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A Unified Beam Finite Element Model for Extension and Shear Piezoelectric Actuation Mechanisms

This paper presents a finite element model for adaptive sandwich beams to deal with either extension or shear actuation mechanism. The former corresponds to an elastic core sandwiched beam between two transversely polarized active surface layers; whereas, the latter consists of an axially polarized core, sandwiched between two elastic surface layers. For both configurations, an electric field is applied through thickness of the piezoelectric layers. The mechanical model is based on Bernoulli-Euler theory for the surface layers and Timoshenko beam theory for the core. It uses three variables, through-thickness constant deflection, and the mean and relative axial displacements of the core's upper and lower surfaces. Augmented by the bending rotation, these are the only nodal degrees of freedom of the proposed two-node adaptive sandwich beam finite element. The piezoelectric effect is handled through modification of the constitutive equation, when induced electric potential is taken into account, and additional electric forces and moments. The proposed finite element model is validated through static and dynamic analysis of extension and shear actuated, continuous and segmented, cantilever beam configurations. Finite element results show good comparison with those found in the literature, and indicate that the newly defined shear actuation mechanism presents several promising features over conventional extension actuation mechanism, particularly for brittle piezoceramics use and energy dissipation purposes.

INTRODUCTION

S

INCE the discovery of their reverse effect (actuation ef fect), piezoelectric materials are widely used for noise and vibration active structural control [ 1,[START_REF] Dosch | A Self-Sensing Piezoelectric Actuator for Collocated Control[END_REF][START_REF] Hagood | Improving Transverse Actuation of Piezoceramics Using Interdigitated Surface Electrodes[END_REF][START_REF] Warkentin | Rainbow Actuators for Acoustic Control: The Active Wall Concept[END_REF]. Crawley and de Luis [START_REF] Crawley | Use of Piezoelectric Actuators as Elements oflntelligent Structures[END_REF] presented uniform-strain and Bernoulli-Euler bending analytic models for segmented piezoelectric actua tors that are either bonded to an elastic substructure or em bedded in a laminated composite. It was found that the force applied by the actuators consists of a passive stiffness com ponent due to the presence of the actuator and a voltage de pendent component related to the force transmitted by the piezoelectric actuator to the structure. These models were later compared to more detailed finite element models which highlighted the presence of material shear in the actuators and structures [START_REF] Crawley | Detailed Models of Piezoce ramic Actuation Beams[END_REF]. The deviation from Bernoulli-Euler model was judged to be significant for shorter, thicker actua tors and for thick beams, where the influence of material shear was greatest.

Considering inertia and stiffness of surface-bounded piezoelectric materials and including effects ofrotary inertia and shear deformation, Yang and Lee [START_REF] Yang | Interaction of Structure Vibration and Piezoelectric Actuation[END_REF][START_REF] Yang | Structural Vibration Suppression by Concurrent Piezoelectric Sensors and Actuators[END_REF] developed a stepped beam model to investigate analytically, the interac tion of structure vibration and piezoelectric actuation under closed-circuit conditions. Their analysis shows that a gener alized stiffness from electromechanical coupling is induced in the structure system by the interaction, which leads to dif-
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ferent natural frequency predictions compared with those at open-circuit.

The effect of coupling between longitudinal and bending deflections on the vibration ofpiezoelectrically sensored/ac tuated beams was investigated by Herman Shen [10,[START_REF] Herman Shen | A New Modeling Technique for the Piezoelectrically Actuated Beams[END_REF] through a Timoshenko beam theory. A one-dimensional fi nite element formulation was also presented, consisting of two finite elements of two dof/node for the beam and five dof/node for the piezoelectric devices, assembled by a spe cial procedure to satisfy the compatibility requirements in the vicinity of the interfaces between the piezoelectric de vices and the main structure. Two additional nodal potential dofs were used for the piezoelectric finite element and the bending deflection was chosen cubic whereas longitudinal deflection and shear angle were taken linear.

Although mentioned by Soong and Hanson [START_REF] Soong | Recent Development in Active and Hybrid Control Research in the U.S[END_REF], only re cently, a comparative study of a cantilevered beam, con structed using the shear mode of piezoelectric materials and the corresponding surface-mounted actuation structure, was performed by Sun and Zhang [START_REF] Sun | Use of Thickness-Shear Mode in Adaptive Sandwich Structures[END_REF] using a commercial finite element analysis code. It was concluded that, for vibration control, the sandwich beam is more suitable for high frequency and small amplitude case; whereas, the surface mounted actuation structure may be used for the opposite case. However, from the weight consideration, the sandwich beam was found more efficient than the surface-mounted ac tuation structure. These results were confirmed later through a theoretical formulation [START_REF] Zhang | Formulation of an Adaptive Sand wich Beam[END_REF]. It was maintained that the greatest advantage provided by the adaptive sandwich beam is its lower stresses in the actuator and along the interface be- It is the objective of the present work to present an adap tive sandwich beam finite element, capable of dealing with -either extension or shear actuation mechanisms. To this end, all layers are considered piezoelectric, but the poling direc tion is supposed parallel to the transversely applied electric field for the faces and in the longitudinal direction for the core, i.e., perpendicular to the applied electric field. Beside, the faces are assumed unsymmetric, thin and resist mem brane and bending stresses only (Bernoulli-Euler beams), whereas the core is supposed to be relatively thick and can re sist membrane, bending and shear stresses (Timoshenko beam). Parametric studies [START_REF] Benjeddou | Comparison of Extension and Shear Actuation Mechanisms for Smart Structure Beams[END_REF] indicate that these hypotheses imply that the core should be softer than the faces and thick enough to produce shear stresses, and that the piezoelectric actuators are more performant for stiffer and thinner con trolled structures. It was also shown in Reference [START_REF] Benjeddou | Comparison of Extension and Shear Actuation Mechanisms for Smart Structure Beams[END_REF] that there exist optimal values of faces to core stiffness and thick ness ratios for maximum induced bending of the structure. The kinematics is entirely described by the transverse deflec tion and, the mean and relative longitudinal displacements of the upper and lower skins of the core. Augmented by the first deflection derivative, these are the only nodal degrees of freedom (dot) of the adpative sandwich element, i.e., there is no need to introduce additional electric dofs. The major con tributions of the present work over that of Zhang and Sun [START_REF] Zhang | Formulation of an Adaptive Sand wich Beam[END_REF] are: (I) the main variables set to describe the kinematics and the finite element degrees of freedom above; (2) the more careful and detailed formulation of the electrical prob lem for both actuation mechanisms, in particular the induced potential which is taken into account for the extension actua tion mechanism and the description of the kind of electric loads induced by the imposed potentials for both actuation mechanisms; and (3) the uniform finite element formulation which is presented for the first time to the authors' knowl edge. No finite element formulations were developed either in References [START_REF] Sun | Use of Thickness-Shear Mode in Adaptive Sandwich Structures[END_REF] or [START_REF] Zhang | Formulation of an Adaptive Sand wich Beam[END_REF].

THEORETICAL FORMULATION

The present sandwich adaptive beam model is based on the following assumptions: I. Mechanical and electrical quantities are sufficiently small so that linear theories of elasticity and piezoelectricity ap ply. 2. Elastic and piezoelectric materials used here are consid ered orthotropic with axes of material symmetry coincid ing with the sandwich beam axes. 3. Piezoelectric layers have their upper and lower skins fully covered with electrodes. 4. Perfect bonding occurs between layers of the sandwich structure. 5. Transverse deflection of all layers is the same at any given location in the beam thickness.

6. All layers are supposed to be in plane electrical and defor mation states. Moreover, transverse stress component is considered small compared to other stress components and can be neglected. 7. The sandwich beam faces are supposed to behave as Bernoulli-Euler beams and can be either elastic or piezo electric, poled along the thickness direction. They also may have different geometrical and material properties, i.e., the sandwich construction can be unsymmetric. 8. The sandwich beam core is considered a Timoshenko beam and can be either elastic or piezoelectric with a pol ing direction parallel to the longitudinal direction. Rotary inertia effects are also incorporated.

Kinematics Description

Based on the above assumptions and to the kinematics il lustrated in Figure 1, this section will show that all mechani cal quantities (displacements, strains, energies, ... ) can be written in terms of the transverse deflection wand the mean u and relative 'ii longitudinal displacements of the upper and lower skins of the core, defined as,

u + + u u = u c = --- 2 'ii = he f3 c = u + -u -(1)
where u c , f3 c , he, u + and u -are, respectively, the mean dis placement, bending rotation, thickness of the core and axial displacements of upper and lower skins of the core layer (Figure 2). 
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The prime " ' " denotes the first derivative with respect to the longitudinal direction x.

STRAIN-DISPLACEMENT RELATIONS

Substituting Equations (2) in the usual strain displace ment relations for each layer, leads to the following axial and shear strain expressions for the upper, lower and core layers, ---------------•t--------'--------+----'----• � iiB -----------------------;;....s.. __ ..,... _________ - 
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where the superscripts m, b and s indicate, respectively, membrane, bending and shear generalized strains. These can be written in terms of the main three variables u, 'ii and w, as
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Plane-Stress Reduced Constitutive Equations

An orthotropic piezoelectric material with material sym metry axes parallel to the beam axes is considere1d here. Its elastic, piezoelectric and dielectric material constants are de noted, respectively, c u , ek J (i,j = I , ... ,6) and f.k (k = 1,2,3).

For both extension and shear actuated layers, a transverse electric field is applied. However, faces and core layers are treated separately, since they have different poling direc tions.

EXTENSION ACTUATION MECHANISM

For this case, the faces are poled in the thickness direction, i.e., parallel to the applied electric field. Mechanical and electrical assumptions for the faces, presented earlier, can be expressed mathematically as, where a, e and E are stress, strain symmetric tensors and elec tric field vectors. Consequently, using constitutive equations [Equation (Al), cf. Appendix], the following relations also hold Hence, constitutive equations are reduced to [START_REF] Dosch | A Self-Sensing Piezoelectric Actuator for Collocated Control[END_REF] where D is the electric displacement vector and, [START_REF] Hagood | Improving Transverse Actuation of Piezoceramics Using Interdigitated Surface Electrodes[END_REF] This modification is only due to the plane stress assump tion (a3 = O); other nonvanishing components a 2 and e 3 do not contribute to the electromechanical energy. Notice that the electromechanical coupling is between axial strain and transverse electric field component only. This is the basic foundation of the extension or surface-mounted actuators.

SHEAR ACTUATION MECHANISM

Using core's mechanical and electrical assumptions, that can be written as (10) leads to the following relations, according to constitutive equations [Equation (A2), cf. Appendix], [START_REF] Herman Shen | A New Modeling Technique for the Piezoelectrically Actuated Beams[END_REF] Hence, three-dimensional constitutive equations reduce to, [START_REF] Lin | Application of Commercial Finite Element Codes for the Analysis oflnduced Strain Actuated Structures[END_REF] where [START_REF] Rahmoune | Fi nite Element Modeling of a Smart Structure Plate System[END_REF] This modification is also due to the plane stress assump tion for the core (a3 = 0). Notice that the electromechanical coupling is between shear strain and transverse electric field component only. This is the origin of the newly defined con cept of shear actuation mechanism.

Electric State Description

This section aims to define the electric potential form in the faces and in the core for extension and shear actuation mechanisms. Electric field equations are then deduced for each case. Due to the different electric behavior of the faces and the core, extension and shear actuation mechanisms are also studied separately. These equations combined with direct effect from Equa tion [START_REF] Dosch | A Self-Sensing Piezoelectric Actuator for Collocated Control[END_REF], anq included in Equation ( 14), lead to a quadratic electric potential form in the faces,
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cp j and cp j are prescribed electric potentials on the upper and lower skins ofth� ith face, respectively and h ; is the ith face thickness. Hence, (fi; and 'i[J ; state the mean and relative (or difference) potential of the ith face.

As was shown in a previous paper [START_REF] Rahmoune | Fi nite Element Modeling of a Smart Structure Plate System[END_REF], the electric poten tial in the faces, given by Equation ( 16), is the sum of a linear part, entirely determined through the prescribed potentials 

3 i = A, B (18) 
Notice that the electric field is linear in the faces. The sec ond part of Equation ( 18) is often neglected in the literature. It represents the induced electric field.

SHEAR ACTUATION MECHANISM

The same above approach is used for the core layer. Con sidering that D c 1, 1 is negligible, compared to DCJ,3, Equation (14) also holds here, since D c 2 vanishes, according to Equa tion (I I). Then, using direct effect of Equation ( 12), in con junction with the transverse electric field definition [Equa tion [START_REF] Sun | Use of Thickness-Shear Mode in Adaptive Sandwich Structures[END_REF]], the electric potential in the core is shown to be linear in the thickness direction, since transverse shear strain is constant [cf. Equation ( 5)), i.e., -'Pc <Pc = <Pc + z h; [START_REF] Zhang | Formulation of an Adaptive Sand wich Beam[END_REF] where "'P c and 'ifJ c are now the mean and relative potentials of the core layer and h e, its thickness.

It is worthwhile to notice here that the simplifying as sumption on D c 1 , 1 leads to a negligible induced potential.

From the above equation, the transverse electric field component in the core layer is simply

'Pc E c 3 = -- he (20)
In this case the electric field is constant through the core layer.

Variational Formulation of the Problem

The variational formulation of the adaptive piezoelectric sandwich beam can be expressed as

oT-oH +ow= o (21)
where oT, oH and o Ware the virtual variations of kinetic en ergy, electromechanical energy and work done by external forces, respectively. Each of these quantities can be ex pressed in terms of the main variables u, u, w, for an actuation problem [START_REF] Benjeddou | A Finite Ele ment Model for Extension and Shear Piezoelectrically Actuated Adap tive Structures[END_REF]. However, for a sensoring problem, 'ijJ; should be included as main variable.

ELECTROMECHANICAL ENERGY VARIATION

Starting from the electromechanical energy of a piezo electric media of volume V,

1 H = -r (at: -DE )dV 2Jv (22)
then using constitutive Equations ( 8) and ( 12) and strain and electric field relations [Equations ( 4) and ( 15)), and integrat ing through thickness, the above equation becomes (23) where
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is a newly modified elastic constant. This modification is now due to the induced electric potential effect. I ; and A ; are the moment inertia and area of the ith layer. Notice that the electromechanical coupling for the faces (i = A ,B) is between membrane strains and imposed transverse electric field cp ;lh; due to piezoelectric modified constants e ��. However, for the core it is between transverse shear strain e(; and applied transverse electric field, due to the piezoelectric coupling c constant e1 5 . Strain-displacement Relations (5) are substituted in Equa tion (2 7) in order to express its variation in terms of the main variables u, u , wand cp only. For the sandwich adaptive beam, the kinetic energy is de fined as T= .!. r P • (u2 +w2 ) dv• j-A BC (31) Substituting displacements by their Expressions (2) and integrating on the beam ' s thickness, lead to

Reorganization and variation
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We then may obtain the variation of T where oHme can be seen as a virtual work of induced electric forces and moments. It can also be interpreted as the work of "initial" electrical stresses. In summary, the piezoelectric effect appears in the modifi cation of the bending behavior through the modified elastic constants c{ 1 , present in oHm, and in an additional equivalent work of electrical forces oHme• Consequently, there is no need for electrical degrees of freedom for the finite element formulation, which will be based on Equation (42). It is also worthy to notice that, for an actuation problem, electrical boundary conditions affect the equivalent electric work only through the modification of the electric "initial" electric state.

The practical case of symmetric construction (identical surface layers) was briefly discussed in Reference [START_REF] Benjeddou | A Finite Ele ment Model for Extension and Shear Piezoelectrically Actuated Adap tive Structures[END_REF] and de tailed in Reference [START_REF] Benjeddou | Comparison of Extension and Shear Actuation Mechanisms for Smart Structure Beams[END_REF]. In particular, it was found that the main fundamental difference between extension and shear actuation mechanisms is that the former acts through bound ary point axial forces and bending moments; whereas, the latter acts through distributed interface shear forces and bending moments [START_REF] Benjeddou | Comparison of Extension and Shear Actuation Mechanisms for Smart Structure Beams[END_REF].

FINITE ELEMENT FORMULATION

The aim of this section is to present the finite element for mulation for the actuation problem. As the variations are written in terms of the main variables u, u and w, Lagrange linear shape functions were used for u, u, since they are c 0 -continuous, and Hermite cubic ones for w, since it is C 1 -continuous.

Using Equation ( 29), the discretized form of the variation oHm can be written as

(43)
where K is the stiffness matrix of the adaptive sandwich beam, given by,

( 44 
)
and q is the dof-vector defined by force/moment vectors were first evaluated exactly (i.e., ana lytically). However, a shear locking was observed when the core tends to be thin. To solve this problem, the las. t term of Equation (44), corresponding to the shear stiffness was inte grated numerically with only two-point quadrature rule in stead of three-point exact numerical integration. All remain ing integrals were kept exactly integrated. Good results have then been obtained even for thin cores as it will be shown in the subsequent section.

VALIDATION OF THE FINITE ELEMENT MODEL

A sandwich beam finite element capable of treating both shear and extension actuation mechanisms, was imple mented. In order to validate it, comparisons between present element results and analytical and numerical results found in the literature, were made. Analytical and numerical results for static actuation of continuous [START_REF] Zhang | Formulation of an Adaptive Sand wich Beam[END_REF] and segmented [START_REF] Sun | Use of Thickness-Shear Mode in Adaptive Sandwich Structures[END_REF] configurations of cantilever beams were presented by Sun and Zhang [START_REF] Sun | Use of Thickness-Shear Mode in Adaptive Sandwich Structures[END_REF][START_REF] Zhang | Formulation of an Adaptive Sand wich Beam[END_REF]. Modal analysis of segmented configura tion of cantilever beams were presented by Lin et al. [START_REF] Lin | Application of Commercial Finite Element Codes for the Analysis oflnduced Strain Actuated Structures[END_REF]. For all cases, in the extension actuation mechanism, top and bot tom layers are supposed to be PZT5H piezoelectric material and the central core to be aluminium. Whereas, for the shear actuation mechanism, top and bottom layers are assumed to be aluminium and the central core to be composed of a small patch of PZT5H piezoelectric material and, covering the rest of the core, a rigid foam material. Materials properties are given in the Appendix.

Static Analysis

The geometric configurations of both actuation mecha nisms are presented in Figure 3 with L = I 00 mm, h = 16 mm and t= I mm. Beams are clamped atx = 0 and free atx = L. In order to bend the beam, voltages are applied at top and bot tom surfaces of piezoelectric layers, inducing bending elec tric forces. For the shear actuation mechanism, voltage ap plied to the piezoelectric core has a value of V = 20 V, and for the extension actuation mechanism, voltages applied to sur face actuators are V = ± I 0 V.

As a first analysis, the deflection of both beams for the continuous case, that is, with actuators having the beam's length, was evaluated and compared to analytical results of Reference [START_REF] Zhang | Formulation of an Adaptive Sand wich Beam[END_REF]. In this case, for the shear actuation mecha nism, there is no rigid foam since the piezoelectric actuator occupies all the core layer.

Finite element results for the transverse displacement of the shear actuated beam match very well with the theoretical solution [START_REF] Zhang | Formulation of an Adaptive Sand wich Beam[END_REF] [Figure 4 As a second analysis, actuator's position is set to vary. In each case, shear actuated beam's tip displacement induced by applied electric forces is evaluated. Actuator's length is fixed at a= I 0 mm and actuator's position is set to vary in the range [10,90] mm. It can be seen in Figure 6, that present fi nite element results show very good agreement with finite element results presented in Reference [START_REF] Sun | Use of Thickness-Shear Mode in Adaptive Sandwich Structures[END_REF], using a com mercial finite element code.

Modal Analysis

Natural modes and frequencies were evaluated for both shear and extension actuation mechanisms. Since it was not found in the literature evaluation of eigenfrequencies and modes for the shear actuation mechanism, only the extension actuation mechanism numerical eigenfrequencies were Table 1. First five natural bending frequencies (Hz) for shear and extension actuated cantilever beam.

Freq. 1

Shear actuation

Present FE results 989

Extension actuation Present FE results 1084 Analytical results [START_REF] Lin | Application of Commercial Finite Element Codes for the Analysis oflnduced Strain Actuated Structures[END_REF] 1030 Error(%) 5.24 compared to analytical [START_REF] Lin | Application of Commercial Finite Element Codes for the Analysis oflnduced Strain Actuated Structures[END_REF] ones. Natural frequencies were also given in Table 1 for the shear actuation mechanism. Ma terial data are the same as presented in Reference [START_REF] Lin | Application of Commercial Finite Element Codes for the Analysis oflnduced Strain Actuated Structures[END_REF] and geometric parameters are L = 50 mm, h = 2 mm, t = 0.5 mm, de = 11 mm and a = 20 mm. The equivalent shear actuation beam is represented by Figure 3(a). A graphical representa tion of the first three bending modes is shown in Figure 7. It can be seen that in all three bending modes, actuator's defor mation is lower for the shear actuation mechanism. The fi nite element results for the natural bending frequencies showed good agreement with analytical ones (Table 1 ).

CONCLUSIONS

A theoretical formulation and finite element implementa tion of a new adaptive unsymmetric sandwich beam model were presented and validated, for both extension and shear actuation mechanisms. Mechanically, the model is based on Bernoulli-Euler assumptions in the faces and Timoshenko hypotheses in the core. Rotary inertia effects were consid ered for all layers. Electrically, the electric potential was found to be quadratic for extension actuation mechanism (piezoelectric faces) and linear for shear actuation mecha nism (piezoelectric core). Besides, the sandwich beam was supposed to be short circuited, i.e., electric potentials were imposed on upper and lower faces of piezoelectric layers and natural boundary conditions (free-charge) were assumed on the remaining lateral boundaries. It was found that piezoelectric effects modify the bending stiffuess of the sandwich beam due to the induced potentials and induce a sort of" initial" electric stress-state which can be seen also as a generalized electric forces work. For the actua tion problem, all energy and work variations are written in terms of three main variables; namely, mean and relative ax ial displacements of the upper and lower core's skins and the transverse deflection of the beam. Augmented by the bend ing Bernoulli-Euler rotation, these are the only finite element dof, i.e., there was no use of additional electric dof.

The present adaptive sandwich finite element was used to study static deflection of a cantilever sandwich beam under extension and shear actuation conditions. The results show good comparisons to the analytic results found in the litera ture. Deformations of the sandwich beam were also shown to illustrate both extension and shear actuation mechanisms. It was also found that the induced potential in the faces increases the rigidity of the global structure. Dynamic analysis of both actuation mechanisms was also presented, through evaluation of natural bending frequencies and modes. Numerical results showed good agreement with analytical ones. Vibration modes are equivalent in both mechanisms; nevertheless shear actuators are less deformed than extension ones.

Careful comparisons of two cantilever beams with equiva lent geometrical and material properties and under equiva- oped in order to augment energy-dissipation capacity of the beam [START_REF] Benjeddou | Finite Element Modeling of Shear Actuated Structures[END_REF].

APPENDIX Constitutive Equations

For transversely polarized piezoelectric material, converse and direct effects constitutive equations have the following form 

  Figure 1. Piezoelectric actuation mechanisms.

  Starting with linear longitudinal displacements for each layer, enforcing the interface displacement continuity con ditions and using Equations ( 1 ), longitudinal displacements in the upper (A), lower (B) and core (C) layers, respec tively, are where r = uA -(z -zA )w '
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 2 Figure 2. Representation of the sandwich beam kinematics.
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  EXI'ENSION ACTUATION MECHANISMFor free volumic charge density assumption, the electro static equilibrium equation of the ith face layer reduces to Di3,3 = 0 (14) since Dil = D;2 = 0, according to Equation (7). Axial strains and electric field, written in terms of axial and transverse dis placements and the electric potential, respectively, are e;1 = u; -(z -Z; )w"; E;3 = -i:Jz<Pi (15)
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  and a quadratic part, proportional to the beam bending strain. The latter part represents the induced potential, often neglected in the literature. It depends on geometrical and ma terial properties.From Equation (16) transverse electric field components on the upper and lower faces are = --+ z-z. ) -w • h ;I e i * '
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  P ; is the volumic mass density of the ith layer and the dot symbol O stands for time derivation and w; = w for i = A,B , C.
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 2 displacements are substituted by their Expressions[START_REF] Benjeddou | A Finite Ele ment Model for Extension and Shear Piezoelectrically Actuated Adap tive Structures[END_REF], in Equation (33), in order to allow Equation (33) to be written in terms of the main variables u, u and w, only1 ( 4I c ) . . I + 4 PA A A + P n A n + Pc h� ii -2 (p A A A h AVARIATION OF THE WORK OF EXTERNAL MECHANICAL FORCES (34)Each layer of the adaptive sandwich structure can be sub jected to normal and transversal surface forces T� and TQ and to normal and transversal body forces t N and t Q, respec tively. The work due to these forces can be written as (35) Using displacement Expressions (2) and integrating this expression on the beam thickness, we obtain (36) where classical definitions of stress resultants are used for point forces and moments, for i =A, B,C and zc = 0. Also distributed forces and moments are defined by n; = J A ; t � dA;, m; = J A ; t � (z -z; )dA;, A variation of Equation (36) gives (38) (39) and use of Relation (2) gives the following expression in terms of the main variables, (N h -N h ) B + M A + Mn ow' VARIATIONAL FORMULATION OF THE ACTUATION PROBLEM (40) For the actuation problem, '(fl; is known (imposed), hence their variations o'Cp; vanish. It is clear then that oHe and oHem • defined in Equations (28) and (29), also vanish and Equation (28) reduces to oH = oHm + oHme (41) Substitution of this relation in Equation (21) gives oHm -oT = oW -oHme (42)

  Tstates for transpose operation and Bu, i = A,B,C,j = m, b, s are deformation matrices for membrane, bending and shear, respectively. Discretization of the kinetic energy variation [Equation (33)] is, oT = oqTMq (46) where Mis the mass matrix of the adaptive sandwich beam element, (47) and Bu, i = A,B,C,j = tx, tz, r are translation in x and z direc tions and rotatory derivative operators for upper and lower faces and core, respectively. q is the acceleration vector. Equation (39) of the external forces work is discretized as follows (48) where Fm is the mechanical external distributed forces/mo ments vector The equivalent electric work oHme can be discretized as follows: (50) where Fe is the induced electric forces/moments vector c 'P c BT ]dx + e 1 5 A c "h; Cs (51) Using Equations (43), (46), (48) and (50), Equation (42), expressed in matrix form reduces to solve the following lin ear problem: (52) Stiffness and mass [Equations (44) and (47)] matrices, and mechanical and induced electric [Equations ( 49) and ( 51)]

  a) Shear Actuation Mechanism b) Extension Actuation Mechanism

Figure 3 .

 3 Figure 3. Cantilever sandwich beam, shear and extension actuation mechanisms.

  (a)]. A representation of the magnified

  Position along x-direction (m) (a ) 0.1 deformed configuration of the beam is drawn in Figure 4(b) to show how the actuation of the piezoelectric core causes the bending of the sandwich beam. Finite element results for the transverse displacement of the extension actuated beam match very well with the theoretical solution [19] [Figure 5(a)]. A representation of the magnified deformed configura tion of the beam was drawn in Figure 5(b) to show how the actuation of the piezoelectric surface layers causes the bend ing of the sandwich beam.
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 405 Figure 4. (a) Transverse displacement of the beam and ( b) deformed configuration of the beam.

Figure 6 .

 6 Figure 6. Beam's tip transverse displacement for actua tor's several positions.

Figure 7 .

 7 Figure 7. Natural bending modes and frequencies for shear and extension actuation mechanisms.

  lent electrical boundary conditions, indicate that the shearactuated beam is less deformed (smaller tip's maximum transverse displacement). Hence, the bending stress is also smaller which is an advantage for brittle piezoceramics. The shear actuator mechanism induces also extra shear strains which are another benefit for energy dissipation purposes.The present work is being extended to implement the sensoring capacity of the adaptive sandwich beam in order to study active control applications. A second adaptive sandwich beam model, taking into account the extra-shear due to the sliding of the faces against the core, has also been develc, D and E are stress, strain symmetric tensors and electric displacement and field vectors. c iJ , ek J (i,j = 1, .. .,6) and Ek (k = 1,2,3) denote, respectively, elastic, piezoelectric and dielectric material constants.If a piezoelectric material is poled in its axial direction ( 1

  x), its constitutive equations can be obtained from Equa tion (A 1 ), through a 90° rotation around the second direction (2 or y) followed by a 180° rotation around the third direction (3 or z) . Applying successively these rotations to Equation (A 1 ), we get [9= 2690 kg m-3; Young's modulus: E = 70.3 GPa; Poisson's coefficient: v = 0.345. RIGID FOAM Density:p = 32 kg m-3; Young's modulus: E= 35.3 MPa; Shear modulus: G = 12.76 MPa.