1 an instability due to coupling between the main structure (tanks and shells), the so-called secondary structure (pipes, pumps), and the thru:;t.

DESCRIPTIOX OF THF. PROl3LD.f

The liquid is supposed to be inviscid, incompressible, irrotational, and contained in a deformable shell.

In this study we proceed on a theoretical and numerical analysis of the vibrations of a fluid confined in a deformable shell. The so-called hydroelastic problem has seldom been met in a global way; one can find in [l] a study considered by us as the origin of our work ([l] is exclusively dernted to the case of thin shells; the solutions' properties are obtained from the equations in a computational way).

In the present analysis, we state within the linearized theory the general equations of the coupleJ system fluid-elastic shell (considered as a three dimensional body), which corresponds to the study of small vibrations, and we introduce a variational formulation of the problem. By an appropriate choice of the function spaces it is possible to associate a spectral problem for which \\'e have defined the operators' properties. In particular, we demonstrate compactness properties resulting from a previous work [START_REF] Boujot | Sur !'analyse des caracteristiques vibratoires d'un liquide contenu dans un reservoir[END_REF]. We then show directly the existence of an eigenfrequencies and eigenfunctions spectrum which defines the vibration modes. The knowledge of the vibration modes characterizes the system from a mechanical point of view.

The theoretical study is achieved by a numerical analysis by the finite element method. In Section 2, we present the matrix formulation of the approximate problem. \\""e then study the different finite element types used in the computation: .fluid elements of isoparametric type, shell elements, coupling elements.

After describing the resolution of the approximate problem, numerical results are shown in the case of the first stage of the civil applications launch vehicle Diamant B. The results allow us to identify the mode of vibration characterizing the Pogo effect. \\"e recall that this phenomenon consists of Notation (Fig. 1). Q1 and Q2 are open bounded sets of R3.

The liquid occupies the initial volume Qi with the boundary (supposed smooth) cQ1 = I'i u .E1 , where I'i is the free surface at rest and .E1 the wetted surface of the shell. n(nj) represents the external normal to Qi , Pt the density of the fluid, <I>(x, t) the velocity potential of the fluid (x =(xi, x 2 ; x3)), Y(x', t) the normal displacement at the free surface (x ' = (x 1 , x 2 )), and g the gravity vector. The shell, supposed thick, is represented by a domain Q2 with the boundary 8Q 2 =Li U .E2 u 1:3• On 1:2and1:3(meas1:2, meas 1:3 > 0) act, respectively, a force and displacement field. n ' (n/)represents the external normal to Q2 , n' = -non l: i ; Pc is the density of the shell, u =, (ui , u2, u 3 ) is the displace ment field vector referred to the equilibrium (static) configuration, a is the tensor whose components au represent the stress variations between the actual and the initial states; finally, /(Ji) represents the given body forces per unit volume. We shall set here f; = 0.

Equations of the Coupled Problem

The Bernoulli theorem permits to calculate the pressure perturbation in any point 11 ! of the shell or of the free surface. After linearization, one obtains p =pt ( �� -g • u( M)) .

In the linear approximation corresponding to the study of the small vibra tions, the model presently used supposes that the initial state is quasinatural and the normal variations are negligible during the deformation [3] . The dyna r; iic equations are the following: In the following, we assume that the Tong [l J hypothesis holds: the inner product u • g is replaced by

(u • n) (g • n) .
Consequently, the boundary condition on E1 X ]O, T[ becomes

L a;;n/ = Pt ( �c;P -(u • n) (g • n) ) n;' 1 ct
and later on leads to the introduction of symmetric operators.

Variational Formulation

Let H 1 (Q2) be the Sobolev space of real functions with the second power absolutely integrable for the Lebesgue measure with derivatives of order one in U(Q2) [4], and let V be the space \\•e can show, using the Green formula, that the problem in Section 2.1 1s equivalent to the following variational problem.

Find the functions (<!> (-), Y(•), U(-)) defined on ]O, T[ and taking values in

H1(Q1) X L 2 (I'1) X V, satisfying J Pt v <!> Vf dx -f Pt o"Y f da -f Pt ( � u • '!) f da = 0 n, r, c t E1 t Vf E Hl(Q1), (1) 
, . J ( a2u )

• a<t> j 2: a;;(u) E;;(v) dx -i-Pc atZ • v dx + j Pt Tt (n • v) da Q2 i,1 f22 E 1 -J Pt(g • n) (u • n) (v • n) da = 0 E,
with the initial conditions

u(x, 0) = u 0 (. -v) , <!>(x', 0) = <!>0 (x'), OU ot (.y, 0) = U1(x)
�� (x', 0) = <1>1(x')

3. PRELIMINARY STUDIES VvE V m Q2 ' on r1.
(
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(3)

(4)
Before defining the function spaces for the whole problem, it is necessary to establish some lemmas concerning the equations of the shell alone and of the fluid alone.

The Elastic Problem

\Ve assume that the elastic coefficients A;;hk have the usual symmetric (,\;1t1;; = A;;kh = Akhi;) and ellipticity properties, and we define b(u, <į) = L J a ;; (u) E;; (v) d x .

i.; D2 [START_REF] Lions | Les Inequations en ;\•Iecanique et en Physique[END_REF] As a result from the horn inequality and its consequences [START_REF] Lions | Les Inequations en ;\•Iecanique et en Physique[END_REF], we ha\•e the: follov,-ing. LE:\L\IA I. The bilinear form b(u, '1:) equipped V with a norm equi'l.:alent to the usual norm of (H1(fJ2))1.

Let V' be the dual space of V. We define the linear operator BE ..'l7(V, V')

by means of b(u, v) =(Bu, v) Vu, vE V, (6) 
where (,) represent the inner product in the duality between V and V'.

Let D(B) be the domain of the unbounded operator B in (L2(Q2))3. Because of the coercivity and symmetric properties of b(u, 1:) , the operator• B is positive self-adjoint in (L2(fJ 2 ))3 with the domain D(B).

On the other hand, it follows from the Sobolev theorem that the mapping from V into (L2(Q2))3 is compact, and we have the next lemma.

LEMMA 2. The operator B defined by ( 6) is inversible positive self-adjoint, and B-1 is compact in (L2(Q 2 ))3•

Study of the Fluid

From the notions developed in [START_REF] Boujot | Sur !'analyse des caracteristiques vibratoires d'un liquide contenu dans un reservoir[END_REF] for vibrations of a liquid contained in a rigid tank we shall establish compactness results. This problem related to the u = 0 case is written from (1)-( 4 

on [START_REF] Vlorseev | IYANTSEV[END_REF] and we �tudied the problem [START_REF] Lions | Les espaces du type de Beppo Levi[END_REF], ( 8): Find <P(t) E H 1 (Q1) such that I �'<P J v<P(t) \ </; dx + -J �-•) </; da = 0 n, g r 1 ctwith the initial conditions [START_REF] Vlorseev | IYANTSEV[END_REF].

For the resolution, we introduce the subspace of H 1 (Q1) defined by

Ll<P = 0 in Q1 , c<P = o ,.
., on on �1 ' <P = rp on I'1 , [START_REF] Boujot | Sur le probleme spectral associe aux ,•ibrations d'un fluide contenu clans un reservoir dfformable[END_REF] where rp E H 1 12(I'1).

We define [6] the operator A E Sf(H 1 12(I'1), H-1 /2(I'1)) by setting Arp = (c<Pi cn) : r , , which leads to the following evolution problem on the manifold I'1:

I I J cPrp Arp(t) J; da = -3j2 J; da r1 g r ,
'Ve show that the problem has a unique solution which is a linear combina tion of stationary solutions such as <P(x, t) = <f>(x} e iwt . The operator A-1 is compact in L2(I'1), so the circular eigenfrequencies wand the eigenfunctions <p(x') = <f>(x) ir, are given by the spectral problem f Arp</; da = w2 f rp<f; da r ,

g •r1 (11) 
We obtain ef> (x) by solving Eqs. [START_REF] Boujot | Sur le probleme spectral associe aux ,•ibrations d'un fluide contenu clans un reservoir dfformable[END_REF]. Let us recall the following lemma. LEMMA 3. There exists fo r [START_REF] Rlet | General Lagrange and Hermite interpolation in Rn with applications to finite element methods[END_REF] an infinite set of eigenvalues ( w0 = 0, < w1 � • • • � w . ,. < oo) ), and the corresponding eigenfunctions rpn (x') fo rm an orthogonal and total sequence in H 1 i2(I'1).

'Ve recall, too, that the first eigenfunction 'Po(x') corresponding to w0 = 0 is a constant [START_REF] Boujot | Sur !'analyse des caracteristiques vibratoires d'un liquide contenu dans un reservoir[END_REF].

Consequences

Let W (resp. S1) be the subspace of H 1 (Q1) (resp. V(I'1)) orthogonal with respect to the constant functions; d(<P) = fn, I v<P ! 2 dx defines a norm on W, and by a lemma due to Deny and Lions [START_REF] Lions | Les espaces du type de Beppo Levi[END_REF] we have the following. Let W1 be Following [START_REF] Boujot | Sur le probleme spectral associe aux ,•ibrations d'un fluide contenu clans un reservoir dfformable[END_REF], we have (Green's formula)

As, on the one hand, A E !.e(H 1 12(I' 1 ), H-1 /2(I' 1 )) and, on the other hand, the trace operator is continuous from H 1 (Q 1 ) into H 1 12(I'1), the topology induced by d(<P) on the subspace wl is equivalent to the topology of H 1 12(I' 1 ). and we have the following.

Lnr:vrA 5. The sequence {<f> n(x)};:'=1, obtained by soZ.Ving [START_REF] Boujot | Sur le probleme spectral associe aux ,•ibrations d'un fluide contenu clans un reservoir dfformable[END_REF] with the boundary condition involving the e�genfunctions {cp n(x')}�= I of A, is an orthogonal total sequence in rvl .

3.2.3.

Back to the Problem ( 7), [START_REF]hKHLI[END_REF] Let T1 be (12)

T1 corresponds, by means of [START_REF] Boujot | Sur le probleme spectral associe aux ,•ibrations d'un fluide contenu clans un reservoir dfformable[END_REF], to the domain D(A) of the unbounded operator A in L2(I' 1 ).

The results mentioned in Section 3.2.1 lead us to look for the stationary solutions of ( 7), [START_REF]hKHLI[END_REF], such as <P ( x, t) = iv<f> (x) e i •t, Y(x, t) = y(x) eivt with (</>, y) E w x S1. So we can avoid the trivial solution </> = canst, which corresponds to v = 0. After a substitution in ( 7), ( 8) we obtain the following spectral problem: Find(</>, y) E W X S1 such that \Ve notice that we ha\• e and, when using Green's formula, J vc;, vif; d: -.:

= f yf da = f �</> da . n1 r, r,
The above spectral problem is therefore equivalent to

J y� da -� J v<f> vif; dx = 0 r, g n,
.

Recalling the notations of [START_REF] Boujot | Sur !'analyse des caracteristiques vibratoires d'un liquide contenu dans un reservoir[END_REF] stated in Section 3.2. l, we can set

y = Acp
Another form of ( 13) is with with cp = <P Ir, ,

• fa = 1¥ 11 1 • r AcpAf da -� f cpAf da = 0 • r1 g r1 V,P E D( A),
where D(A) represents the domain of A.

(
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Problem ( 7), ( 8) consists now, as is quite natural, of the spectral decomposi tion of A. We can formulate the previous results (Lemmas 3 and 5) as follows.

LEMMA 6. There exists, for the problem (7), ( 8), an infinite positive sequence of circular eigenfrequencies w n . The corresponding eigenfunctions constitute the sequences {cPn}, {cpn}, where {<Pn}n=l .. .. . «> is orthogonal and total in W2 and, {cp n }n =l. .. .. 00 is orthogonal and total in S 1 and such that Lemma 6 shows the existence of a discrete spectrum for C 1 ; hence, by a theorem from [8, p. 462], we have the following.

V m, Y11 = 0 fnn I . ( 14 
) • G J Yn(x')ym(x') da = w n -J \'<Pn(x) 'il<f>m(x) dx
LDIMA 7. c1 1 : sl -Tl is a compact operator (for the topology induced on T 1 by W).

The operator C!1 is generally known as the ::\eumann operator of the problem [START_REF] Vlorseev | IYANTSEV[END_REF].

Extension of the Results

The preceding methods can be extended without difficulties to the following boundary value problem:

Ll<l> = 0 In Q 1 x JO, T[, - (I 5) on 8Q1 x ]O, T[.

Let us set and

A cp = �-<!>__I ' en <,
where A E ff'(H 1 !2(2Q I ), H-1 12(cQ 1 )). From the compactness of the mapping from H 1 12(cQ I ) into L2(cD 1 ) \Ye get the compactness of A-1 into L 2 (cQ 1 ). Let Y' he the subspace of U( (Q I ) orthogonal with respect to the constant functions, and let T be

_ 1 . _. c.<1>1 i T -/ <!> E TV, Ll<l> -0 in QI '-� -E Y1• .
en !cn 1

.

The solution of ( 15) leads to the spectral problem

Vif; E T, which is similar to [START_REF] Naghdi | On the theory of thin elastic shells, Quart .• -lppl[END_REF].

(
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\Ve define C: T-+ !/'by setting (?<f>/cn) !w, = C<f>. By similar methods we can prove the existence of a discrete spectrum and we have the following lemma.

LEi.\I:\IA 8. The operator defined by C-1 : ,Y _.Tis compact (Tis equipped with the topology of W) . Let 5 be the Cartesian product of the three sets -5 is equipped with the topology of the product and I) = (i/J, ?;, v) represents a member off).

We have already seen the interest of stationary solutions which are related to the notion of a spectral problem (Section 3.2.1 ) . We therefore search the stationary solutions of the problem under the form of <l>(x, t) = ivcp(x) e iv t , (17) u(x, t) = u(x) e ivt , Y(x', t) = y( x') eiv t , where the triplet P = (</>, y, u) belongs to fl in order to eliminate the trivial solution (</> = const, u = 0, _v = 0) corresponding to v = 0.

The problem (1)-( 4) lea!is then to

-J p1(gn) (rm) (z: n) da = 0 r, VvE V. ( 20 
)

The Reduced Problem

Let •.R be the subspace of TV X U(I' 1 ) X V defined by

The fact that I:J belongs to� leads in particular to J,. (vn) da + j I; da = 0.

-1 r,

LEi\J:vIA 9. .R is a closed subspace off>.

For the purpose of demonstration, we consider a Cauchy sequence in .R, that is l)n = (</>n, Yn , !In ) We show that limn-oo l:Jn = I:J = (</>, y, u) belongs to .R.

This follows, on the one hand, from LJ<f> = 0 in the sense of distributions in Ql so <ß On the other hand, we consider the limit of the sequences in the equation 

) (1m) (<:n) da + g f Pt yl; da z.i "Dz Ii "<c1 -v 2 [f pc(uv) dx + J Pt \<f> \if; dx] = 0 n2 n, VI) = (if;, I;, v) E �- ( 22 
)
\\. e are now able to state Property 1, which correlates the problem of vibration to the analysi::> of a spectral probh:m.

Property I. The following spectral problem is associated with the prob lem (1)-( 4): Find v2 and PESl such that VI) E .H (23) with

.lf!(P, l)) = L J a i;(u) Eij(v) dx + g J Pt YS da -J pt(gn) (un) (vn) da, i,i n2 r, <Ð,

. V(P, I)) = J Pt 'V<f> \ f dx + J p0(uv) dx.

<•1 .D2 (24) 
Remark. The problem ( 18)-( 20) is equivalent to the problem ( 23), (24) on the subspace of L2(I' 1 ) x V, for which we have J s da + J ( vn) da = 0.

r, <Ï,

RESOLUTION OF THE PRECEDING SPECTRAL PROBLEM

5.1. J!(P, l)) and .A/(P, IJ) are two continuous symmetric bilinear forms on Sl equipped with the topology of 5). Let .5' be the strong dual of .5. There exists two self-adjoint operators ml and 91 E £"(fl, fl') such that <9JlP, l)) = J/t(P, IJ), <91P, IJ) = .,, V(P, l)).

(25) The norm induced on Sl by <'.91P, Ii> is th e norm induced by W x (U(Q2)) 3 •

5.2

For the spectral analysis (23), a first difficulty comes through the fact that �m is not necessary a positive operator. Hence, we consider the hypothesis of V-coercivity with regard to (U(Q2))3: There exist two constants Ao � 0 and <û0 > 0 such that � J a;,(u) E ;,{u) dx -Pt J,..

( g n) (zm)2 da + A0 J Pc [ u 12 d x � o:0 II u :� i. i.J n� -1 n, ( 26 
)
This hypothesis is connected with the gt.:ometry of the system and appears to be justified because the coefficient p1(gn) is generally small; on the other hand, it is obviously verified in the case of thin shells of thickness h, where the integration in f2 2 is replaced by an integration on the mean surface y2 (it is therefore sufficient to choose A 0 )!: (gn) p1/pclz).

Under the hypothesis (26), let the operator 9Jl' be defined by (27) (24), (26), and Lemma 1 lead to the coercivity of the self-adjoint operator 9)1'.

5.3

It remains to prove that "ill !' is compact in regard to 91." This property is equivalent to the following one: From every sequence {Pn} E � such that (9J1'Pn, Pn) < const, we can extract a subsequence which converges strongly for the norm ,9lP, P). 9)1' is the sum of the two operators 9J11 and 9Jl2 , defined by

(9J l 1 P , �) = L J a;;(u) Eu('z:) d.1. • -p1 J (gn) (un) (vn) d a + A 0 J Pc(uv) d x, i.i n:! E1 n2
We recall here that P (resp. IJ) represents the triplet (</>, y, u) (resp. (if,�. v)) as an element of �.

It follows from Lemma 2 and the h;.'pothesis (26) that 9)111 is compact in (L2(Q2))3 • On the other hand, we have

J Y n 2 da < const r,
and

J (unn)2 da < const, <Î,
owing to the continuity property of the trace operator from H1(f2 2 ) into L 2 (2f2 2 )• The sequence Pn is such that c<f>n/on E 51" and i ccf>n/2n 1 2 < const.

Using Lemma 8, we can show the compactness property of 9Jl;-1 . 9Jl', being the sum of two compact operators (in regard to (U(Q�))3 and W) is therefore "compact in regard to 9L" These results are gathered in the following theorem.

THEOREM. 9J(' is a coercii•e, self-adjoint operator on 51, and 9Jl'-1 is compact in 51 (for the topology induced, by -:,9' 1P, IJ)).

We can therefore apply a classical theorem of spectral analysis [8, p. 237] in order to obtain the fullo\Ying property. The corresponding eigenfunctions Pn = (</>,,, , Yn, un) form on � an ortho gonal and total sequence, such that 6. C ONSEQl:E"°'CES: R ESOLUTION OF THE l XITIAL P ROBLEM Referring to the problem ( 1)-( 4) with which we have connected the spectral problem (23), Jt(P, l)) = v 2 A'(P, l)), the circular eigenfrequencies are given by (29) and the corresponding eigenfunctions P n form an orthogonal and total sequence in W X (L 2 ( Q 2 )) 3 such that (30 ) It must be observed that the system is unstable (in the usual sense in linear vibration mechanic) if .1.1 -,\0 is negative for the first values of n.

Conclusion.

For the initial hyJrot:lastic problem, \Ye ha\• t.! proYcd the existence of an infinite sequence of eigenfrequencics such as limn_,,, 11,. = <.

T h e eigenfunction given by the triplets (cp,., Yn, u,,) are the corresponding vibration shapes. The system is completely characterized from the mechanical point of view by the knowledge of the vibration modes.

Remark. If meas 2 3 = 0, we can introduce [5, p. 115] the space V = (H 1 (Q2)) 3 /&f, where f!il is the set of rigid solid displacements. The results of the theoretical analysis remain the same if we take W x U(I'1) >;: C" as a new definition of the space �• For the following numerical analysis, we shall use Eqs. (18)-( 20) with f> = H 1 (Q 1 ) X L 2 (I' 1 ) X (H 1 (Q2)) 3 . The solutions are then defined to within a rigid body displacement.

NUMERICAL A.:\'ALYSIS BY THE FINITE ELEMENT METHOD

According to the chosen application we shall deal with the problem of axisymmetric vibrations of an axisymmetric shell partially filled with liquid, within the thin shell theory. -r Pt(gn) (un 18)-( 20) and constitute the matrices resulting from the application of the finite element method. Their detailed definitions will be found in Section 7.3. � and .lt are, respectively, the stiffness and mass matrices of the mechan ical system.

) (i•n) da <@ 0 •£, (19) 

Description of the Elements

The function spaces H 1 (Q1), L2(I' 1 ), (H 1 (Q2))3 of the variational coupled problem are approximated. Because of the symmetry of the physical problem, the analysis becomes twodimensional. As a result, the simplexes on which the interpolations are to be constructed are torus (axis OX). The cross section will be represented in a meridian plane (X, Y).

Let il1; be the node of coordinates (Xi, Yi) and (Yi, cp;, ui*) (resp. �i , if;; , vi *) , the values of the unknown functions at the node i11; before assemblage.

We also put .X;; = X; -Xi ,

7.2.1-. Fluid Finite Elements

Three types of finite elements are considered.

(a) Rectangular (Fig. 2). We proceed on a quadratic development of the solution

ef>(X, Y) = a0 + a 1 X + a 2 Y + a 3 XY, .f;(X, Y) = b0 + b1X <_ b2Y <_ b3XY. (32) 
This corresponds to a Lagrangian-type interpolation formula in the element domain (nodal unknowns: </;1 , i/>2 , i/> 3 , r/>1). (b) Triangular (Fig. 3). The chosen interpolation is linear and results from the truncated developments:

</>(X, Y) = c0 + c1X + c2Y ,
(nodal unknowns: </>1 , </> 2, </> 3 ) . (
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(c) Isoparametric trapezoidal (Fig. 4). A point Al of the cross section is represented by the coordinate lines: g = const, 77 = const. The inter polation functions chosen for </> and </; arc defined from cf>(g , 77 ) = eo + e1g + e2"T/ + e 3 f ry , <f;(g , 77 ) = fo + /1g � f2'7 < f3 g 77 .

(34

)
It is clear that the continuity condition for cf> and </; is satisti.e<l along the element boundaries. 7.2.2. Element of the Free Surface (Fig. 5)

This element has the shape of a circular ring generated by a linear segment JJ1JI2 of the meridian straight line of the free surface. The functions y, � are linearly interpolated with respect.to Y (nodal unknowns: (y1 , y2); (s1, s2) for the test function). 7.2.3. Elast£c Shell Element (Fig. 6)

The shell, supposed to be thin, is represented schematically by conical frustrum elements of revolution around the axis OX generated by the segment

1W 1ll12• .
We consider here a local system of coordinates (x, y). Let us put

s = x/L.
L is the length of the segment 111 1 1112 • The components [u 1 (s), u2(s)] of the displacement vector u of the shell are respectively interpolated by Lagrangian and Hermitian polynomials [12]:

(35) with L1(s) = [I -s 0 0 s 0 O], L2(s) = [O 1 -3s2 + 2s 3 L(s -2s 2 + s 3 ) 0 3s2 -2s 3 L(-sz + s 3 )], and zt"' = U n U 21 � U1 2 U z2 /32 v':f:. = f3 = ���2 (resp. y = :2).
u,1 , i•;, (i = I, 2; j -,= I, 2) are the \•alues of the ith c•imponents of the di� placement .-ector u (resp. v) at the node J/i . Let us recall that v is the test function associated with u.

(3,. (resp. Y;) are the Yalues at the node JI, of the angle of rotation of the normal to the middle surface of the shell.

Let us recall here that the thin shell theory [START_REF] Naghdi | On the theory of thin elastic shells, Quart .• -lppl[END_REF] is a surface theory. Then, the particular geometry of the body allows the introduciton of kinematic simplifying assumptions.

The deformation of the shell can then be expressed in terms of the middle surface displacement (u1 , u2) and of the rotations of the associated .normals.

Therefore the tensor E (Eii) takes into account the cun•atures of the middle surface. Due to the chosen interpolation functions, the continuity condition for u; (resp. 'i';) is satisfied along the cltment boundaries.

Description of the Discretized Problem

The above-described finite elements will allow us to state tht matrices corresponding to the approximation of the bilinear symmetric forms of Eqs.

(18)-(20).

In the following paragraphs, we describe in detail the matrix: equation put down in Section 7 .1. •triangle

where

L = [ � �] and B = 1 [Y 1 2 2 X area X 1 3 -Y 12 ] 0 .
( c) !so parametric element. The calculus of the discretized bilinear form <f> *F1 f * is done after the following change of variables:

x = x� < gx21 , Y = Y 1 + 17 Y 1 3 + f17Y32 • vVe get . [ </> i ] •rf• •) -[ ( ! -•H ,1 "(! -f) ( I -,) (I -I)] �:
where B is the matrix which represents Vq> as a function of the nodal unknowns.

The assemblage of the elementary matrices F1, Fr , FR gives the sub matrix F of the set (31). We obtain in the local basis (.\', y)

1 me' = 27TpcL l P( s) (Y1 + sY12) ds .

• n

Csing the polynomial interpolation and the notations of Section 7.2.3, we have

In the (X, Y) coordinate system, the elementary matrix m e ' becomes

The matrix lvl of the set (31) is then obtained by assembling the matrices me .

(c) Approximation of -J.r 1 p1(gn) (un) (nz) da. We obtain the matrix relation -u*kc'v*. Using the same notation as in Section 7.2.3, the corre sponding kc' matrix is After discretization on a finite element (on the wetted surface of the shell), the bilinear reciprocally symmetric forms are and Let us recall that these forms represent coupling terms between the fl uid and the shell. Using the results of Section 7.2.3 as well as the linear interpola tion of q:i (resp. >/;) along•L'1 (Sections 7. After a change of basis, the assemblage is made on the following elementary matrices:

an ct [ �a2 �].
We then obtain the submatrix [.�, i•J of the set (31). 

Resolution

Let us recall here that, in the case of axisymmetric vibrations, the velocity potential is determined to within an additive constant (function of time only). Consequently, we show that if F is the n X n submatrix associated with the bilinear form fn2 p/'ilrf>'ilifi dx, then the order of Fis n -1.

The set (31) then becomes with For the resolution, we use the algorithms of a general existing code ordinirily used for the static and dynamic analysis of structures by the finite clement method (displacement method) [START_REF] Vv | User's . manual for the Rexbat program[END_REF].

[ s I o J Kll = ---'---> o I K' k
As a matter of fact, the procedure for recovering the <PR"' corresponds to a regular, mixed problem of linear elasticity where the boundary conditions hold (at the same point) simultaneously on the displacements and the forces components [START_REF] Germain | Cours de '.\Iecanique des ?11ilieux Continus[END_REF].

Numerical Results

The computation is carried out on a structure composed of two tanks with an intermediate bulkhead separating the two liquids. This structure constitutes the first stage of the civil launch vehicle Diamant B (Fig. 7).

The tanks considered here are cylindrical shells with ellipsoidal bottoms partially filled with liquid (the chosen configuration leads to a level of liquids • corresponding to 10% of burned propella � t).

The modelization used for each tank, through the different. finite elements previously described, is shown in Fig. Figure 11 shows a comparison between the first five numerical and experi mental eigenfrequencies.

The good agreement obtained shows the precision of the presented method.

Frc. 8. .�xisymmetrical elements. (i) Fluid elements: (I) rectangular, (2) iso parametric, (3) triangular, (4) free surface. (ii) Shell elements: (5) stiffness and mass. From the values of the velocity potential rp at the bottom of the tanks, we get the values of the pressure at these points. These values are used as known quantities in a numerical model of the Pogo loop stability.
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(

  (i) for the fluid ,tjcp = 0 m Q1 x ]O, O, T[ (nonpenetration condition) _;__ + gY = O r <J} ) ct I'1 �< ]O, T[ (free surface condition); (ii) for the shell 3 r- ..... " , cau _ c•u; L.. ,... -Pc ..... •") 8<P ' ) ' L.. a;;1l; =Pt -�---;-gu 3 n; x ]O, T[, E 2 x ]O, T[, E1 x ]O, T[. We recall he. re that the constitutive equations for linear elasticity are of the form a ii(u) = L \;hk"hk(u), h.k where A;;h k are the elasticity coefficients and 1 ( ouh cuk )""k( u ) = -2 -a. + -,, -.

  ): Find <!>('), Y(') defined on ]O, T[ taking their values in H1(Q 1 ) X L2(I'1) and satis fying with the initial conditions <P(x', 0) = <P 0 (x'), 3.2.1. Recalls vVe set 2<1> oY a2<1> -= -= -a-1 __ en Ct b Ct2 ,

LEMl\IA 4 .

 4 d(<P) = f n, r v<P 12 dx defi nes on Wan equivalent norm to the usual norm of H1(Q1).

  We define the symmetric unboundeJ operator cl: T I --sl by settingIt verifies thatCd>= Acp (Cd» if;) = f yif; da = j \rb \if; d. \ r,• n , ( cp =<!>Ir,_)•

  4. SPECTRAL PROBLE:\I ASSOCIATED W.ITH THE l::-<ITIAL PROBLEM 4.1. Description of the Problem

Fundamental

  Remark. Equation ( 18) is verified if we search Pin the space R The application of Green's formula in a symmetrical way leads to (21 ' ) \fl) E St This fundamental remark implies the reduction of Eqs. (19) and (20). LEM:\IA 10. Tlze problem ( 18)-(20) becomes the follov:ing: Find the scalar v and P = (</>, y, u) such that I r aii(u) Eij(v) d :c -J p,(gn

Property 2 .

 2 The spectral problem �9Jl' P, If' -a:(91P, ff> = 0 has an infinite sequence of real eigenvalues: Jim ;x,, = <_ <P, ,, ... <ħ(28) 

  > ,,, =V an -nL n ;au(u,,, ) 11; = p1v , /</>n -p1( u n • n) (g • n)

7 . 1 .I

 1 Matrix Equations of the Discretized ProblemIn this analysis v is not necessary zero on £ 3 • Taking into account the preceding Rem � rk in Section 6, the function space here considered is Equations (18)-(20) of the weak problem recalled here, iv [ f Pt v<f> vi/ J dx -J PtJ'i/ J da -I. p1(un) • /; da] = 0 r G;;(u) E;;(v) dx -1•2 r Pc(u'i: ) d.-.; -11 2 r Pr</>('L'll) da i.i .. < ¶2 �a :; "<i1

  are discretized by the finite element method. The domain is con: rcd by a finite number of simplex models such as the open simplexes are disjoint, and two adjacent simplexes haYe a common side. The trial functions used are piecewise interpolation polynomials [11]. The unknowns are then the nodal values of the functions. '!!!*, •'lt*, <!>* are, after assembly procedure, the column matrices constituted by the nodal values of .the functions y, u, if>. The matrix formulation of the discretized problem is =0 (31) (in A1 the overbar represents the transpose quantity). The different submatrices of the system (31) ((S, K, k) E �; (i1.1, A1, A2, F) E Ji) are asso ciated with the bilinear forms of the functional equations (

Fie. 2 .

 2 Rectangular element.

Frc. 4 .

 4 Isoparnmetric element.

FIG. 5 .

 5 FIG. 5. Free surface ring.

7. 3 . 1 .L = [� 0 FR=

 310 .dpproximation o f f t1, p1 vef>\ f d.\' (a) Rectangular element. Let d>x and f * be The matrix: FR corresponding to the form <f*}�f* is with 2rrp1B [ ( ' ( 'LL 1 . dX dY J B Triangular element. \Ve obtain the matrix: Fr corrcspondinL' to <f*F rf * through the relation Fr= 2rrp1B [I . LLY dX dY ] B,

7. 3 . 2 .[ cos 0 :

 320 Approximation of Pt J r 1 y f da and Pt fr 1 </> {, da The matrices associated with these two bilinear forms are transposed one by the other. Using the notations of Section 7.2.2, let us put y * =[Yi ] , Y2 if; * = r � : J . {, * = [ 2� J , </> * = [�: J , setting, furthermore, C 1 = [�: ] , C1 = [�: ] . The elementarv matrices associated with p1 J r ,y,P da and Pt fr , </> {, da are, respectively, and with where D is the classical matrix of the characteristic coefficients of the material in linear orthotropic elasticity (the indexes L, C indicate longitudinal_ or circumferential stiffness). Relations (35) and (36) permit the calculation of E as a function of u* and v* in the form E( s, u*) = A(s) u*, E(s, v*) = A (s) v * . The matrix associated with the bilinear symmetric form on the shell element is z("Kc'v*, where Kc; = 27TL r A( s) DA (s) (Y1 + sY12) ds. 0 Kc' is the elementary matrix which represents the bilinear form in the local basis. The submatrix K of the set (3 I) is obtained afterwards by assembling the matrices where with Approximation of fn2 Pc(uv) dx. Let me' be the matrix which repre sents this form for a shell element.

  2rrp1Lg sin < j L2(s) L2(s) (1\ -T Y12s) ds. 0 kc = �kc' f?ll leads to the submatrix k of the set (31 ).

7. 3 . 5 .

 35 Approximation of J.r p;<fo(vn) da and J.r p1(un) if; da l l .

  2. l(b) and 7.2.1 ( c)), we have The elementary matrices associated with the discretized bilinear forms ar.c and where [ It"'] <P"' .

7. 4 .

 4 Resolution of the Discretized Problem -.Vumerical Results

1 = 0 0 =

 100 have a relation between llJ/*, Cil t*, and<!>*: .fi' (llJ/*, Cil l*, <!>*) = 0. (37)The reduction of the set (31) can be done by considering the_ following equation:[1Jt11 �n12] [ 8 ] [F* ] <;n12 m22 <P R * = 0 ' (38)where the first quantity in square brackets is JI!, the mass matrix of the set (31 ), and \vhcre [::i <!> * 1and F* is an arbitrary vector. (<PR* represents the column matrix constituted by all the unknowns<!>* except one.) Once (37) solved, the set (38) gi\•es <PR". The method avoids the use of the constraint relation 2.

8 .

 8 Figures 9 and 10 represent the shapes of the f;ee surface and of the shell and the velocity potential along the axis of revOlution.

(Frc. 9 .I 1 ! 2 I 3 � l I 5 TestIFIG. 11 .

 9123511 FIG. 11. Frequencies: Comparison with experimental results.

  

Frc. 7. Launcher configuration.
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where

The assemblage of these elementan-matrices forms the submatrix of the set (31 ) . Csing the interpolations defined in Section 7.2.2, the elementary matrix associated with this form is ga1 • a1 has been defined in Section 7.3.2.

The assemblage of these elementary matrices on the whole free surface provides the submatrix S of the set (31 ).

The geometry of the element has been described in Section 7.2.3. The calculus of the associated elementary matrix is carried out in the local system of coordinates (x, y ) . After a change of basis, the assemblage procedure is done in the global system of coordinates (X, Y).

The relations betwee_ n displacements and strains are the following [START_REF] Naghdi | On the theory of thin elastic shells, Quart .• -lppl[END_REF]: The same relations (36) are also utilized for the test function '1: (i"i , i•�):

The relations between the generalized stresses (resulting from an integra tion of the three-dimensional stresses with respect to the thickness of the shell) and the generalized strains, are the following: