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Abstract 

Mycobacterium tuberculosis lipoarabinomannan (LAM) and biosynthetically related 

lipoglycans and glycans play an important role in host-pathogen interactions. Therefore, the 

elucidation of the complete biosynthetic pathways of these important molecules is expected 

to afford novel therapeutic targets. The characterization of biosynthetic enzymes and 

transporters involved in the formation and localization of these complex macromolecules in 

the bacterial cell envelope largely relies on genetic manipulation of mycobacteria and 

subsequent analyses of lipoglycan structural alterations. However, lipoglycans are present in 

relatively low amounts. Their purification to homogeneity remains tedious and time-

consuming. In order to overcome these issues and to reduce the biomass and time required for 

lipoglycan purification, we report here the development of a methodology to efficiently 

purify lipoglycans by sodium deoxycholate-PAGE. This faster purification method can be 

applied on a small amount of mycobacterial cells biomass (10-50 mg), resulting in tens of 

micrograms of purified lipoglycans. This amount of purified products was found to be 

sufficient to undertake structural analyses of lipoglycans and glycans carbohydrate domains 

by a combination of highly sensitive analytical procedures, involving cryoprobe NMR 

analysis of intact macromolecules and chemical degradations monitored by gas 

chromatography and capillary electrophoresis. This glycomic approach was successfully 

applied to the purification and structural characterization of a newly identified 

polysaccharide, structurally related to LAM, in the model fast-growing species 

Mycobacterium smegmatis.  
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Introduction 

One-third of the world’s population is infected by Mycobacterium tuberculosis (Mtb), the 

aetiological agent of human tuberculosis. Mtb cell envelope constituents, such as glycolipids, 

lipoglycans and glycans, play an important role in bacteria-host cell interactions (Angala et 

al, 2014; Ray et al, 2013). Biosynthetically related lipoglycans, comprising phosphatidyl-

myo-inositol mannosides (PIMs), lipomannan (LM) and lipoarabinomannan (LAM) play 

essential roles in mycobacterial physiology and are important immunomodulatory molecules 

of the bacilli (Briken et al, 2004; Gilleron et al, 2008; Mishra et al, 2011; Torrelles & 

Schlesinger, 2010; Vergne et al, 2015). LAM are amphipathic macromolecules which possess 

a tripartite structure, including i) a mannosyl-phosphatidyl-myo-inositol (MPI) anchor, ii) a 

polysaccharide backbone composed of a D-mannan with a linear chain of α(1→6)-linked D-

Manp units to which are attached single α(1→2)-D-Manp residues and a D-arabinan, with a 

linear chain of α(1→5)-linked D-Araf units punctuated by branching produced by 3,5-O-

linked α-D-Araf units, and finally iii) caps assigned either to small manno-oligosaccharides 

(ManLAM) or phosphoinositol (PILAM)  (Berg et al, 2007; Mishra et al, 2011; Nigou et al, 

2003). Lipid-free glycans structurally related to LAM and LM, i.e. arabinomannan (AM) and 

mannan, are also found in the outermost layers of the mycobacterial cell envelope (Nigou et 

al, 1999; Ortalo-Magne et al, 1995).  

The elucidation of the complete biosynthetic pathways of these important molecules is 

expected to afford novel therapeutic targets (Angala et al, 2014; Berg et al, 2007; Gilleron et 

al, 2008). In support of this assumption, D-arabinan biosynthesis is the target of ethambutol 

(Deng et al, 1995), a first-line drug in the treatment of tuberculosis, as well as of 

benzothiazinones (Makarov et al, 2009), which are new antituberculous drug candidates in 

preclinical development. The characterization of biosynthetic enzymes as well as the 

transporters involved in the formation and localization of these complex macromolecules 
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largely relies on genetic manipulation of mycobacteria and subsequent analyses of lipoglycan 

structural alteration (Angala et al, 2014; Gilleron et al, 2008). However, lipoglycans are 

present in relatively low amounts (~1 mg/g of dry mycobacteria) and their purification to 

homogeneity remains tedious and time-consuming (Laneelle et al, 2015; Nigou et al, 2004). 

Conventional lipoglycan purification protocol involves several solvent extractions, followed 

by enzymatic digestions and two chromatographic steps: hydrophobic interaction 

chromatography to separate glycans and lipoglycans and then gel filtration to separate PIM, 

LM and LAM individually. If homogenous fractions of PIM, LM or LAM are desired and 

because gel filtration chromatography is not adapted to small quantities, a minimum of 1 g of 

dry biomass is required to start with.   

In order to reduce the biomass and the time required for lipoglycan purification, we aimed at 

replacing the two chromatographic steps by a single step of purification using polyacrylamide 

gel electrophoresis (PAGE). This approach has been successful for purification of LPS and 

proteins (Claverol et al, 2003; Galvani et al, 2000; Hardy et al, 1997; Kurth & Stoffel, 1990; 

Pupo et al, 2000; Pupo et al, 2004). Typically, after PAGE migration, macromolecules are 

passively eluted from the gel by incubation in an elution buffer. The latter can be compatible 

with mass spectrometry (MS), allowing subsequent structural analysis. This approach has 

also proved to permit biological, including in vivo, studies as shown with LPS (Pupo et al, 

1999). 

Here, we report the development of a methodology to efficiently purify lipoglycans by 

sodium deoxycholate-PAGE (DOC-PAGE). This faster purification method can be applied 

on a small amount of mycobacterial cells biomass (10-50 mg), resulting in tens of 

micrograms of purified lipoglycans. This amount is sufficient, as demonstrated, to undertake 

structural analyses of lipoglycans and glycans carbohydrate domains by a combination of 

highly sensitive analytical procedures, involving cryoprobe NMR analysis of intact 
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macromolecules and chemical degradations monitored by gas chromatography and capillary 

electrophoresis. This glycomic approach was successfully applied to the structural 

characterization of a newly identified polysaccharide in the model fast-growing species 

Mycobaterium smegmatis.  

Page 5 of 34 Glycobiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

6 

 

Results and Discussion 

The development of a PAGE-based methodology to efficiently purify lipoglycans required to 

be able: i) to quickly localize lipoglycans in the gel in order to avoid their diffusion before 

elution, and ii) to efficiently elute the lipoglycans from the gel. M. smegmatis LAM purified 

by the conventional protocol was used as a standard to set up and optimize the different steps. 

 

Direct detection of fluorescently-labelled lipoglycans in gels  

LAM can be routinely detected on gels using either zinc sulfate negative staining or silver 

nitrate staining (Venisse et al, 1993). Zinc sulfate negative staining is reversible and non-

degradative (Hardy et al, 1997) and reveals LAM as a translucent area. However, the 

presence of zinc sulfate hinders subsequent MS analyses. Silver nitrate staining is degradative 

and, once stained, the chemical structure of LAM is altered. So, none of the classical staining 

methods of LAM is compatible with a subsequent structural analysis. We thus resorted on an 

alternative strategy consisting in the detection of LAM on a standard lane and its use as a 

migration reference to excise gel bands containing unlabelled LAM (Figure 1). However, 

zinc sulfate and silver nitrate staining procedures take around 2 hrs (Hardy et al, 1997; 

Venisse et al, 1993), a period of time during which molecules can diffuse in the gel, 

precluding a precise excision. To overcome this limitation, we decided to fluorescently-label 

LAM prior to PAGE migration. The chromophore Lucifer Yellow (LY), which bears a 

hydrazide function enabling its coupling to lipoglycans after periodate oxidation (Pitarque et 

al, 2005), was selected. The labelling procedure was optimized by focusing on three 

parameters: i) oxidation reaction time, ii) LAM/LY ratio and iii) coupling reaction time. After 

optimization, the labelling procedure was set as follows: one-hour oxidation reaction, 10 min 

coupling reaction using a LAM/LY ratio of 1:100 mol/mol, and 1.5 hrs dialysis against water 

to remove most of the probe excess. Labelling 10 µg of LAM or less was sufficient to 
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visualize it on the gel under UV light (Figures 1 and 2). Importantly, LY-labelling did not 

alter the migration of the lipoglycans. Indeed, LY-labelled LAM, when revealed by either 

zinc sulphate negative staining (Figure 2A) or UV (Figure 2B), showed a migration identical 

to that of native LAM. Altogether, this ‘real-time’ detection method allowed a precise 

excision of the gel bands containing lipoglycans immediately after migration (Figure 1), 

thereby reducing the risk of molecules diffusion in the gel and increasing their recovery 

yields. 

 

Recovery of lipoglycans from gel by passive elution 

Several methods of proteins or LPS elution from gel fragments have been described (Claverol 

et al, 2003; Kurth & Stoffel, 1990; Pupo et al, 1999; Pupo et al, 2000; Pupo et al, 2004). For 

proteins, passive elution is usually employed using an extraction solution that can contain up 

to 0.1 % of SDS in water (Claverol et al, 2003; Kurth & Stoffel, 1990). As for LPS, Hardy et 

al. (Hardy et al, 1997; Pupo et al, 1999) developed a grinding process which involves passing 

the gel pieces through 100 to 32 microns diameter pore metal filters to facilitate the elution of 

LPS from polyacrylamide. The recovery yields reported were in the range of 70-80 % for 

LPS without O-antigen chain but 10% only for O-antigen-containing LPS, which are 

structurally closer to mycobacterial lipoglycans (De Castro et al, 2010; Raetz & Whitfield, 

2002). Based on this set of previous studies, we focused on two types of extraction solutions, 

one based on the use of detergents and the other on organic solvents. 20 µg of pure M. 

smegmatis LAM were loaded on the gel and submitted to DOC-PAGE migration. DOC-

PAGE was selected over SDS-PAGE because lipoglycans migration was more focused (not 

shown). The gel band containing LAM was excised according to the migration reference 

provided by LY-labelled LAM (Figure 1) and cut into 0.5 mm sized pieces that were placed 

in the elution solution. Initially, the passive elution condition was set to 3 hours at 37 °C. The 
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objective was to find an extraction solution more efficient than water used as a control. 

Detergents are supposed to promote the disaggregation of the molecules, thereby facilitating 

their elution through the mesh of the gel. Two detergents were tested: SDS and DOC, both at 

concentrations of 0.1 % and 1 % in water. Higher concentrations make the elimination of 

these detergents difficult and prevent any structural analysis (Claverol et al, 2003; Kurth & 

Stoffel, 1990). The results presented in Table 1 show that the use of DOC did not provide any 

improvement as compared to water alone (yield of 4%). 1% SDS increased the recovery yield 

up to 9% but this remained insufficient. We thus concluded that passive elution using 

detergents was not a suitable method for lipoglycans and then resorted to organic solvents. 

Acetonitrile was first tested at concentrations of 15, 30 or 60 % in water. By dehydrating 

gels, acetonitrile induces a leakage of water, draining out of the gel the other molecules 

entrapped. However, elution yields were again comparable to those obtained with water alone 

(Table 1). We finally tested the volatile base triethylamine (TEA), assuming that TEA may 

increase mesh size, thereby facilitating the passive elution of molecules. TEA was previously 

used at a concentration of 5 % in water for elution of LPS (Pupo et al, 2000). Here, we tested 

it at 0.1, 1, 5 or 10 % in water. The recovery yield was improved by the use of 10% TEA as 

compared to water alone, but remained in the same range than that obtained with 1 % SDS 

(Table 1). Unlike SDS, however, TEA is volatile and can therefore be removed by 

evaporation under vacuum. After optimization of the elution time, the final conditions were 

set as incubation in 10 % TEA in water for 12 h at 37 °C, followed by two washes of 2 h with 

the same solution. The recovery yield was ~60 % as compared to ~20 % using water only 

(Table 1).  

 

Structural analysis of LAM eluted from gel 
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We next determined whether the new purification procedure developed herein did not alter 

lipoglycans structure and whether it was compatible with the set of highly sensitive analytical 

procedures we previously developed to investigate the latter (Nigou et al, 2000). 2 mg of 

LAM were purified from M. smegmatis using the conventional protocol (LAMc). A portion 

of this LAM batch (~200 µg) was submitted to the new purification procedure using DOC-

PAGE as described above and ~100 µg of LAM were recovered from the gel (LAMg). A 

comparative structural analysis of both LAM samples was then performed. MALDI-TOF 

mass spectrometry analysis exhibited for both deacylated LAM samples a broad unresolved 

peak centered at m/z 14,900, indicating a molecular mass around 14.9 kDa for the major 

molecular species (Figure 3). In addition, the intrinsic heterogeneity of LAM, as revealed by 

the peak width, was similar for both samples. Thus, the overall structure of LAM did not 

appear to be altered by the in-gel purification steps. To gain further insight into the fine 

structure of the polysaccharidic moiety, both LAM samples were submitted to chemical 

degradations, followed by capillary electrophoresis monitored by laser-induced fluorescence 

(CE-LIF) or gas chromatography (GC) analyses. Total acid hydrolysis showed the presence 

of Ara and Man, with an Ara/Man ratio of 0.8±0.1 and 0.9±0.05 for LAMc and LAMg 

respectively (Table 2). Acetolysis experiment monitored CE-LIF (Nigou et al, 2000) 

indicated that both LAM exhibited a mannan core with a similar degree of branching (Table 

2). Finally, per-O-methylation analysis revealed the same glycosidic linkages for both LAMc 

and LAMg and in similar relative abundance (Table 2). 

Altogether, these data demonstrated that LAM structure was not altered by the in-gel 

purification procedure and that it could be investigated after elution from the gel using an 

adapted set of sensitive procedures. 
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Identification and structural characterization of a new LAM-like polysaccharide in M. 

smegmatis mc
2
155 

Mycobacterial lipoglycans and glycans are a complex family of biosynthetically related 

molecules (Angala et al, 2014; Briken et al, 2004; Gilleron et al, 2008; Mishra et al, 2011; 

Nigou et al, 2003). They consist in LM, LAM and their MPI anchor-free counterparts 

mannan and AM. Interestingly, we identified in the crude fraction of lipoglycans and glycans 

extracted from M. smegmatis a previously uncharacterized compound (named X) that could 

be revealed by DOC-PAGE migration after alkali-treatment of the extract (Figure 4A) 

(Skovierova et al, 2009). Monosaccharide analysis by GC after octanolysis and 

trimethylsisylation showed that the crude fraction contained only D-Ara and D-Man, 

suggesting that compound X harboured a structure reminiscent to that of lipoglycans or 

glycans. Compound X was purified using the in-gel procedure described above and 100 µg 

could be obtained by loading 2 mg of the extract. This amount was sufficient to investigate its 

structure. Total acid hydrolysis followed by CE analysis indicated that compound X was 

composed of Ara and Man, with an Ara/Man ratio of 0.25. This ratio value was 3 to 4 fold 

lower than that of M. smegmatis LAM (Table 2). MALDI-TOF mass spectrometry analysis of 

permethylated compound X showed a set of peaks centred around m/z 6000 and separated by 

204 mass units corresponding to permethylated anhydro-Man residues (Figure 4B). As 

previously observed for the other mycobacterial glycans and lipoglycans, compound X 

exhibited a Gaussian distribution of glycoforms with the major ones showing a molecular 

mass around 5 kDa, a value three times lower than that of LAM or AM. Compound X thus 

contained an average of 9 Ara and 23 Man units, indicating the presence of an arabinan 

domain much shorter than that of M. smegmatis LAM composed of a mean of ~55-70 Ara 

and ~20-35 Man units (Angala et al, 2014; Kaur et al, 2014; Khoo et al, 1996; Mishra et al, 

2011). Per-O-methylation analysis revealed the presence in compound X of 6-Manp, 2,6-
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Manp, t-Manp, 5-Araf, 3,5-Araf, 2-Araf and t-Araf residues, as observed in LAM (Table 2) 

(Gilleron et al, 1997). However, in agreement with other chemical analyses, the relative 

amount of arabinose residues was much lower in compound X than in LAM and consisted 

mainly in 5-Araf units. In order to gain insight into the organisation of its arabinan domain, 

10 µg of compound X were hydrolyzed with endoarabinanase from Cellulomonas gelida (Lee 

et al, 2006; Shi et al, 2006), followed by the analysis of the released products by CE after 

labelling by APTS or by MALDI-TOF MS after permethylation. As shown in Figure 5A, 

digestion of compound X yielded the characteristic products previously described for LAM 

(Shi et al, 2006), assigned to linear di-arabinofuranosides (Ara2, peak II): Araf-α(1→5)-Araf-

α(1→, tetra-arabinofuranosides (Ara4, peak III): Araf-β(1→2)-Araf-α(1→5)-Araf-α(1→5)-

Araf-α(1→ and biantennary hexa-arabinofuranosides (Ara6, peak IV): [Araf-β(1→2)-Araf-

α(1-]2→3 and →5)-Araf-α(1→5)-Araf-α(1→ motifs. This assignment was further confirmed 

by MALDI-TOF MS analysis in the positive ion mode of the permethylated products (Figure 

4B). The peaks at m/z 709.2 and m/z 1029.4 were assigned to (M+Na)+ ions corresponding to 

the motifs Ara4 and Ara6 respectively (Figure 5B). Acetolysis experiment monitored by CE-

LIF (Nigou et al, 2000) showed a ratio of Manp-α(1→2)-Man to Man residues of 0.75:1 

(Figure 5C), indicating a degree of branching of the mannan domain of 43% (Table 2). This 

value is lower than that determined for M. smegmatis LAM (60% ± 5%) (Figure 5C; Table 

2). The set of structural data obtained by chemical analyses were confirmed by NMR analysis 

of the entire molecule. Indeed, the anomeric region of the 2D 1H-13C HMQC spectrum of 

compound X exhibited cross peaks assigned to 6-Manp (VI; δH-1 4.72; δC-1  97.8), 2,6-Manp 

(VII; δH-1 4.92; δC-1  96.7), t-Manp (IV; δH-1 4.86; δC-1 97.8), 5-Araf (II; δH-1 4.89; δC-1  106.1), 

3,5-Araf (I; δH-1 4.91; δC-1  106.0), and t-Araf (V; δH-1 4.95; δC-1  99.3) residues (Figure 6). In 

agreement with chemical analyses, the signals corresponding to Ara units in compound X 

spectrum (Figure 6B) were of much lower relative intensity that those recorded in LAM 
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spectrum (Figure 6A). In addition the cross peak corresponding to 2-Araf units (III; δH-1 4.98; 

δC-1 106.9) present in lateral arabinan chains was very faint. Of note the signal corresponding 

to 6-Manp units in compound X showed a higher relative abundance, in agreement with a 

weaker degree of branching of the mannan domain. 

Altogether, these analyses allowed us to propose a structural model for compound X as 

depicted in Figure 7.  

 

Conclusion 

We herein developed a methodology to efficiently purify lipoglycans by sodium 

deoxycholate-PAGE that can be applied on a small amount of mycobacterial cells biomass 

(10-50 mg). The resulting tens of micrograms of purified lipoglycans are sufficient to 

undertake structural analyses of carbohydrate domains by a combination of highly sensitive 

analytical procedures, involving cryoprobe NMR analysis of intact macromolecules and 

chemical degradations monitored by gas chromatography and capillary electrophoresis. This 

glycomic approach was successfully applied to the purification and structural characterization 

of a newly identified polysaccharide in the model fast-growing species M. smegmatis. This 

polysaccharide shows a structure reminiscent to that of LAM, bearing all the structural motifs 

identified in this complex macromolecule, but with shorter arabinan and less branched 

mannan domains. However, its biosynthetic origin remains unclear. Since it was isolated after 

mild alkaline treatment, we investigated whether it might contain a MPI anchor in its native 

state. Growing bacteria with myo-Inositol-(2-
3
H) resulted in a radiolabelling of LAM and LM 

as previously described (Hunter & Brennan, 1990), but not of compound X, suggesting that 

the structure of the latter does not contain myo-Inositol. A LM-like molecule based on a 

glucuronosyl diacylglycerol, instead of a MPI, anchor was previously described in 

corynebacteria (Tatituri et al, 2007), which along mycobacteria belongs to the suborder 
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Corynebacterineae. Disruption in Corynebacterium glutamicum of the pimB/mgtA gene, 

coding for the α-mannosyltransferase involved in the addition of the first mannosyl unit on 

the glucuronosyl residue, was found to result in the abrogation of the LM-like biosynthesis 

(Tatituri et al, 2007). Interestingly, the glycolipid 3-(O-α-D-glucuronopyranosyl)-1,2-diacyl-

sn-glycerol, which corresponds to the free lipid anchor of this LM-like molecule, was also 

characterized in M. smegmatis (Wolucka et al, 1993). However, analysis of a M. smegmatis 

mutant disrupted for the orthologue of pimB/mgtA gene showed that compound X was still 

produced, indicating that the structure of the latter is not likely to be based on a glucuronosyl 

diacylglycerol lipid anchor. Understanding the biosynthetic origin of this newly identified 

polysaccharide thus requires further investigations. Its identification asks again the question 

of the biosynthetic link between lipoglycans on the one hand and their lipid-free glycan 

counterparts on the other hand. Whether the latter are generated by action of an endogenous 

endoglycosidase (α-mannosidase) still remains an open question (Pitarque et al, 2008). 
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Material and Methods 

 

Bacterial strains and culture conditions 

M. smegmatis mc2155 was grown in Middlebrook 7H9 medium supplemented with ADC and 

0.05% Tween 80. 

 

Lipoglycans isolation and purification by the conventional protocol 

LAM and LM were purified from M. smegmatis mc2155 as described previously (Gilleron et 

al, 1997; Nigou et al, 1997). Briefly, mycobacteria were delipidated using CHCl3/CH3OH 2:1 

v/v, followed by CHCl3/CH3OH 1:1 v/v for 2 h at 50°C. The delipidated mycobacteria were 

then extracted 3 times in 50% ethanol at 50°C for 2h. The ethanol/water extracts were pooled, 

dried and submitted to digestion by DNAse (D4263, Sigma-Aldrich), RNAse (R4875, Sigma-

Aldrich), α-amylase (A6814, Sigma-Aldrich) and a cocktail of proteases [α-chymotrypsin 

(C4129, Sigma-Aldrich), Streptomyces griseus proteases (P8811, Sigma-Aldrich) and trypsin, 

(T3914, Sigma-Aldrich)] to remove nucleic acids, α-glucan and proteins. The digested 

solution was dialysed against dH2O and dried, resulting in a fraction containing glycans and 

lipoglycans. This fraction was then either used for DOC-PAGE purification of lipoglycans or 

used for conventional purification. For conventional purification, the fraction containing 

glycans and lipoglycans was loaded onto an octyl-sepharose column, eluted first with 10% 

isopropanol and then with 80% isopropanol at a flow rate of 0.3 mL/min to separate glycans 

and lipoglycans. After dialysis against dH2O of the 80% isopropanol fraction, the lipoglycans 

were then loaded into a gel filtration column Biogel P100 (1.5 x 50 cm) in a DOC buffer 

(Tris-HCl 10 mM, NaCl 200 mM, 1mM EDTA, 0,25% sodium deoxycholate, pH 8.0) at a 

flow rate of 1 mL/min to separate LAM from LM. The fractions were analysed by SDS-
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PAGE and the fraction containing LAM or LM were pooled, dialysed against dH2O, dried 

and precipitated with ethanol.   

 

Lipoglycans labelling with Lucifer Yellow for PAGE-UV 

Glycans and lipoglycans, typically 1 to 10 µg, were submitted to oxidation by sodium 

metaperiodate 1 M for 1 h at 4°C in the dark (Pitarque et al, 2005). The reaction was 

quenched by addition of sodium bisulphite 80 mM and settled for 5 min at room temperature. 

Oxidized glycans and lipoglycans were then labelled for 10 min at 37°C using a 5 mg/mL 

solution of Lucifer Yellow (861502, Aldrich) solubilized in dH2O. Excess dye was removed 

by micro-dialysis against dH2O for 2 h at room temperature. The labelled glycans and 

lipoglycans were then dried under speed-vacuum and submitted to DOC-PAGE migration. 

 

DOC-PAGE passive elution of lipoglycans 

Lucifer Yellow-labelled and unlabelled glycans and lipoglycans samples were loaded onto a 

DOC-PAGE gel 15% and submitted to electrophoresis. After migration, the gel was placed 

onto a glass surface and labelled lipoglycans were detected under UV (λ 254 nm). By 

assuming that the migration of the labelled lipoglycans was similar to that of the non-labelled 

one, the bands corresponding to LAM, LM or glycans were excised from the gel. The band 

was then cut into 0.5 mm sized pieces and placed into 1.5 mL microtubes. Lipoglycans were 

then passively eluted using a solution of triethylamine (TEA) 10% in dH2O at 37°C overnight 

followed by 2 washes of 2 h at 37°C with fresh elution solution. The solution containing 

passively eluted lipoglycans were pooled, passed through a 0.22 µm non-pyrogenic filter and 

dried under speed-vacuum. The eluted lipoglycans were then re-suspended with dH2O and 

submitted to dialysis against dH2O for 2 h at room temperature prior to use for structural 

determination. 
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Determination of the absolute configuration of the monosaccharides 

1 mg of the lipoglycans and glycans crude fraction was octanolysed by 2M trifluoroacetic in 

(R)-(−)-2-Butanol for 16 hr at 110°C (Gerwig et al, 1978). Octyl-glycosides were dried and 

trimethylsilylated by treating with hexamethyldisilazane/chlorotrimethylsilylane/pyridine, 

4:2:1, v/v/v, for 15 min at room temperature. The resulting derivatives were solubilized in 

cyclohexane before analysis by GC and comparison with standards of D-Ara, L-Ara, D-Man, 

L-Man submitted to the same procedure. 

 

Monosaccharide composition and mannan core branching degree determination by capillary 

electrophoresis 

These analyses were performed as previously described (Nigou et al, 2000). Briefly, for 

monosaccharide composition, lipoglycans or glycans were submitted to strong acid 

hydrolysis with 2 M trifluoroacetic acid at 110°C for 2 h and then dried under speed-vacuum. 

For mannan core degree determination, lipoglycans or glycans were treated with an acetic 

anhydride/acetic acid/sulfuric acid (10:10:1, v/v/v) mixture for 3 h at 40°C. After extraction 

with water, acetolysis products were deacetylated with a methanol/20% aqueous ammonia 

solution (1:1, v/v) at 37°C for 18 h and dried under a stream of nitrogen. The resulting mono- 

or oligo-saccharides were derivatized for 90 min at 55°C using a solution of 1-aminopyrene-

3,6,8-trisulfonate (APTS) at 0.2 M in 15% acetic acid and 1 M sodium cyanoborohydride 

solution dissolved in tetrahydrofuran. The APTS-labelled monosaccharides were suspended 

in dH2O and subjected to capillary electrophoresis. Analysis was performed on a P/ACE 5000 

capillary electrophoresis in reverse polarity (Beckman Coulter) equipped with a laser-induced 

fluorescence (LIF) detector with a 4 mW argon-ion laser (λext 488 nm, λem 520 nm). 

Separations were performed using an uncoated fused-silica capillary column (50 µm internal 
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diameter, 40 cm effective length) and 30 mM triethylamine 1% (w/v) acetic acid running 

buffer at pH 3.5, at 25°C with an applied voltage of 20 kV.  

 

Digestion of lipoglycans by the endoarabinanase from Cellulomonas gelida 

10 µg of dried purified lipoglycans or glycans were treated with 4 µL of endoarabinanase 

from Cellulomonas gelidas (suspended at 5 mg/mL in Tris-HCl 10 mM pH 7.0 for 12h at 

37°C) prepared as described in (Lee et al, 2006; Shi et al, 2006). The released products were 

purified through a 3 kDa microcon® centrifugal filter unit and analysed by CE-LIF after 

tagging by APTS (Nigou et al, 2000) or MALDI-TOF MS in positive ion mode after 

permethylation (Morelle et al, 2004). 

 

Glycosidic linkage analysis 

Glycosyl linkage composition was performed according to the modified procedure of 

Ciucanu and Kerek (Ciucanu & Kerek, 1984). The per-O-methylated lipoglycans or glycans 

were hydrolyzed using 500 µl of 2 M trifluoroacetic acid at 110°C for 2 h, reduced using 350 

µl of a 10mg/ml solution of NaBD4 (NH4OH 1M / C2H5OH, 1:1, v/v) and per-O-acetylated 

using 300 µl of acetic anhydride for 1 h at 110°C. The resulting alditol acetates were 

solubilized in cyclohexane before analysis by GC and GC/MS. 

 

MALDI-TOF analysis 

Deacylated lipoglycans were analysed on a Voyager DE-STR MALDI-TOF instrument 

(PerSeptive Biosystems, Framingham, MA) using linear mode detection. Mass spectra were 

recorded in negative ion mode using 300 ns time delay, with a grid of 80% of full 

acceleration voltage (25kV) and a guide wire voltage of 0.15%. 2,5 dihydroxybenzoic acid 

was used as the matrix at a concentration of 10 mg/mL in 50% ethanol in dH2O. 
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Methylated oligosaccharides were analysed on a 4700 Proteomics Analyser (with TOF-TOF 

Optics, Applied Biosystems) using the reflectron mode. Ionization was effected by irradiation 

with pulsed UV light (355 nm) from an Nd:YAG laser. Samples were analysed by the 

instrument operating at 20 kV in the positive ion modes using an extraction delay time set at 

20 ns. Typically, spectra from 1,000 to 2,500 laser shots were summed to obtain the final 

spectrum. 

 

NMR analysis 

NMR spectra were recorded at 298K on a Bruker Avance 600 MHz spectrometer equipped 

with a cryogenic probe TCi (Bruker Biospin, Germany). Purified lipoglycans or glycans were 

exchanged in D2O (D, 99.97 % from Euriso-top, Saint-Aubin, France), with intermediate 

lyophilisation, and then dissolved in 0.5 ml D2O. Samples were analysed in a 200 x 5 mm 

UL-5 NMR tubes (Euriso-Top, Saint-Aubin, France). Proton and carbon chemical shifts are 

expressed in part per million and referenced relative to internal acetone signals at δH/TMS 

2.225 and δC/TMS 31.45 ppm. 

All 2D NMR data sets were recorded without sample spinning. 
1
H-

13
C correlation spectra 

were acquired in the echo/anti-echo-TPPI gradient selection mode (256 data points) recorded 

in the proton-detected mode using the “hsqcetgpsisp2” sequence from the Topspin v2.1 

software (Bruker Biospin) (Schleucher et al, 1994). The GARP sequence (Shaka et al, 1985) 

at the carbon frequency was used as a composite pulse decoupling during acquisition.  

The HSQC spectra were recorded with a spectral width of 25,000 Hz in 
13

C and 4807 Hz in 

1H dimensions in order to collect a 1024 x 256 (TPPI) point data matrix with 2 scans per t1 

value expanded to 2048 x 1024 by zero filling. The relaxation delay was 2.0 s. A sine bell 

window shifted by π/2 was applied in both dimensions.  
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Legends to figures 

Figure 1: DOC-PAGE-UV detection of LY-labelled lipoglycans and work-flow showing 

the strategy developed to purify lipoglycans from gel and to investigate their structure.  

 

Figure 2: DOC-PAGE migration of native and LY-labelled LAM. 

5 µg of native (lane 1) and LY-labelled (lane 2) LAM were submitted to DOC-PAGE 

migration. The same gel was revealed first by zinc sulphate negative staining (A) and then by 

UV (B). std, protein ladder. 

 

Figure 3: MALDI-TOF MS spectra of deacylated LAM from M. smegmatis purified by 

the conventional protocol (A) or by DOC-PAGE (B). 

 

Figure 4: DOC-PAGE (A) and MALDI-TOF MS (B) analyses of compound X. 

A) 10 µg of the M. smegmatis glycans and lipoglycans fraction were loaded on the gel before 

(lane 1) or after alkali-treatment (lane 2). The gel was revealed by zinc sulphate negative 

staining. B) Linear MALDI-TOF MS spectrum in the positive mode of permethylated 

compound X.  

 

Figure 5. Structural analysis of compound X arabinan (A, B) and mannan (C) domains.  

A, B) Digestion of arabinan domain (10 µg of compound X) by endoarabinanase from 

Cellulomonas gelida monitored by CE-LIF (A) and MALDI-TOF MS analysis (B). A) I, 

Internal Standard-APTS; II, Ara2-APTS; III, Ara4-APTS; IV, Ara6-APTS; a, compound X; 

b,. LAM from M. smegmatis; c, co-injection. B) MALDI-TOF MS analysis in positive ion 

mode of the permethylated products of hydrolysis of LAM (upper spectrum) and Compound 
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X (lower spectrum) (50 µg of each). Ions at m/z 709.3 correspond to Ara4 motif and m/z 

1029.4 correspond to Ara6 motifs. 

C) Mannan core degree of branching determined by acetolysis treatment (10 µg of compound 

X). I, Ara-APTS; II, Man-APTS; III, Internal Standard-APTS; IV, Man-α(1→2)-Man-APTS; 

a, compound X; b, LAM from M. smegmatis; c, co-injection. 

 

Figure 6: 2D 
1
H-

13
C HMQC NMR spectra expansion (δ

1
H: 4.60-5.15 and 

13
C: 97.0- 

113.0) of M. smegmatis LAM (A) and compound X (B) in D2O at 298K.  

I : 3,5-α-Araf ; II : 5-α-Araf ; III : 2-α-Araf ; IV : t-α-Manp ; V : t-β-Araf ; VI : 6-α-Manp ; 

VII : 2,6-α-Manp. 

 

Figure 7: Structural model of compound X from M. smegmatis. 

Compound X is comprised of a linear α(1→6)-mannan domain that is substituted at almost 

half of the O-2 positions by one Manp unit. It contains a short arabinan chain, possibly linked 

at O-2 position of a Manp unit as recently described in LAM by Kaur et al (2014), that 

harbours the Ara4 and Ara6 motifs typically found in LAM and AM.  

, D-Manp; , D-Araf. 
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Tables 

Table 1: LAM recovery yield from DOC-PAGE using different elution conditions.  

  Elution  
solution 

Time of elution  
(hours) 

% of detergent or  
organic solvent  

Recovery 
(%)(a) 

water 3 - 4.0±0.2 

 12 - 20.0±2.5 

SDS in water 3 0.1 % 6.2±0.5 

3 1% 9.1±0.4 

DOC in water 3 0.1% 3.5±0.3 

3 1% 3.8±0.6 

ACN in water 3 15% 3.1±0.5 

3 30% 3.4±0.8 

3 60% 2.5±1.1 

TEA in water 3 0.1% 4.1±0.4 

3 1% 5.3±0.2 

3 5% 5.7±0.4 

3 10% 7.8±0.3 

 12 10% 60.0±4.0 

(a) Values were determined after loading 20 µg of LAM and represent the 
average of 2 independent experiments 
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Table 2: Structural features of LAMc, LAMg and Compound X.  

 LAMc LAMg Compound X 

Ara/Man ratio
(a)

 0.8±0.1 0.9±0.05 0.25±0.08 

Mannan degree of branching
(a)

 (%) 55±8 60±5 43±5 

Glycosyl linkage
(b)

 (%) 

t-Araf 

2-Araf 

5-Araf 

3,5-Araf 

t-Manp 

6-Manp 

2,6-Manp 

 

4.4 

11.2 

39.3 

13.7 

19.4 

6.7 

5.3 

 

4.3 

9.5 

41.5 

12.0 

21.6 

6.0 

5.1 

 

0.3 

3.2 

18.8 

6.5 

28.5 

19.5 

23.2 

(a) Monitored by CE-LIF 
(b) Monitored by GC 
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Figure 1: DOC-PAGE-UV detection of LY-labelled lipoglycans and work-flow showing the strategy developed 
to purify lipoglycans from gel and to investigate their structure.  

234x82mm (300 x 300 DPI)  
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Figure 2: DOC-PAGE migration of native and LY-labelled LAM.  
5 µg of native (lane 1) and LY-labelled (lane 2) LAM were submitted to DOC-PAGE migration. The same gel 

was revealed first by zinc sulphate negative staining (A) and then by UV (B). std, protein ladder.  
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Figure 3: MALDI-TOF MS spectra of deacylated LAM from M. smegmatis purified by the conventional protocol 
(A) or by DOC-PAGE (B).  

124x151mm (300 x 300 DPI)  
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Figure 4: DOC-PAGE (A) and MALDI-TOF MS (B) analyses of compound X.  
A) 10 µg of the M. smegmatis glycans and lipoglycans fraction were loaded on the gel before (lane 1) or 
after alkali-treatment (lane 2). The gel was revealed by zinc sulphate negative staining. B) Linear MALDI-

TOF MS spectrum in the positive mode of permethylated compound X.  
 

169x89mm (300 x 300 DPI)  
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Figure 5. Structural analysis of compound X arabinan (A, B) and mannan (C) domains.  
A, B) Digestion of arabinan domain (10 µg of compound X) by endoarabinanase from Cellulomonas gelida 

monitored by CE-LIF (A) and MALDI-TOF MS analysis (B). A) I, Internal Standard-APTS; II, Ara2-APTS; III, 
Ara4-APTS; IV, Ara6-APTS; a, compound X; b,. LAM from M. smegmatis; c, co-injection. B) MALDI-TOF MS 

analysis in positive ion mode of the permethylated products of hydrolysis of LAM (upper spectrum) and 
Compound X (lower spectrum) (50 µg of each). Ions at m/z 709.3 correspond to Ara4 motif and m/z 1029.4 

correspond to Ara6 motifs.  
C) Mannan core degree of branching determined by acetolysis treatment (10 µg of compound X). I, Ara-

APTS; II, Man-APTS; III, Internal Standard-APTS; IV, Man-α(1→2)Man-APTS; a, compound X; b, LAM from 

M. smegmatis; c, co-injection.  
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Figure 6: 2D 1H-13C HMQC NMR spectra expansion (δ1H: 4.60-5.15 and 13C: 97.0- 113.0) of M. 
smegmatis LAM (A) and compound X (B) in D2O at 298K.  

I : 3,5-α-Araf ; II : 5-α-Araf ; III : 2-α-Araf ; IV : t-α-Manp ; V : t-β-Araf ; VI : 6-α-Manp ; VII : 2,6-α-

Manp.  
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Figure 7: Structural model of compound X from M. smegmatis.  
Compound X is comprised of a linear α(1→6)-mannan domain that is substituted at almost half of the O-2 

positions by one Manp unit. It contains a short arabinan chain, possibly linked at O-2 position of a Manp unit 
as recently described in LAM by Kaur et al (2014), that harbours the Ara4 and Ara6 motifs typically found in 

LAM and AM. ○ , D-Manp;  , D-Araf.  
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