, we obtain U1 and R1, as in the above methods. We now solve, the complementary problem:

(

) 13 
We obtain here: U and R2•

Finally, we solve the problem with given U Ex and R2• (14

)
which gives U2 and R.

We now apply method 2 with the complete displacement VT = {U f UIJ and the complete reaction force

In the case of a bidimensional structure, we can then easily separate the two types of dof. Formally, we can write system [START_REF] Berger | Recalage d'un modele par elements finis a partir de donnees experimentales de type vibratoire-Concept de localisation d'erreurs[END_REF] as (15

)
where the subscripts T and R respectively mean translation and rotation.

In this example, by application of the Gauss-Newton method, we have to solve, first, the second subsystem to obtain .J,12 (relative to flexural elements) then, the first subsystem gives .JA 1 (relative to bar elements).

Remarks. where Amin ; and Amax ; are assumed known.

General remark. All these methods, based on mini misation of erroneous input, are advantageous because we are only dealing with static analyses; nevertheless the non-linear optimisation remains expensive.

NUMERICAL APPLICATIONS

. 1. AXISYMMETRIC COMPOSITE STRUCTURE

Figure 1 shows the finite element mesh and the measured nodes where only the radial component is given. Figure 3 shows the initial values of Young's modulus E and shear modulus G and these same moduli obtained after updating in the three zones; the updated values were obtained here using only the third eigenmode of wave number 4.

Figure 4 represents the evolution of frequencies with respect to the wave number, we can compare the experimental results to those obtained on the prediction model before and after updating.

Figure 5 shows the third typical eigenmode of wave number 4 in the same circumstances as above. 

BIDIMENSIONAL STRUCTURE

E, '+0•36415061 1011Nlm2 G1• +0•127452711011Nlmz E 2' + 0•24301066 1011N/mz G 2 • +0•85053730 10'0N1m 2 E 3' + 0•25243183 1011Nlmz G3•+0•88351141 I010N/mz
The structure is a truss system constituted with bar and beam elements.

Figure 6 shows the finite element mesh, the size and the mechanical characteristics of the prediction model. Here the experimental data are numerically simulated by perturba tion of some characteristics as indicated on Table 1 in the column headed Exact.

Using the finite element method we determine the first five frequencies and eigenmodes of the free-free model and we extract components u, v of each mode at a restricted number of nodes as shown in Fig. 6.

Here constraints on Aj are Table 2 lists the first five eigenfrequencies errors for both the initial model and the experimental one.

We use only the second eigenmode which gave the greatest partial cost.

The iterative process is stopped if relative residual reaction 1Jk, relative to eigenmode k and iteration p is near to zero. ----------� ------ 7Jk, = m?X II r;k llp/m?X II r;k llo i =node number. Subscript 0 is taken for initial model.

I I

Here we had at iteration 40: 77240 = 0•0265 for force and 0•0089 for moment.

In Table 1, in front of all bar and beam elements detected by error function, we have relative errors obtained at the 40th iteration. 

2 Modal shape 5•0 3•0 6•0 8•0 70•0 40 0•8 0•6 0•3 l. l 1•1 A, 40 Iterations Exact 0•920616 1 0•18978-04 0 1 •0 1 0•12709 0 0•31861 0 0•50581 1 0-58162 1 0•30586 0 0•6818-01 0 1 •0 1 1 •0 Gen. mass .6µ. = J.l.cxp -J.l.; % µ. J.l.cxp -6.3 -1•4 -4•4 +1•6 -89•09 40 +0.6 +0•1 +0•2 -0•3 +0•2 3 11 _ ---------------------_ j -!�----------�•-•-•-•-•-�•-•-•- • - • -�--•-•-• - i I 2 3 4 5
Mode number where U;, UEx, are the measured part of the displacement.

CONCLUSION

We present an updating process based on minimisation of errors in input data. The main advantages of this method are: it is only necessary to carry out static analysis and that it is relatively easy to localise dominant errors.

The disadvantages are mainly the high sensitivity of reaction forces to small variations of displacements: for instance, experimental displacements close to zero on a broad area can lead to large reactions, like a clamped boundary and the high computational cost mainly due to the completion of measured displacement.

If we limit the unknown parameters Ai by the localisation process, we calculate displacements on the whole structure although we need only those on the erroneous part; this therefore suggests, the future, adaptation of a substructuring process in order to compute displacements only on the erroneous localised areas we are currently researching this problem [START_REF] Berger | Proceedings of the 8th !MAC[END_REF].

4 .

 4 DETERMINATION OF CORRECTING PARAMETERS >.1 4.1. METHOD 1

  (a) The physical meaning of system (15) is the equilibrium of reaction S by a linear combination of nodal elementary forces at each iteration. (b) In the bidimensional case, we have to calculate two types of error function for forces and for moments. (c) The necessary conditions for the existence of a complete displacement are: wt, must not be an eigenvalue of system ( 1) where we clamp successively the measured and unmeasured one dof. (d) A drawback of this method is the necessity to solve three static problems to obtain the complete displacement. We can then restrict the calculation to the eigenmode having the greatest partial cost function S[Sk. (e) At each iteration, among the m parameters Ai, we retain only the more sensitive one. (f) Here, we have to apply only constraints of the following type:
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 I Figure I. Composite structure mesh and measured points. 0, Mesh nodes; 0, measured points.
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 2 Figure2shows the error function with the three erroneous areas applied here the first method to determine the three global parameters Ai relative to the equivalent orthotropic characteristics of the shell.
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 23 Figure 2. Composite structure error function.
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 4 Figure 4. Eigenfrequencies: 0, initial model; •. updated model; 6, experimental.
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 5 Figure 5. Eigenmode 3n = 4. ---, Experimental; ----, initial model; --, updated model.
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 1066 Figure 6. In-plane free-free vibrations of perturbed undamped truss system. •. Measured dof: u and v.Young's modulus, E = O•i5010" Pa; specific mass, p = 2800 kg/m = .
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 78 Figure 7. Frequency relative error. 6, Iteration O; 0, iteration 40.

TABLE 1

 1 

		Axial
	Exact	bar
	O•O	25-27
	-0•5	19-22
	+0•5	22-25
	+0•5	30-35
	O•O	35-38
	O•O	38-41
	-0•5	41-44
		44-47
		47-50
		25-28
		24-25

TABLE