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A Unified Beam Finite Element Model for Extension and Shear

Piezoelectric Actuation Mechanisms 

A. BENJEDDOU,* M. A. TRINDADE AND R. OHAYON 
Structural Mechanics and Coupled Systems Laboratory, CNAM, 2 rue Conte, 75003, Paris, France 

ABSTRACT: This paper presents a finite element model for adaptive sandwich beams to deal with either extension or shear actuation 

mechanism. The former corresponds to an elastic core sand­wiched beam between two transversely polarized active surface layers; 
whereas, the latter consists of an axially polarized core, sandwiched between two elastic surface layers. For both configurations, an electric 
field is applied through thickness of the piezoelectric layers. The mechanical model is based on Bernoulli-Euler theory for the surface 
layers and Timoshenko beam theory for the core. It uses three variables, through-thickness constant deflection, and the mean and relative 
axial displacements of the core's upper and lower surfaces. Augmented by the bending rotation, these are the only nodal degrees of freedom 
of the proposed two-node adaptive sandwich beam finite element. The piezoelec­tric effect is handled through modification of the 
constitutive equation, when induced electric poten­tial is taken into account, and additional electric forces and moments. The proposed 
finite element model is validated through static and dynamic analysis of extension and shear actuated, continuous and segmented, cantilever 
beam configurations. Finite element results show good comparison with those found in the literature, and indicate that the newly defined 
shear actuation mechanism presents several promising features over conventional extension actuation mechanism, particularly for brittle 
piezoceramics use and energy dissipation purposes. 

INTRODUCTION 

SINCE the discovery of their reverse effect (actuation ef­
fect), piezoelectric materials are widely used for noise 

and vibration active structural control [ 1,8,9, 16]. Crawley 
and de Luis [6] presented uniform-strain and Bernoulli-Euler 
bending analytic models for segmented piezoelectric actua­
tors that are either bonded to an elastic substructure or em­
bedded in a laminated composite. It was found that the force 
applied by the actuators consists of a passive stiffness com­
ponent due to the presence of the actuator and a voltage de­
pendent component related to the force transmitted by the 
piezoelectric actuator to the structure. These models were 
later compared to more detailed finite element models which 
highlighted the presence of material shear in the actuators 
and structures [7]. The deviation from Bernoulli-Euler 
model was judged to be significant for shorter, thicker actua­
tors and for thick beams, where the influence of material 
shear was greatest. 

Considering inertia and stiffness of surface-bounded 
piezoelectric materials and including effects ofrotary inertia 
and shear deformation, Yang and Lee [ 17, 18) developed a 
stepped beam model to investigate analytically, the interac­
tion of structure vibration and piezoelectric actuation under 
closed-circuit conditions. Their analysis shows that a gener­
alized stiffness from electromechanical coupling is induced 
in the structure system by the interaction, which leads to dif-

•Author to whom correspondence should be addressed. 

ferent natural frequency predictions compared with those at 
open-circuit. 

The effect of coupling between longitudinal and bending 
deflections on the vibration ofpiezoelectrically sensored/ac­
tuated beams was investigated by Herman Shen [10,11] 
through a Timoshenko beam theory. A one-dimensional fi­
nite element formulation was also presented, consisting of 
two finite elements of two dof/node for the beam and five 
dof/node for the piezoelectric devices, assembled by a spe­
cial procedure to satisfy the compatibility requirements in 
the vicinity of the interfaces between the piezoelectric de­
vices and the main structure. Two additional nodal potential 
dofs were used for the piezoelectric finite element and the 
bending deflection was chosen cubic whereas longitudinal 
deflection and shear angle were taken linear. 

Although mentioned by Soong and Hanson [14], only re­
cently, a comparative study of a cantilevered beam, con­
structed using the shear mode of piezoelectric materials and 
the corresponding surface-mounted actuation structure, was 
performed by Sun and Zhang [ 15] using a commercial finite 
element analysis code. It was concluded that, for vibration 
control, the sandwich beam is more suitable for high­
frequency and small amplitude case; whereas, the surface­
mounted actuation structure may be used for the opposite 
case. However, from the weight consideration, the sandwich 
beam was found more efficient than the surface-mounted ac­
tuation structure. These results were confirmed later through 
a theoretical formulation [ 19]. It was maintained that the 
greatest advantage provided by the adaptive sandwich beam 
is its lower stresses in the actuator and along the interface be-
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bended surface-mounted beam due to extension actuation 
a) extension actuation mechanism

undeformed sandwich smart beam bended sandwich beam due to shear actuation 
b) shear actuation mechanism

Figure 1. Piezoelectric actuation mechanisms. 

tween the actuator and the host structure. This fact was seen 
to minimize debonding problems and are known to contrib­
ute to the structural integrity of the actuator. 

Surface-mounted piezoelectric actuators are known to in­
duce longitudinal strains; this defines their usual extension 

actuation mechanism [Figure I(a)]. However, sandwiched 
piezoelectric materials could induce transverse shear strains, 
provided that applied electric field and poling direction are 
perpendicular; this is the less known shear actuation mecha­

nism [Figure l(b)]. Although the so-called extension actu­
ated adaptive structures were extensively studied in the lit­
erature, shear actuated smart structures are much less 
investigated. 

It is the objective of the present work to present an adap­
tive sandwich beam finite element, capable of dealing with 
-either extension or shear actuation mechanisms. To this end, 
all layers are considered piezoelectric, but the poling direc­
tion is supposed parallel to the transversely applied electric 
field for the faces and in the longitudinal direction for the 
core, i.e., perpendicular to the applied electric field. Beside, 
the faces are assumed unsymmetric, thin and resist mem­
brane and bending stresses only (Bernoulli-Euler beams), 
whereas the core is supposed to be relatively thick and can re­
sist membrane, bending and shear stresses (Timoshenko 
beam). Parametric studies [4] indicate that these hypotheses 
imply that the core should be softer than the faces and thick 
enough to produce shear stresses, and that the piezoelectric 
actuators are more performant for stiffer and thinner con­
trolled structures. It was also shown in Reference [4] that 
there exist optimal values of faces to core stiffness and thick­
ness ratios for maximum induced bending of the structure. 
The kinematics is entirely described by the transverse deflec­
tion and, the mean and relative longitudinal displacements of 
the upper and lower skins of the core. Augmented by the first 

deflection derivative, these are the only nodal degrees of 
freedom (dot) of the adpative sandwich element, i.e., there is 
no need to introduce additional electric dofs. The major con­
tributions of the present work over that of Zhang and Sun 
[19] are: (I) the main variables set to describe the kinematics 
and the finite element degrees of freedom above; (2) the 
more careful and detailed formulation of the electrical prob­
lem for both actuation mechanisms, in particular the induced 
potential which is taken into account for the extension actua­
tion mechanism and the description of the kind of electric 
loads induced by the imposed potentials for both actuation 
mechanisms; and (3) the uniform finite element formulation 
which is presented for the first time to the authors' knowl­
edge. No finite element formulations were developed either 
in References [15] or [19]. 

THEORETICAL FORMULATION 

The present sandwich adaptive beam model is based on 
the following assumptions: 

I. Mechanical and electrical quantities are sufficiently small 
so that linear theories of elasticity and piezoelectricity ap­
ply. 

2. Elastic and piezoelectric materials used here are consid­
ered orthotropic with axes of material symmetry coincid­
ing with the sandwich beam axes.

3. Piezoelectric layers have their upper and lower skins fully
covered with electrodes.

4. Perfect bonding occurs between layers of the sandwich
structure.

5. Transverse deflection of all layers is the same at any given
location in the beam thickness.
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6. All layers are supposed to be in plane electrical and defor­
mation states. Moreover, transverse stress component is
considered small compared to other stress components
and can be neglected.

7. The sandwich beam faces are supposed to behave as
Bernoulli-Euler beams and can be either elastic or piezo­
electric, poled along the thickness direction. They also
may have different geometrical and material properties,
i.e., the sandwich construction can be unsymmetric.

8. The sandwich beam core is considered a Timoshenko
beam and can be either elastic or piezoelectric with a pol­
ing direction parallel to the longitudinal direction. Rotary
inertia effects are also incorporated.

Kinematics Description 

Based on the above assumptions and to the kinematics il­
lustrated in Figure 1, this section will show that all mechani­
cal quantities (displacements, strains, energies, . . .  ) can be 
written in terms of the transverse deflection wand the mean u 
and relative 'ii longitudinal displacements of the upper and
lower skins of the core, defined as, 

u+ + u­
u = uc = ---

2 
'ii= he f3c = u+ - u- (1)

where uc, f3c, he, u+ and u- are, respectively, the mean dis­
placement, bending rotation, thickness of the core and axial 
displacements of upper and lower skins of the core layer 
(Figure 2). 

r I 

DISPLACEMENT FIELD EQUATIONS 
Starting with linear longitudinal displacements for each 

layer, enforcing the interface displacement continuity con­
ditions and using Equations ( 1 ), longitudinal displacements
in the upper (A), lower (B) and core (C) layers, respec­
tively, are 

where 

r 
= uA -(z - zA )w'

Un = un -(z- zn )w'

Uc = uc + zf3c 

- U hA 1 uA = u+---w 
2 2 

- U hn I un = u - - + - w
2 2 

(2) 

(3) 

The prime "'" denotes the first derivative with respect to the
longitudinal direction x. 

STRAIN-DISPLACEMENT RELATIONS 

Substituting Equations (2) in the usual strain displace­
ment relations for each layer, leads to the following axial 
and shear strain expressions for the upper, lower and core 
layers, 

hA r - - - - - - - - - - - - - - - - -1--------.---...;.-.;... I --1:----�.--------f-----; iic he L- - - - - - - - - - - - - - - - ·t--------'--------+----'----· 
� iiB ---- - -- - ------ -- -- -----;;....s.. __ ..,... _________ -

Figure 2. Representation of the sandwich beam kinematics. 

x 
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e Al = e� + (z - z A )e� 

(4) 

where the superscripts m, b and s indicate, respectively,
membrane, bending and shear generalized strains. These can 
be written in terms of the main three variables u, 'ii and w, as

_, 'ii' hA II h e� = u + 2- 2 w ; e A = -w11;

_, h nr -1 U + B 11 e = u - - - w · B 2 2 ' e� = -w11;

-1u eh - -· c he ' 
u I e(: = - + w

he 
(5) 

Plane-Stress Reduced Constitutive Equations 

An orthotropic piezoelectric material with material sym­
metry axes parallel to the beam axes is considere1d here. Its
elastic, piezoelectric and dielectric material constants are de­
noted, respectively, cu, ekJ (i,j = I , . . .  ,6) and f.k (k = 1,2,3).
For both extension and shear actuated layers, a transverse 
electric field is applied. However, faces and core layers are 
treated separately, since they have different poling direc­
tions. 

EXTENSION ACTUATION MECHANISM 
For this case, the faces are poled in the thickness direction, 

i.e., parallel to the applied electric field. Mechanical and
electrical assumptions for the faces, presented earlier, can be 
expressed mathematically as, 

where a, e and E are stress, strain symmetric tensors and elec­
tric field vectors. Consequently, using constitutive equations 
[Equation (Al), cf. Appendix], the following relations also 
hold 

Hence, constitutive equations are reduced to 

(8) 

where D is the electric displacement vector and, 

(9) 

This modification is only due to the plane stress assump­
tion (a3 = O); other nonvanishing components a2 and e3 do 
not contribute to the electromechanical energy. Notice that 
the electromechanical coupling is between axial strain and 
transverse electric field component only. This is the basic 
foundation of the extension or surface-mounted actuators. 

SHEAR ACTUATION MECHANISM 
Using core's mechanical and electrical assumptions, that 

can be written as 

(10) 

leads to the following relations, according to constitutive 
equations [Equation (A2), cf. Appendix], 

(11) 

Hence, three-dimensional constitutive equations reduce to, 

(12) 

where 

(13) 

This modification is also due to the plane stress assump­
tion for the core (a3 = 0). Notice that the electromechanical
coupling is between shear strain and transverse electric field 
component only. This is the origin of the newly defined con­
cept of shear actuation mechanism. 

Electric State Description 

This section aims to define the electric potential form in 
the faces and in the core for extension and shear actuation 

mechanisms. Electric field equations are then deduced for 
each case. Due to the different electric behavior of the faces 
and the core, extension and shear actuation mechanisms are 
also studied separately. 
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EXI'ENSION ACTUATION MECHANISM 

For free volumic charge density assumption, the electro­
static equilibrium equation of the ith face layer reduces to 

Di3,3 = 0 ( 14) 

since Dil = D;2 = 0, according to Equation (7). Axial strains
and electric field, written in terms of axial and transverse dis­
placements and the electric potential, respectively, are 

e;1 = u; - (z - Z; )w"; E;3 = -i:Jz<Pi (15) 

These equations combined with direct effect from Equa­
tion (8), anq included in Equation (14), lead to a quadratic 
electric potential form in the faces, 

- ( 4( 2 ) h2 i* - <{J; z - Z; ) i e31 ,,<{J; = <{J; + (z - Z; )h.+ 1- h2 g j; W I I E3 

where 

cpj +<Pi 
'i>; = --'---

2 
- + -<{J; = <P; - <{J; 

(16) 

(17)

cp j and cp j are prescribed electric potentials on the upper and
lower skins ofth� ith face, respectively and h; is the ith face
thickness. Hence, (fi; and 'i[J; state the mean and relative (or
difference) potential of the ith face. 

As was shown in a previous paper [ 13), the electric poten­
tial in the faces, given by Equation ( 16), is the sum of a linear 
part, entirely determined through the prescribed potentials 
cp±, and a quadratic part, proportional to the beam bending
strain. The latter part represents the induced potential, often 
neglected in the literature. It depends on geometrical and ma­
terial properties. 

From Equation (16) transverse electric field components 
on the upper and lower faces are 

- i* 
<P; 

( e31 ,, 
E;3 = --+ z- z. ) -w · h; I ei* '

3 
i = A, B (18)

Notice that the electric field is linear in the faces. The sec­
ond part of Equation ( 18) is often neglected in the literature. 
It represents the induced electric field. 

SHEAR ACTUATION MECHANISM 

The same above approach is used for the core layer. Con­
sidering that Dc1,1 is negligible, compared to DCJ,3, Equation
(14) also holds here, since Dc2 vanishes, according to Equa­
tion (I I). Then, using direct effect of Equation ( 12), in con­
junction with the transverse electric field definition [Equa­
tion (15)], the electric potential in the core is shown to be

linear in the thickness direction, since transverse shear strain 
is constant [cf. Equation (5)), i.e., 

- 'Pc 
<Pc = <Pc + z h; (19) 

where "'Pc and 'ifJc are now the mean and relative potentials of
the core layer and he, its thickness.

It is worthwhile to notice here that the simplifying as­
sumption on Dc1,1 leads to a negligible induced potential.

From the above equation, the transverse electric field 
component in the core layer is simply 

'Pc 
Ec3 = --

he 
(20) 

In this case the electric field is constant through the core 
layer. 

Variational Formulation of the Problem 

The variational formulation of the adaptive piezoelectric 
sandwich beam can be expressed as 

oT- oH +ow= o (21) 

where oT, oH and o Ware the virtual variations of kinetic en­
ergy, electromechanical energy and work done by external 
forces, respectively. Each of these quantities can be ex­
pressed in terms of the main variables u, u, w, for an actuation
problem [2]. However, for a sensoring problem, 'ijJ; should be
included as main variable. 

ELECTROMECHANICAL ENERGY VARIATION 
Starting from the electromechanical energy of a piezo­

electric media of volume V, 

1
H = - r (at: - DE )dV 2Jv (22) 

then using constitutive Equations (8) and ( 12) and strain and 
electric field relations [Equations ( 4) and ( 15)), and integrat­
ing through thickness, the above equation becomes 

(23) 

where 

+ 2ei* A ·t:'!' 'i[J; - E i* A ·('i[J; )2]dx. . 
A B (24) 3J I I h· 3 I h· ' l = , 

I I 
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He = 1 f L [ c * A ( m )2 c * I ( b )22 J 0 C33 c fc + C33 c fc 

and 

(ei* )2 -; - i* + _3_ 1_ 
ell - ell 

E i*3 

(25) 

(26) 

is a newly modified elastic constant. This modification is 
now due to the induced electric potential effect. I; and A; are
the moment inertia and area of the ith layer. Notice that the 
electromechanical coupling for the faces (i = A,B) is between
membrane strains and imposed transverse electric field cp ;lh;
due to piezoelectric modified constants e��. However, for
the core it is between transverse shear strain e(; and applied
transverse electric field, due to the piezoelectric coupling 

c constant e15 .
Reorganization and variation of H leads to

oH - rL { [cA* A oe"'e111 + c8* A oe"'e111 - Jo II A A A II B B B 

0-c A s., '£.[___+ A*A <PA 111 + e1s cuec·· e31 A --E 4 . he hA . 

(27) 

The above equation holds for either actuation or sensing; for 
the former case, ocp i = 0, whereas for the latter ocp i :# 0, i = 
A,B,C. 

Expression (27) of the electromechanical energy variation 
can be split into four parts 

where 0H111, oHe, 0H111e and oHem are the mechanical, dielec­
tric and piezoelectric coupling terms of oH, 

s.H _ fL [(cA*A s."m ., 111 +cB*A s."111"111 U 111 - J 0 11 A Uco A " A 11 B u.., B " B 

s.H rL [ A* A s. 111 <PA n *A s. Ill <P nu me = J, e31 AuEA -+e31 nuEB -0 hA hn

c A s. s <Pc ]dx + e1s c uEc h; 

5'. rL [ A* A o(j) A Ill + B *A ocp B Ill uHem =Jo e31 A--;;;-fA e31 n--;;;;-En 

(29) 

Strain-displacement Relations (5) are substituted in Equa­
tion (2 7) in order to express its variation in terms of the main 
variables u, u, wand cp only.

(30) 
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B* h ) -· I ( A*A h 8*A h ) -· -ell An B u +4 elI A A +ell B B u 

I ( A*A h2 B*A h2 4-AI - 4 ell A A + elI B B + ell A 

[ c Ac ( ii ·) c Ac "ij)c ] .s:-+ e - - + w + e - - uu 5 5  he he 15 he he 

+ [ A * A A (-, + u' h A 
")e -u ---w 31 hA 2 2 

KINETIC ENERGY VARIATION 

(30 cont.) 

For the sandwich adaptive beam, the kinetic energy is de­
fined as 

T= .!. r P· (u2 +w2 ) dv· j- A BC (31)
2 Jv I I I ' - ' ' 

where P; is the volumic mass density of the ith layer and the
dot symbol O stands for time derivation and w; = w for i = 
A,B,C. 

Substituting displacements by their Expressions (2) and 
integrating on the beam's thickness, lead to

r = � f � P A  [A A ( cil A )2 + w2 ) + I Ac w )2 ]

+Ps [An (Cus)2 +w2 ) +I8(w)2 ] 

We then may obtain the variation of T 

(32) 

Mean displacements are substituted by their Expressions 
(2), in Equation (33), in order to allow Equation (33) to be 
written in terms of the main variables u, u and w, only

1 ( 4Ic ) .. I 
+ 4 PA A A + P n An + Pc h� ii - 2 (p A A A h A

VARIATION OF THE WORK OF EXTERNAL 
MECHANICAL FORCES 

(34) 

Each layer of the adaptive sandwich structure can be sub­
jected to normal and transversal surface forces T� and TQ 
and to normal and transversal body forces t N and t Q, respec­
tively. The work due to these forces can be written as 

7



(35) 

Using displacement Expressions (2) and integrating this 

expression on the beam thickness, we obtain 

(36) 

where classical definitions of stress resultants are used for 
point forces and moments, 

for i =A, B,C andzc = 0. Also distributed forces and moments
are defined by 

n; = JA; t � dA;, m; = JA; t � (z - z; )dA;,

A variation of Equation (36) gives 

(38) 

(39) 

and use of Relation (2) gives the following expression in 
terms of the main variables, 

(N h - N h ) - A A 
2 

B B + M A + Mn ow'

VARIATIONAL FORMULATION OF THE 
ACTUATION PROBLEM 

(40) 

For the actuation problem, '(fl; is known (imposed), hence
their variations o'Cp ; vanish. It is clear then that oHe and oHem•
defined in Equations (28) and (29), also vanish and Equation 
(28) reduces to 

oH = oHm + oHme (41) 

Substitution of this relation in Equation (21) gives 

oHm - oT = oW - oHme (42) 

where oHme can be seen as a virtual work of induced electric
forces and moments. It can also be interpreted as the work of 
"initial" electrical stresses. 

In summary, the piezoelectric effect appears in the modifi­
cation of the bending behavior through the modified elastic 
constants c{1, present in oHm, and in an additional equivalent

work of electrical forces oHme· Consequently, there is no
need for electrical degrees of freedom for the finite element 
formulation, which will be based on Equation (42). It is also 
worthy to notice that, for an actuation problem, electrical 
boundary conditions affect the equivalent electric work only 
through the modification of the electric "initial" electric 
state. 

The practical case of symmetric construction (identical 
surface layers) was briefly discussed in Reference [2] and de­
tailed in Reference [4]. In particular, it was found that the 
main fundamental difference between extension and shear 

actuation mechanisms is that the former acts through bound­
ary point axial forces and bending moments; whereas, the 
latter acts through distributed interface shear forces and 
bending moments [4]. 
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FINITE ELEMENT FORMULATION 

The aim of this section is to present the finite element for­
mulation for the actuation problem. As the variations are 

written in terms of the main variables u, u and w, Lagrange

linear shape functions were used for u, u, since they are
c0-continuous, and Hermite cubic ones for w, since it is
C1-continuous.

Using Equation (29), the discretized form of the variation 
oHm can be written as

(43) 

where K is the stiffness matrix of the adaptive sandwich
beam, given by, 

(44) 

and q is the dof-vector defined by

(45) 

Tstates for transpose operation and Bu, i = A,B,C,j = m,b, s

are deformation matrices for membrane, bending and shear, 
respectively. 

Discretization of the kinetic energy variation [Equation 
(33)] is, 

oT = oq TMq (46)

where Mis the mass matrix of the adaptive sandwich beam 
element, 

(47) 

and Bu, i = A,B,C,j = tx, tz, r are translation in x and z direc­
tions and rotatory derivative operators for upper and lower 
faces and core, respectively. q is the acceleration vector.

Equation (39) of the external forces work is discretized as 
follows 

(48) 

where Fm is the mechanical external distributed forces/mo­
ments vector 

The equivalent electric work oHme can be discretized as

follows: 

(50) 

where Fe is the induced electric forces/moments vector

c 'Pc BT ]dx + e15 Ac "h; Cs (51) 

Using Equations (43), (46), (48) and (50), Equation (42), 
expressed in matrix form reduces to solve the following lin­
ear problem: 

(52) 

Stiffness and mass [Equations (44) and (47)] matrices, and 
mechanical and induced electric [Equations ( 49) and ( 51)] 
force/moment vectors were first evaluated exactly (i.e., ana­
lytically). However, a shear locking was observed when the 
core tends to be thin. To solve this problem, the las.t term of 
Equation (44), corresponding to the shear stiffness was inte­
grated numerically with only two-point quadrature rule in­
stead of three-point exact numerical integration. All remain­
ing integrals were kept exactly integrated. Good results have 
then been obtained even for thin cores as it will be shown in 
the subsequent section. 

VALIDATION OF THE FINITE ELEMENT MODEL 

A sandwich beam finite element capable of treating both 
shear and extension actuation mechanisms, was imple­
mented. In order to validate it, comparisons between present 
element results and analytical and numerical results found in 
the literature, were made. Analytical and numerical results 
for static actuation of continuous [19] and segmented [ 15] 
configurations of cantilever beams were presented by Sun 
and Zhang [15, 19]. Modal analysis of segmented configura­
tion of cantilever beams were presented by Lin et al. [ 12]. For
all cases, in the extension actuation mechanism, top and bot­
tom layers are supposed to be PZT5H piezoelectric material 
and the central core to be aluminium. Whereas, for the shear 

actuation mechanism, top and bottom layers are assumed to 
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a) Shear Actuation Mechanism b) Extension Actuation Mechanism

Figure 3. Cantilever sandwich beam, shear and extension actuation mechanisms. 

be aluminium and the central core to be composed of a small 
patch of PZT5H piezoelectric material and, covering the rest 
of the core, a rigid foam material. Materials properties are 
given in the Appendix. 

Static Analysis 

The geometric configurations of both actuation mecha­
nisms are presented in Figure 3 with L = I 00 mm, h = 16 mm
and t =  I mm. Beams are clamped atx = 0 and free atx = L. In
order to bend the beam, voltages are applied at top and bot­
tom surfaces of piezoelectric layers, inducing bending elec­

tric forces. For the shear actuation mechanism, voltage ap­
plied to the piezoelectric core has a value of V = 20 V, and for
the extension actuation mechanism, voltages applied to sur­
face actuators are V = ± I 0 V. 

As a first analysis, the deflection of both beams for the 
continuous case, that is, with actuators having the beam's 
length, was evaluated and compared to analytical results of 
Reference [ 19]. In this case, for the shear actuation mecha­

nism, there is no rigid foam since the piezoelectric actuator 
occupies all the core layer. 

Finite element results for the transverse displacement of 
the shear actuated beam match very well with the theoretical 
solution [ 19] [Figure 4(a)]. A representation of the magnified 

g l 

.S �0.8 
-8 
�0.6 !! 
jo4 

0.2 

Analytical Solution (19) o o Present FE Solution 

0.02 0.04 0.06 0.08 
Position along x-direction (m) 

(a) 

0.1 

deformed configuration of the beam is drawn in Figure 4(b) 
to show how the actuation of the piezoelectric core causes the 
bending of the sandwich beam. Finite element results for the 
transverse displacement of the extension actuated beam 
match very well with the theoretical solution [19] [Figure 
5(a)]. A representation of the magnified deformed configura­
tion of the beam was drawn in Figure 5(b) to show how the 
actuation of the piezoelectric surface layers causes the bend­
ing of the sandwich beam. 

As a second analysis, actuator's position is set to vary. In 
each case, shear actuated beam's tip displacement induced 
by applied electric forces is evaluated. Actuator's length is 
fixed at a =  I 0 mm and actuator's position is set to vary in the 
range [10,90] mm. It can be seen in Figure 6, that present fi­
nite element results show very good agreement with finite 
element results presented in Reference [15], using a com­
mercial finite element code. 

Modal Analysis 

Natural modes and frequencies were evaluated for both 
shear and extension actuation mechanisms. Since it was not 
found in the literature evaluation of eigenfrequencies and 
modes for the shear actuation mechanism, only the extension 

actuation mechanism numerical eigenfrequencies were 

0.03 

0.02 0.04 0.06 0.08 0. I 0.12 Position along x-direc1ion (m) 
(b) 

Figure 4. (a) Transverse displacement of the beam and (b) deformed configuration of the beam. 
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0 

Analytical Solution [ 19] o o Present FE Solution 0.03 

0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1 Position along x-dircction (m) Position along x-direction (m) 
(a) (b) 

Figure 5. (a) Transverse displacement of the beam and (b) deformed configuration of the beam. 

"' 
-� dj7.5

7 

20 30 40 50 60 70 80 90 Position of actuator (mm) 
Figure 6. Beam's tip transverse displacement for actua­
tor's several positions. 

0.12 
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Table 1. First five natural bending frequencies (Hz) for shear and extension actuated cantilever beam. 
Freq. 1 

Shear actuation Present FE results 989 

Extension actuation Present FE results 1084 
Analytical results (12] 1030 
Error(%) 5.24 

compared to analytical [12] ones. Natural frequencies were 
also given in Table 1 for the shear actuation mechanism. Ma­

terial data are the same as presented in Reference [12] and 
geometric parameters are L = 50 mm, h = 2 mm, t = 0.5 mm,
de = 11 mm and a = 20 mm. The equivalent shear actuation
beam is represented by Figure 3(a). A graphical representa­
tion of the first three bending modes is shown in Figure 7. It 
can be seen that in all three bending modes, actuator's defor­

mation is lower for the shear actuation mechanism. The fi­

nite element results for the natural bending frequencies 
showed good agreement with analytical ones (Table 1 ). 

CONCLUSIONS 

A theoretical formulation and finite element implementa­
tion of a new adaptive unsymmetric sandwich beam model 
were presented and validated, for both extension and shear 

actuation mechanisms. Mechanically, the model is based on 
Bernoulli-Euler assumptions in the faces and Timoshenko 
hypotheses in the core. Rotary inertia effects were consid­
ered for all layers. Electrically, the electric potential was 
found to be quadratic for extension actuation mechanism 

(piezoelectric faces) and linear for shear actuation mecha­

nism (piezoelectric core). Besides, the sandwich beam was 
supposed to be short circuited, i.e. , electric potentials were 
imposed on upper and lower faces of piezoelectric layers and 

Freq. 2 Freq. 3 Freq. 4 Freq. 5 
3916 8374 17416 26025 

4430 12422 23499 38014 
4230 12000 23500 38500 
4.73 3.52 -0.00 -1.26 

natural boundary conditions (free-charge) were assumed on 
the remaining lateral boundaries. 

It was found that piezoelectric effects modify the bending 
stiffuess of the sandwich beam due to the induced potentials 
and induce a sort of" initial" electric stress-state which can be 
seen also as a generalized electric forces work. For the actua­
tion problem, all energy and work variations are written in 
terms of three main variables; namely, mean and relative ax­
ial displacements of the upper and lower core's skins and the 
transverse deflection of the beam. Augmented by the bend­
ing Bernoulli-Euler rotation, these are the only finite element 
dof, i.e. , there was no use of additional electric dof. 

The present adaptive sandwich finite element was used to 
study static deflection of a cantilever sandwich beam under 
extension and shear actuation conditions. The results show 
good comparisons to the analytic results found in the litera­
ture. Deformations of the sandwich beam were also shown to 
illustrate both extension and shear actuation mechanisms. It 
was also found that the induced potential in the faces increases 
the rigidity of the global structure. Dynamic analysis of both 
actuation mechanisms was also presented, through evaluation 
of natural bending frequencies and modes. Numerical results 
showed good agreement with analytical ones. Vibration 
modes are equivalent in both mechanisms; nevertheless shear 
actuators are less deformed than extension ones. 

Careful comparisons of two cantilever beams with equiva­
lent geometrical and material properties and under equiva-

Mode #1: 989 Hz Mode #2: 3916 Hz Mode #3: 8374 Hz 

Mode #1: 1084 Hz Mode #2: 4430 Hz Mode #3: 12422 Hz 

Figure 7. Natural bending modes and frequencies for shear and extension actuation mechanisms. 
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lent electrical boundary conditions, indicate that the shear-
actuated beam is less deformed (smaller tip's maximum 
transverse displacement). Hence, the bending stress is also 
smaller which is an advantage for brittle piezoceramics. The 
shear actuator mechanism induces also extra shear strains 
which are another benefit for energy dissipation purposes. 

The present work is being extended to implement the sen-
soring capacity of the adaptive sandwich beam in order to 
study active control applications. A second adaptive sand-
wich beam model, taking into account the extra-shear due to 
the sliding of the faces against the core, has also been devel-

OJ CJJ C12 C13 0 0 

Oz C12 Czz Cz3 0 0 

03 C13 Cz3 C33 0 0 

04 0 0 0 C44 0 

05 = 0 0 0 0 C55 

o6 0 0 0 0 0 

DJ 0 0 0 0 eJ5 

Dz 0 0 0 ez4 0 

D3 e3 J e32 e33 0 0 

where o, c, D and E are stress, strain symmetric tensors and
electric displacement and field vectors. ciJ, ekJ (i,j = 1, . .  .,6)
and E k  (k = 1,2,3) denote, respectively, elastic, piezoelectric
and dielectric material constants. 

If a piezoelectric material is poled in its axial direction ( 1 

OJ C33 Cz3 C13 0 0 

Oz C23 Czz C12 0 0 

03 C13 C12 C]] 0 0 

04 0 0 0 c66 0 

05 = 0 0 0 0 C55 

o6 0 0 0 0 0 

DJ e33 e3z e3J 0 0 

Dz 0 0 0 0 0 

D3 0 0 0 0 e15 

oped in order to augment energy-dissipation capacity of the 
beam [5]. 

APPENDIX 

Constitutive Equations 

For transversely polarized piezoelectric material, con-
verse and direct effects constitutive equations have the fol-
lowing form 

0 0 0 -e3J CJ 

0 0 0 -e3z cz 

0 0 0 -e33 c3 

0 0 -ez4 0 c4 

0 -eJ5 0 0 c5 (Al) 

c66 0 0 0 c6 

0 EJ 0 0 EJ 

0 0 E z 0 E z 

0 0 0 E 3 £3 

or x), its constitutive equations can be obtained from Equa­
tion (A 1 ), through a 90° rotation around the second direction 
(2 or y) followed by a 180° rotation around the third direction
(3 or z) . Applying successively these rotations to Equation
(A 1 ), we get [9] 

0 -e33 0 0 CJ 

0 -e3z 0 0 cz 

0 -e3J 0 0 c3 

0 0 0 0 c4 

0 0 0 -eJ5 c5 (A2) 

C44 0 -ez4 0 c6 

0 E 3 0 0 EJ 

ez4 0 E z 0 E z 

0 0 0 E J £3 

13



Material Properties 

ALUMINIUM 
Density: p = 2690 kg m-3; Young's modulus: E = 70.3 

GPa; Poisson's coefficient: v = 0.345. 

RIGID FOAM
Density:p = 32 kg m-3; Young's modulus: E= 35.3 MPa; 

Shear modulus: G = 12.76 MPa. 

PZT5H 

126 7.95 8.41 0 0 0 
126 8.41 0 0 0 

126 0 0 0 x 101 0 N m-2 c= 
233 0 0 

sym 23 0 
23 

0 0 0 0 
e =  0 0 0 17 [_L -6.5 23.3 0 0 

17]� c m-2 

[1.503 
€ = 0

0 

0 �]xrn-'Fm-11503 
0 13 

PIEZOELECTRIC MATERIAL OF THE MODAL 
ANALYSIS PROBLEM 

Density: p = 7730 kg m-3 

128 6.6 6.6 0 0 0 
128 6.6 0 0 0 

110 0 0 0 x 1 010 N m-2 c= 
21 0 0 

sym 21 0 
21 

REFERENCES 

I. Baz, A. 1997. "Boundary Control of Beams Using Active Constrained 
Layer Damping," J. Vib. Acoust., 119:166-172. 

2. Benjeddou, A., M.A. Trindade and R. Ohayon. 1997. "A Finite Ele­
ment Model for Extension and Shear Piezoelectrically Actuated Adap­
tive Structures," Japan-France Seminar on Intel!. Mater. Struct.. 277-
295. 

3. Benjeddou, A., M. A. Trindade and R. Ohayon. 1997. "A Finite Ele­
ment Model for Shear Actuated Adaptive Structures," 8th lnt. Conj 
Adaptive Struct. Tech., Wakayama, Japan, Technomic Publishing Co, 
Inc. (in press). 

4. Benjeddou, A., M. A. Trindade and R. Ohayon. 1998. "Comparison of 
Extension and Shear Actuation Mechanisms for Smart Structure 
Beams," 4th European Conf on Smart Struct. & Mater., July 6-8, Har­
rogate, UK (to be presented). 

5. Benjeddou, A., M. A. Trindade and R. Ohayon. 1998. "Finite Element 
Modeling of Shear Actuated Structures," 39th AIAAIASME/ASCE/ 
AHSIASC Structures, Structural Dynamics, and Materials Confer­
ence, April 20-23, Long Beach, CA, AIAA paper #98-1922. 

6. Crawley, E. F. and J. de Luis. 1987. "Use of Piezoelectric Actuators as 
Elements oflntelligent Structures," AIAA J., 25(10): 13 73-1385. 

7. Crawley, E. F. and E. H. Anderson. 1990. Detailed Models of Piezoce­
ramic Actuation Beams," J. Intel/. Mater. Syst. Struct., I :4-25. 

8. Dosch, J. J., D. J. Inman and E. Garcia. "A Self-Sensing Piezoelectric 
Actuator for Collocated Control," J. Intel/. Mater. Sy st. Struct., 
3:166-185. 

9. Hagood, N ., R. Kindel, K. Ghandi and P. Gaudenzi. 1993. "Improving 
Transverse Actuation of Piezoceramics Using Interdigitated Surface 
Electrodes," North American Conf on Smart Struct. & Mater., N. W. 
Hagood, G. J. Knowles, eds., SPIE 1917:341-352. 

I 0. Herman Shen, M.-H. 1994. "Analysis of Beams Containing Piezoelec­
tric Sensors and Actuators," Smart Mater. Struct., 3:439-447. 

11. Herman Shen, M.-H. 1995. "A New Modeling Technique for the 
Piezoelectrically Actuated Beams," Comp. & Struct., 57(3):361-366. 

12. Lin, M. W., A. 0. Abatan and C. A. Rogers. 1994. "Application of 
Commercial Finite Element Codes for the Analysis oflnduced Strain­
Actuated Structures," 2nd lnt. Conf Intel/. Mater., Technomic Pub­
lishing Co., Inc., 846-855. 

13. Rahmoune, M., D. Osmon!, A. Benjeddou and R. Ohayon. 1996. "Fi­
nite Element Modeling of a Smart Structure Plate System," 7th lnt. 
Coef. Adaptive Struct. Tech., Technomic Publishing Co., Inc., 463-
473. 

14. Soong, T. T. and R. D. Hanson. 1993. "Recent Development in Active 
and Hybrid Control Research in the U.S.," lnt. Workshop on Struct. 
Control, 483-490. 

15. Sun, C. T. and X. D. Zhang. 1995. "Use of Thickness-Shear Mode in 
Adaptive Sandwich Structures," Smart Mater. Struct., 4:202-206. 

16. Warkentin, D. J. and J. Tani. 1997. "Rainbow Actuators for Acoustic 
Control: The Active Wall Concept," 8th lnt. Coef. Adaptive Struct. 
Tech., Wakayama, Japan. Technomic Publishing Co .. Inc. (to appear). 

17. Yang, S. M. and Y. J. Lee. 1994. ''Interaction of Structure Vibration 
and Piezoelectric Actuation," Smart Mater. Struct., 3:494-500. 

18. Yang, S. M. and Y. J. Lee. 1996. "Structural Vibration Suppression by 
Concurrent Piezoelectric Sensors and Actuators," Smart Mater. 
Struct., 5:806-813. 

19. Zhang, X. D. and C. T. Sun. 1996. "Formulation of an Adaptive Sand­
wich Beam," Smart Mater. Struct., 5:814-823. 

14


