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Wheel slips are unavoidable when moving on a 3D rough
surface. They are mainly due to geometrical features of con-
tact surfaces. In this paper, we propose a model for pre-
dicting rover motion and contact slips by using a kineto-
static model coupled with a linear contact model derived
from semi-empirical tire/terramechanics approaches. The
paper introduces also a coherent approach for motion sim-
ulation of uneven articulated rovers which is computation-
ally efficient and can then be used for autonomous on-line
path planning. Model results are compared to another nu-
merical model based on a multi-body dynamic model includ-
ing frictional contacts. The well-known rocker-bogie chassis,
a highly articulated structure, is chosen to illustrate results
and their comparison. Results demonstrate that for a slow
motion, the proposed model approximates with a good accu-
racy the general behavior of the robot with a minimal time
computation.

1 Introduction
Off-road mobile robotics is a new growing field which

is made famous around the world by the recent NASA
missions to Mars. Despite the success of these missions,
many scientific challenges must be overcome before a
real autonomous long-term navigation can be considered.
One must notice that for these missions the robot executes
autonomously a safe short-range path which is prepared
and planned carefully on earth by human operators. Off-
road mobile robotics still needs tools for modeling these
systems which are characterized by a close interaction with
a complex unstructured environment. Rover structures
are multi-body articulated systems that interact with a
ground surface through a set of frictional unilateral contacts.
Rover modeling is highly useful for mechanical design, for
designing control, for mission planning or path unmanned
search. Two approaches for simulation can be distinguished
: (i) dynamic-based approach and (ii) kineto-static based
approach.

Dynamic approach The dynamic approach is more real-
istic than static one as they consider all forces exerted on the
system, especially inertial forces of rover parts, visco-elastic
forces in spring-damper and wheel-ground contact forces.
These last ones are of high importance: the choice of a
wheel-ground model deeply impacts the simulation results.
Most contributions use Terramechanics models developed
initially by Bekker [1], continued later by Wong [2] and
improved recently by Iagnemma et al. [3]. Based on these
models and using multi-body dynamics engine, some rover
motion simulators are already developed, mainly those
described in [4], [5] and [6]. Other studies use commercial
physical dynamic simulator (e.g. Adams) for motion
analysis [7] [8]. Unilateral wheel-ground contacts used in
these CAD tools are generally considered as a force element
and are based on : (1) a spring-damper model for computing
the normal force and (2) a regularized Coulomb friction
model for computing tangential force. Andrade et al. [9]
use a different approach based on a contact discretization
and on a granular ground model for computing matter flows
when crossing non-cohesive sandy slopes. All of these
models introduce many parameters for contact modeling,
characterizing the non-linear elasto-plastic ground behaviour
in both normal and tangential directions, as stiffness coeffi-
cient, stiffness exponent, cohesion, friction angle, shearing
modulus, etc. The complexity of the dynamic approach and
the multiplicity of contact parameters requires a significant
computation time for the analysis of the rover performance.
In contrast, for certain conditions the computation burden
can be alleviated by using simplifying assumptions while
maintaining the error at acceptable levels.

Kineto-static approach : From grasp to locomotion For
spatial applications, the speed is quite low (less than 10 cm/s)
validating the assumption of quasi-static motion neglecting
thereby all inertial forces with respect to gravitational forces.
The frequencies of ground surface variations are assumed



to be much lower than the lowest natural frequency of the
system. On the one hand, static model is mainly used for
wheel torques control [10] or for the computation of an
optimal distribution of contact forces [11]. The problem
of force distribution is also discussed in [12] and [13] for
stability and mobility optimization in active wheeled-legged
rovers. On the other hand, kinematic models are developed
in [14] for pose computing using homogeneous transforma-
tion matrices and their time-derivative. Auchter et al. [15]
adapts the concept of dexterous manipulation introduced
initially by Li et al. [16], for kinematic motion simulation of
a three wheeled rover. Their model introduces all kinematic
contact parameters and their relationship to the surface
parameters. The main drawback of this model is that it
assumes that the contact point position on the surface is
continuous with respect to time, although this is not a valid
assumption when crossing a step and more generally when
traveling on a 3D ground surface. Chakraborty et al [17] use
a similar approach for the contact kinematic model and an
equivalent hybrid-parallel mechanism for motion simulation
of three-wheeled rover with variable length axle.

Solving coupled equilibrium-contact models Compu-
tation of contact forces permits the evaluation of physical
validity of the rover pose i.e. its static stability and
propulsion capacity. It is well known that most articulated
multibody systems with unilateral contacts have a high
degree of static indeterminacy, often called as hyperstatism
degree, that is the number of unknown force components
is greater than the number of static equilibrium equations.
In the field of structures computing, the static indeter-
minacy is solved by adding to the equilibrium equations
the displacement compatibility equations and equations
characterizing the rheological properties of the material (e.g.
the Hooke’s elasticity law). For our multi-body structure, its
mechanical behaviour is mainly dependent on the behaviour
of the wheel-ground contact and the representation of this
interaction. However, this interaction is very complex and
introduces many physical and mechanical phenomena such
as tire elasticity, ground material elasto-visco-plasticity,
ground material flow, grousers shearing, etc.

Articulated rovers have two distinct sources of static
indeterminacy: internal and external. The internal hy-
perstatism is due to the use of redundant actuation (all
wheel drive). One must notice that these internal forces i.e.
wheel torques are directly related to the longitudinal force
components by the wheel radius. One the other hand, the
external hyperstatism is due to lateral components of contact
forces and specially to the use of multi-wheel supports.
Generally, the Moore-Penrose pseudo-inverse matrix is used
to solve over or under-determinated linear equation systems.
Moreover, the obtained solution can have little physical
meaning, especially when the constraints or variables are
heterogeneous.

Trinkle [18] uses the Peshkin’s minimum power princi-

ple [19] for quasi-static grasping systems to combine force
and kinematic relationships into a nonlinear mathematical
program called the forward object motion problem. This
problem can be stated as follows: for given joint rates and
contact parameters at a given time, determine the velocity
of manipulated object with respect to the ground and the
corresponding contact forces which ensure quasi-static
equilibrium. However, the problem is in the form of a
nonconvex, nonsmooth and nonlinear optimization program
that can not be solved easily within a reasonable computing
time.

Another approach developed in [20] introduces the
assumption of ”zero interaction”. It assumes that all contact
tangential forces work along the same direction (i.e. the
equi-projectivity of the field of contact tangential forces
are supposed to be coplanar). Obviously, this assumption
minimizes internal forces and gives a solution comparable
to the least-square one.

Proposed method This paper introduces a new method for
solving the forward motion problem by using the kineto-
static (differential kinematic and static) model of the artic-
ulated system and a linear contact model for wheel-ground
characterization. The model will be applied to the motion
simulation of articulated wheeled rovers. Kineto-static mod-
els characterizing velocity and force transmission between
task, joint and contact frames will be established in section 2.
Rover structures considered in this model can be uneven in-
cluding fully multi-serial chains and branched trees with or
without closed loops. The kinematic structures are first con-
sidered to be composed by serial chains, and next algebraic
constraints are added to account for branches and closed
loops. Section 3 discusses the friction model of the wheel-
ground contact and proposes a simplified linear form of this
model which includes two slip-velocity parameters. Sec-
tion 4 proposes a resolution method of the forward motion
problem based on: 1) a prediction-phase of normal contact
forces based on the pseudo-inverse solution; and 2) a linear
formulation of the forward motion problem for computing
the robot velocity parameters, wheel slips and a more precise
solution of the contact forces. The last section presents simu-
lation results for different ground surface geometries, that are
compared to other results provided by a dynamic simulation
software.

2 Kineto-static model of articulated rovers
This section draws the kineto-static relationships of

articulated rovers by introducing transformation matrices
between 3 frames: joint, contact and task. The model will
be developed first for a rover composed by a fully parallel
structure. Next, constraint equations will be added to take
into account the actual kinematics of the rover.



2.1 Velocity model of a multi-serial structure
Let’s consider a robot structure with numerous serial

kinematic chain going from a reference body called the
platform and ending by a wheel which is in contact with the
ground at point C. We assume for instance that the kinematic
chains are independent and form a fully parallel structure.
Let P , W , C and G be frames attached to the platform, the
wheel, the contact and the ground respectively.

First, we will represent the contact between the wheel
and the ground as a point contact between two rigid bodies.
The contact coordinate frame C is defined such that:

- the z-axis of this frame points in the direction of the out-
ward surface normal at the contact point,

- the x-axis is the longitudinal tangent vector and can be
computed by x = e×z

||e×z|| , where e is a unit wheel axis
vector.

- and y-axis is the lateral tangent vector defined by
y = z×x.

Screw theory [21] allows us to write the twist relation-
ship

$gw = $gp +$pw (1)

where $ab is the twist of the frame b with respect to the frame
a.

CG

P

x

z

y

C

e

Fig. 1. Serial kinematic chain

This relationship is frame independent. In the following,
we depict by [$ab]

d
M the twist $ab computed at the point M

and expressed in the coordinate system d (Appendix A).

2.1.1 Platform twist with respect to the ground
Platform configurations relative to ground can be param-

eterized by xp = (xp,yp,zp,ox,oy,oz)
T which regroups the

position of Op = (xp,yp,zp)
T and the usual roll, pitch and

yaw angles (ox,oy,oz)
T (Appendix B). ẋp is related to the

twist [$gp]
p
Op

by

vp = [$gp]
p
Op

= Apgẋp (2)

where Apg is an invertible matrix, except for null pitch angle
oy, and its expression is given in Appendix B.

As will be showed later, it is convenient to express this
twist entirely in the contact frame. Then, the adjoint matrix
will be used

[$gp]
c
Oc

=

(
Rcp ûcpRcp
03×3 Rcp

)
︸ ︷︷ ︸

AdTcp

[$gp]
p
Op︸ ︷︷ ︸

vp

= AdTcpvp (3)

where ûcp is the skew-symmetric matrix associated to the
vector cross-product, ucp = rc

OcOp
expressed in the contact

coordinate system, and Tcp is the homogeneous transforma-
tion matrix

Tcp =

(
Rcp ucp
01×3 1

)
(4)

2.1.2 Wheel twist with respect to the platform
Let’s consider a serial kinematic chain going from the

platform to the wheel. This serial chain i has ni joints which
can be either revolute or prismatic and parametrized by θ j or
λk respectively. The wheel twist, w.r.t. the platform, can be
computed in the same way as for a fixed base manipulator,
except that this twist will be expressed at the contact point
which is not a body attached point. Thus, this twist can not
be given by time-derivative of geometric equations derived
from homogeneous transformation matrices. Nevertheless,
we can write

[$pw]Oc =

(
. . . e j×a j . . . ek . . .
. . . e j . . . 03 . . .

)


...
θ̇ j
...

λ̇k
...


(5)

where j,k = (1 · · · ni) denote respectively the indexes of the
revolute and the prismatic joints, e j,ek are unit vectors of the
joint axes, and a j is the vector going from a point located on
the revolute joint axis to the contact point Oc. Note that this
relation is system-coordinate independent. In general, these
vectors are more easily expressed in the platform frame. As
all scalar equations of the proposed model will be expressed
in the contact frame, these vectors are projected in this frame
by using the rotation matrix Rcp = RT

pc. Finally, the wheel
twist with respect to the platform is written by

[$pw]
c
Oc

= Jpwθ̇ (6)

Jpw is called Jacobian matrix. It must be noticed, that
this designation is improper as this matrix has not got the



structure of a partial derivative matrix as for a simple usual
manipulator where the Forward Geometrical Model is ex-
pressed in a fixed-body point attached to the end-effector. In
our case, the wheel point Oc is an instantaneous point that
can not be tracked by usual time-coordinate (non-holonomic
system).

2.1.3 Differential kinematic model of a multi-serial
kinematics

Let [$gw]
c
Oc

the wheel-ground twist expressed in the local
contact frame. Substituting equations (2) and (5) into (1), we
obtain

[$gw]
c
Oc

= AdTcpvp +Jpwθ̇ (7)

When multiplying this equation by

Bgw =
(

13×3 03×3
)

(8)

we obtain the linear component of this twist equation

s = Bgw[$gw]
c
Oc

= BgwAdTcpvp +BgwJpwθ̇ (9)

with s = (sx, sy, sz)
T , the contact relative velocity. The

three angular equations in this twist equation are not really
interesting since they introduce three unknown angular
parameters which are passive parameters and generally need
to be eliminated in an input/output kinematic model.

This last equation can be written in a more compact form

[Li]T vp +Ji
θ̇

i
= si (10)

where i is the index of the kinematic chain (and it ranges
from 1 to nw, where nw depicts the number of wheels), Li =
AdT

Ti
cp

BT
gw and Ji = BgwJi

pw.
Bringing together the nw equations, the differential kine-

matic model of the whole fully parallel articulated structure
takes the following form:

LT vp +Jθ̇ = s (11)

where

LT =

 [L1]T

...
[Lnw ]T

 (12)

J =

 J1 · · · 0
...

. . .
...

0 · · · Jnw

 (13)

θ
T =

(
[θ1]T , . . . , [θnw ]T

)T
(14)

s =
(
s1, . . . , snw

)T
(15)

L is called the Locomotion matrix, analogous to the
grasp matrix G defined in [16], and J is the Jacobian matrix.

2.2 Extension to arbitrary kinematics
In the previous section, the differential kinematic model

was established for a fully parallel kinematics composed by
several serial chains going from a platform to the wheel-
ground contact. However, most actual rovers have a more
complex structure : (i) the structure has branched kinematic
chains, (ii) they can incorporate closed loops especially for
actuation (pantographic mechanism), and (iii) they can use a
coupler between two joints (like for the differential gear box
used in the rocker-bogie system). This can be done simply by
adding to the previous fully parallel model a set of algebraic
equations expressing constraints between joint parameters θi

j

Φ(θ) = 0 (16)

By differentiating this equation with respect to time, we
have

Φθθ̇ = 0 (17)

where Φθ = [ ∂Φ

∂θ
] is the (nΦ,nθ) Jacobian matrix of the alge-

braic constraint equation Φ. Bringing together the differen-
tial model (11) of the fully parallel kinematics and the latter
constraint, the general form of an arbitrary rover kinematics
can be written as(

LT

0nΦ,6

)
vp +

(
J

Φθ

)
θ̇ =

(
s

0nΦ,nw

)
(18)

2.3 Dual static model
Let f = ( f 1

x , f 1
y , f 1

z , . . . , f n
x , f n

y , f n
z )

T be the vector of con-
tact force components, τ be a nθ vector of actuator torques
(and possibly all other non-conservative forces), and wx, wθ

be generalized forces due to gravity (and possibly due to
other conservative forces as elastic force exerted in suspen-
sion elements). They can be obtained from the potential en-
ergy function U(x,θ)

wx =−[
∂U
∂x

] (19)

wθ =−[
∂U
∂θ

] (20)

The total virtual work developed by this set of forces can
be written as

δW = δxT
p wx +δθ

T
τ+δθ

T wθ

(
LT Apgδxp +Jδθ

)T f

= δxT
p
(
AT

pgLf+wx
)
+δθ

T (JT f+ τ+wθ

)



The virtual displacement δθ must satisfy Φθδθ = 0, re-
sulting from the holonomic constraint given by (16). Based
on this, result and applying the principle of virtual works to
the system defined by the generalized parameters (xp,θ)

T ,
the equilibrium static equations can be written as


AT

pgLf = −wx

JT f+Φ
T
θ

mφ = −τ−wθ

(21)

where mφ is a nΦ vector representing generalized forces (La-
grange multipliers) associated to constraints Φ.

The first group of this equation system characterizes the
global equilibrium of the rover corresponding to generalized
equations associated to xp. The second one deals with the
internal forces associated to joint parameters θ.

As for grasping systems [22], kineto-static duality in lo-
comotion systems can be represented on the diagram shown
in Figure 2, using transformation matrices between joint,
contact and task frames in velocity and force domains.

J T

TJ

velocities
domain

forces
domain

joint contact task

J

JT

LT

L

θ v x

τ f w

Fig. 2. Transformation matrices between joint, contact and task
frames in both velocity and force domains.

2.4 Eliminating the steering rate and torque
Each existing joint in the rover kinematics has a dedi-

cated role. It is

- either for suspension, creating a contact velocity along
the contact normal direction z,

- either for rolling, creating a contact velocity along the
longitudinal direction x,

- or either for steering, reorienting the wheel direction.

Then we can split the set of joint parameters θ into three
sub-sets θs, θr and θt , for suspension, rolling and steering re-
spectively. If the steering joint axis passes through the con-
tact point (this is the case of most wheeled off-road vehicles)
the Jacobian matrix is singular. The associated column to
this steering joints is null or quasi-null, when the rover is
moving on a flat surface or uneven surface, respectively. To
avoid ill-conditionings of the Jacobian matrix, the steering

joints column and the steering rates θ̇t are removed, whilst
considering the steering angle θi

t in the calculation of other
Jacobian columns, especially the ones associated to rolling
joints. In the same manner, the moment equation giving the
steering torque is removed in the static model.

2.5 Extension to dynamic model
The previous static equation can be extended in order to

consider inertial forces. Motion equations derived from the
Lagrangian formulation take the following form

M(q)q̈+

(
Ṁ(q)q̇− ∂T

∂q

)
+

(
−wx
−wθ

)
= ...(

0
τ

)
+

(
AT

pgL 06,nφ

JT Φ
T
θ

)(
f

mφ

)
(22)

where M(q) is the mass matrix defined from the total kinetic
energy T = 1

2 q̇T M(q)q̇.

3 Contact friction model
A contact friction model is needed to complete and solve

the previous mechanical model. Tire friction models de-
veloped for automotive applications as well as rigid wheel
model used for planetary rover analysis have some common
properties : they are generally given by an explicit func-
tion between tangential forces fx, fy and some normalized
slippage ratios. These functions are dependent on the nor-
mal force fz and other rheological and tribological parame-
ters such as: tire stiffnesses; rubber-road friction coefficient
and internal friction angle; cohesion and shearing modulus of
granular soils. It is demonstrated from the brush model [23]
that in the case of isotropic friction and combined slips, the
total tangential force fxy = ( fx, fy)

T acts in a direction op-
posite to sxy = (sx,sy)

T , and its magnitude increases with the
slip until reaching the maximal friction force µ fz (Fig.3). The
same remark could be done for Bekker-Wong models [1, 2]
and the rigid-wheel/terrain interaction. If we assume low slip
level, we can use the decoupled linear friction model

{
fx =−cx fzsκ

fy =−cy fzsα

(23)

where cx abd cy are apparent contact stiffnesses, which do not
only depend on the material stiffness of wheel and ground but
also on the friction coefficient. sκ and sα are the longitudinal
slip ratio and the lateral sideslip defined by

{
sκ = sx

vx
sα = arctan vy

vx
' vy

vx

(24)

vx and vy are ground-velocity components of the wheel cen-
ter. Assuming a negligible camber rate, vy ' sy, and a con-
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Fig. 3. Friction models comparison.

stant velocity displacement vx, the contact model can be ex-
pressed by a linear function of slip velocities sx and sy

{
fx =−kx fzsx
fy =−ky fzsy

(25)

This model approaches the friction model used in Adams
software, in its linear zone (Fig. 3). This model is called
sometimes as the regularized Coulomb model.

4 Solving the forward motion problem
The forward problem consists in determining the robot

velocity for given actuator control inputs. We consider
in our case that drive actuators are controlled in velocity,
and steering ones are controlled in position. The control
inputs are computed from a simple model based on planar
kinematic motion and ideal rolling assumption (Appendix
C). We also suppose that the suspension joints are passive,
i.e. can be free or equipped with spring-damper devices.

The formalism presented previously allows the defini-
tion of the locomotion and Jacobian matrices. It is interest-
ing to split equation (11) into two sets: the first one concerns
the normal components along z and the second one the tan-
gential ones along x and y. This can be done by multiplying
equation (11) by an appropriate selection matrices. We re-
mind that these equations characterize the contact velocity
expressed in the local contact frame. It follows:

{
sz = LT

z vp +Jzθ̇

sxy = LT
xyvp +Jxyθ̇

(26)

where Lz and Jz are locomotion and Jacobian matrices L
and J,restricted to the z normal components; Lxy and Jxy
their restriction to the x,y tangential components. sz =
(s1

z , . . . ,s
n
z )

T is the vector of normal velocities, and sxy =
(s1

x ,s
1
y , . . . ,s

n
x ,s

n
y)

T is the vector of slip velocities. We assume
that the contact is permanent and continuous, and therefore sz
may be considered equal to zero. However, this only forms a

necessary condition but not sufficient to maintain contact be-
cause of time-integration errors. The stabilization of the con-
tact constraints can be then achieved by considering a normal
contact velocity vector sz in (26), computed from the distance
dcg between the surfaces of the wheel and the ground, such
as

si
z =−ηddi

cg =−ηc(zi
C− zi

g) (27)

where ηc and ηd are positive gains; zi
C and zi

g the heights of
the two closest points on the wheel and the ground surface.
At the same time, this correction term allows us to solve the
initial kinematic problem, i.e. the whole-configuration of
the rover at its starting position.

Considering this and splitting joint rate terms making
appear suspension velocities and rolling ones (θ̇s,θ̇r), we can
write

{
LT

z vp +Jz,sθ̇s +Jz,rθ̇r = sz
LT

xyvp +Jxy,sθ̇s +Jxy,rθ̇r = sxy
(28)

The wheel’s rotation does not create a velocity compo-
nent along the contact normal direction, hence Jz,r = 0. θ̇r is
the control inputs and is computed here from a simple planar
model (Appendix C).

Let’s call the 2n × 2n diagonal matrix K(fz) =
diag(k1

x f 1
z ,k

1
y f 1

z ,k
2
x f 2

z ,k
2
y f 2

z , ...,k
n
x f n

z ,k
n
y f n

z ) representing the
contact stiffness matrix. Substituting now the linear contact
model (25), written in its matrix form for all contacts,

fxy =−K(fz)sxy (29)

into the equilibrium equation (21), we obtain


Lzfz−LxyK(fz)sxy =−A−T

pg wx
JT

z,sfz−JT
xy,sK(fz)sxy +Φ

T
θs

mφ =−τs−ws
JT

z,rfz−JT
xy,rK(fz)sxy =−τr−wr

(30)

The second and the third relations are equilibrium
equations associated to the suspension joint parameters
θs and the rolling joint parameters θr, respectively. We
consider that wheel drive actuators are independent (θr are
independent), hence Φ(θ) = Φ(θs). ws,r and τs,r are conser-
vative and non-conservative generalized forces associated to
θs and θr. The center of gravity of the wheels are located
on their axles, hence wr = 0. The last equation of (30)
forms n scalar equations and introduces n unknown wheel
torques τr; these latter are not included in the two other
equations; then this equation will be ignored for the moment.

By substituting sxy from (28) into (30) and considering
the no-separation constraint (28) and joint constraints (17),



the whole-body mechanical system can be described by the
equation system

Lzfz−LxyK(fz)
(
LT

xyvp +Jxy,sθ̇s +Jxy,rθ̇r
)
=−A−T

pg wx
JT

z,sfz−JT
xy,sK(fz)

(
LT

xyvp +Jxy,sθ̇s +Jxy,rθ̇r
)
+Φ

T
θs

mφ...
=−τs−ws

LT
z vp +Jz,sθ̇s = sz

Φθs θ̇s = 0

The forward problem consists in determining the robot
velocity (vp, θ̇s) and static components (fz) for a given actu-
ator control inputs composed by wheel rates θ̇r and steering
angles θt . It is easy to demonstrate that this system equation
is a square non-linear system of dimension 2n+m+3. It is
supposed here that the suspension system has no redundancy
and the dimension of independent suspension parameters is
equal to n−3.

Nonlinear terms which represent tangential force com-
ponents can be linearized by using an estimated value of fz.
For this, we will compute the least square solution f̄ of con-
tact force using the static model (21) restricted to equilib-
rium equation associated to generalized parameter x and θs.
By introducing B, the null space matrix of Φθs , these latter
equilibrium equations can be written as(

L
BT JT

s

)
f =
(
−A−T

pg wx
−BT ws

)
(31)

The restriction to suspension joint parameters and the
multiplication by BT allow to eliminate the actuator torques
τr and Lagrange multipliers mφ, thus providing an homoge-
neous unknown vector f. Then, the least square solution f̄
of this underdetermined system gives an estimated value of
contact normal force f̄z which has a certain physical mean-
ingful. Using the estimated value of contact stiffness K(f̄z),
equation (31) yields to the linear system

LxyK(f̄z)LT
xy LxyK(f̄z)Jxy,s −Lz 06,m

JT
xy,sK(f̄z)LT

xy JT
xy,sK(f̄z)Jxy,s −JT

z,s −Φ
T
θs

−LT
z −Jz,s 0n,n 0n,m

0m,6 −Φθs 0m,n 0m,m




vp
θ̇s
fz

mφ

 ...

=


A−T

pg wx−LxyK(f̄z)Jxy,rθ̇r

ws−JT
xy,sK(f̄z)Jxy,rθ̇r
−sz
0m,1

(32)

The matrix on the left-hand side is symmetrical. It turns
out from numerical test that it is also a definite positive ma-
trix, and hence the Cholesky method can be applied to solve
this system.

5 Initial pose computation
The differential kinematic method requires the knowl-

edge of the initial configuration of the rover, i.e. its posi-
tion, posture and suspension joint positions. The initial pose

computation is obvious when the local ground surface is flat.
However it is not easy to compute when the ground sur-
face is rough since this problem is a non-linear kinematic
problem and generally solved by the well known iterative
Newton-Raphson method, which is based on the Jacobian
matrix of the constraint equations. Our method is quite sim-
ilar but takes advantage of the differential kinematic model
described in Section 2. The idea of the approach is to start at
an arbitrary rover configuration over the ground surface and
”to send down” until all wheels touch the surface, as illus-
trated in (Fig. 4). This can be done by controlling the normal
velocity in the wheel-ground contact by the function

si
z =−kz(zi

C− zi
g) (33)

where zi
C and zi

g are the altitudes of the two closest points on
wheel i and on the ground surface.
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Fig. 4. Iterative process for computing the initial complete robot
pose.

Tangential non-slip contact equations are relaxed in this
process. If we consider only the velocity equations along the
contact normals and only the suspension joint rates, equation
(9) for the ith contact becomes:

LT
z Apgẋp +Jz,sθ̇s = sz (34)

This equation, associated with the constraint Jacobian
equation (17), yields to

(
LT

z ApgĀo Jz,s
0nφ,3 Φnφ,nθs

)(
ẋpo
θ̇s

)
=

(
sz

0nφ

)
(35)

where Āo is the selection matrix which selects the el-
evation, roll and pitch components in the platform twist
ẋpo = (ż, ȯx, ȯy)

T . The other platform twist components are
equal to zero constraining the x and y coordinates of the plat-
form point and its yaw angle oz to have constant values de-
fined by the user. Rolling rates are not considered because



they introduce here a redundancy for this problem and steer-
ing joint rates are eliminated for the same reasons mentioned
previously in Section 2.4. However, the steering joint angles
are actually considered in this model when computing the lo-
cal contact frame Rc. For the system suspension with a min-
imal degree of freedom, the latter linear system equation is
a determined square system of dimension nw +nφ, and gives
a unique solution composed by the 3 components of ẋpo and
the nw− 3 components of θ̇). A pseudo-time integration of
the rover parameters allows us to find a new configuration
where distances between the wheels and the ground surface
are smaller. The process is repeated until these distances
drop below a predefined threshold.

6 Application to the rocker-bogie system
The developed models will be applied to the motion

simulation of the well-known rocker-bogie chassis [24].
First, we will present the rover kinematics and define its
parametrization. This system has six driven wheels, the only
front and rear wheels are steered. On each side, front and
central wheels are mounted on a bogie which is connected
to a rocker by a passive rotoide joint. The two rockers are
articulated to the platform by two passive rotoide joints
which rotate oppositely by means of a differential gearbox.
Figures 5 and 6 give the rover kinematics, kinematic chain
numbers, joint parameters and structural parameters.

P

γ5

α1
δ5

γ3 γ1

δ1

β1

γ6

α2
δ6

γ4 γ2
δ2

β2

C6 C4 C2

C5 C3 C1

Fig. 5. Kinematics of a rocker-bogie rover and joint parameters.

As explained in the previous section, the branched kine-
matic chains of the rover can be first considered as a fully
parallel kinematics forming a star graph, and afterwards al-
gebraic constraints between joint parameters can be added
(expressing that a joint parameter in chain i is equal to that
in the chain j). This permits in all cases, to write easily the
block-diagonal Jacobian matrix. For the particular case of
Rocker-bogie system and for obvious reasons of computing
efficiency, we will give here the Jacobian matrix of the actual
kinematics with a minimal set of joint parameters. The joint

parameters, defined in Figure 5, are ordered as follow:

θ = (α1,α2,β1,β2,γ1,γ2,γ3,γ4,γ5,γ6)
T (36)

Fig. 6. Kinematic dimensions of the rocker-bogie robot.

The Jacobian matrix is given by

J =



j1
α1

0 j1
β1

0 j1
γ1

0 0 0 0 0
0 j2

α2
0 j2

β2
0 j2

γ2
0 0 0 0

j3
α1

0 j3
β1

0 0 0 j3
γ3

0 0 0
0 j4

α2
0 j4

β2
0 0 0 j4

γ4
0 0

j5
α1

0 0 0 0 0 0 0 j5
γ5

0
0 j6

α2
0 0 0 0 0 0 0 j6

γ6


where 0 are a 3D zero column vector of size 3, and

ji
θ
=
(

eθ× rPθOi
c

)Ri
c

with eθ is the unit vector of the joint
axis, Pθ an arbitrary point of this axis, i corresponding
to the index of the contact point. We notice that for all i
ji
γi
= (−r,0,0)T with r the wheel radius.

The main geometrical dimensions of the articulated
rover are given in Figure (6).

The locomotion matrix of the ith wheel is demonstrated
to be equal

Li =
(

Ri
cp ûi

cpRi
cp
)

(37)

where Ri
cp is the matrix rotation from the platform

frame P to the contact one C i and ûi
cp is the skew-symmetric

matrix of vector cross-product, with ui
cp the position vector

of the platform center expressed in the contact coordinate
system.

The constraint introduced by the differential gearbox
coupling the two rockers can be written by

Φ(θ) = Φ(θs)≡ α1 +α2 = 0 (38)
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Fig. 7. Simulation scheme of rover quasi-static motion.

and the associated Jacobian

Φθs = (1, 1, 0, 0) (39)

The general architecture of the simulation framework is
summarized in Figure (7). The method integrates velocity
components with respect to time in order to obtain the con-
figuration parameters, assuming that the initial configuration
is known. For given x,y coordinates of the platform point P
and a given yaw angle, the other configuration parameters in-
cluding the platform posture and suspension joint angles are
computed by the initial pose function. The physical evalua-
tion of the pose is done once the distribution of the contact
forces is solved. In general, the stability and the mobility of
the rover are considered to be satisfied if each normal com-
ponent is positive and each total tangential force is inside the
friction cone. As said before, this framework can be used for
on-line and off-line path planning, which assumes the knowl-
edge of the ground surface conditions over a given horizon,
and especially its surface map. For our model, the map can
be represented by any continuous and differentiable C1 func-

tion, where the contact normal and tangential plane can be
computed at each surface point. For the actual application,
this map can be measured by exteroceptive sensors, generally
by a Lidar or a stereo camera.

7 Simulation results
This section presents simulation results illustrating

quasi-static rover motion when crossing different ground
surfaces. The previous kineto-static model is solved us-
ing Matlab software, and the geometrical parameters are
integrated with respect to time thanks to the available
ODE functions. These results are compared to other
simulation results given by the Adams dynamic software.
The latter computes full dynamics of the rover and uses
a regularized non-linear Coulomb law for modeling fric-
tion in wheel-ground contacts, as explained in Section 3.
Also, the normal contact force is computed by a penalty
method which consider the interpenetration of rigid surfaces
and a virtual spring-damper model. The goals of this
comparison are (i) to validate the kinematic results of our
simulation model and (ii) to question about the validity



of the quasi-static assumption. In the two simulators, the
wheel velocities are equal and defined such that the desired
velocity displacement is equal 0.1m/s. For all the figures
in this section, the red curves represent results given by the
kineto-static model and the blue ones for the dynamic model.

7.1 Crossing an asymmetrical obstacle
In this first example, the robot has to cross in straight

line two extruded surfaces, for right and left wheels. Both
extruded surfaces are defined by a sigmoid function and are
shifted the one with respect to the other (see Figure 8). Since
the horizontal set-point path is a straight line, the steering
angles are zeros and the wheels rates are identical. This
example is chosen deliberately simple to permit comparison
between the two models.

Fig. 8. Adams GUI : crossing two shifted sigmoids.

Geometrical parameters are plotted in Figure (9 as
function of the longitudinal displacement abscissa. These
parameters include roll and pitch angles of the platform,
its center of gravity height, the right rocker angle, the left
and right bogie angles, the horizontal performed path and
the yaw angle. Some differences between kineto-static
results and the Adams dynamic ones are observed as for
the roll and pitch angles. We think these differences can be
explained by the difference of wheel geometries between
the two models (a disk for the first one and a cylinder for
the second). However, the major relevant result concerns
the horizontal path and the yaw angle, demonstrating the
validity of the model to handle the sideslip phenomenon
and path deviation. Lateral slip velocities are compared in
Figure 10 which confirms the previous observation. These
slippages are due to the asymmetry of the ground features
between right and left tangent planes.

Longitudinal slips, given in Figure 11, appear to match
closely to the one given by Adams. These slips are due to
the ground roughness and to the incompatibility of wheel ve-
locities, assumed here to be equal. We mention that this kind
of control, based on a 2D differential kinematic model, is a
usual way to determine the velocity inputs. Next, the actual
contact normals are difficult to measure directly or to esti-
mate accurately for a rover when moving on a rough surface.

Tangential (longitudinal and lateral) force curves look
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Fig. 9. Configuration parameters as function of x abscissa : kineto-
static model (red) vs. dynamic model (blue).
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Fig. 10. Lateral slip velocity as function of x abscissa : kineto-static
model (red) vs. dynamic model (blue).
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Fig. 11. Longitudinal slip velocity as function of x abscissa : kineto-
static model (red) vs. dynamic model (blue).



similar to their corresponding slip velocities since the first
ones are proportional and opposite to the second ones. More-
over, the normal forces given in Figure 12, show a good
agreement and demonstrate the validity of the prediction-
correction method allowing the resolution of the nonlinear
kineto-static model (30). These forces allow the stability
evaluation of the robot along the path; the minimal force
value could be used as a stability margin.
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Fig. 12. Normal forces as function of x abscissa : kineto-static
model (red) vs. dynamic model (blue).

7.2 Crossing diagonally a corrugated surface
In this second example, the robot has to move diagonally

in straight line on a corrugated surface defined by an extru-
sion of a sinusoid function (Figure 13). The robot starts at
the origin point and the prescribed path is a straight line. The
control inputs are similar to that used in the previous case.

Fig. 13. Adams GUI : crossing diagonally a corrugated surface.

Figure 14 gives performed paths and the yaw angles
computed by the two models. We observe high path devi-
ations with respect to the prescribed one (square’s diagonal)
and important oscillations of the robot yaw angles. The re-
sults of the proposed model match well with that computed

by Adams and demonstrate the validity of our model to pre-
dict the robot motion and slippages. The curve differences
between the two models increase with time and traveled dis-
tance. This is due to the fact that the wheels in both models
don’t follow exactly the same ground tracks thus limiting the
comparison to short term travel. Figure 15 plots the horizon-
tal coordinates of wheels traces. The black line represents
the robot center path. The robot motion tends to align its
configuration with that of the extrusion, minimizing thus the
contact-slip level and the energy consumption.
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Fig. 14. Performed path and yaw angles : kineto-static model (red)
vs. dynamic model (blue).
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7.3 A complex rough surface
The surface is defined here by a cubic spline ap-

proximating a set of points defined on a planar grid. The
point heights are generated by a fractal method based on
a recursive subdivision of the terrain height map. At each
step of the subdivision, new height values are calculated
by taking the average of the neighboring height values and



applying a random offset.

Figure 16 shows the ground surface and plots the trajec-
tories of middle wheel centers computed by the kineto-static
model and by the dynamic one. The robot is supposed to
travel in straight line along the diagonal. The top view im-
age shows a good agreement of the computed paths proving
the validity of the proposed model to predict lateral slip and
path deviation. Some large differences of the computed paths
along the vertical direction can be observed on the 3D view-
point. This is due to the difference of the wheel geometry
between the two models (a disk for the kineto-static model
and a cylinder for the dynamic one).

8 Conclusion
Quasi-static slipping motion of articulated rovers can be

approached by a coupled model, including the differential
kinematic one, the static one and a wheel-ground contact
model. Assuming small slip rates, this latter can be approx-
imated by a linear relationship between forces and veloci-
ties. The proposed model approaches the system dynamics
since it predicts with good accuracy and low computation
time, contact slips, contact forces and the robot trajectory.
The method is sufficiently generic to consider most of rover
kinematics having articulated structure with coupled or in-
dependent suspensions. The model is simple enough and
computationally efficient to be implemented on-board for au-
tonomous task-planning and for path evaluation. Computa-
tion time for the presented examples is less than 1 second
per meter path length using Matlab software. This can be
drastically reduced if coded in any low level language. The
developed model will be extended to consider basic concepts
of terramechanics such as rolling and lateral resistance due to
soil compaction and bulldozing effect. Thes components can
be easily added as external forces acting on the wheel center.
Finally, contact computation will be improved in our simu-
lator to consider more complex wheel shapes and multiple
contact points cases.
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A Notation
The twist regroups the linear and the angular velocity

$ =

(
v
ω

)
(40)

The hat operator â represents the skew-symmetric ma-
trix associated to vector cross-product

â =

 0 −az ay
az 0 −ax
−ay ax 0

 (41)



B Roll, pitch and yaw rotations
Platform configurations relative to ground is parameter-

ized by xp = (xp,yp,zp,ox,oy,oz)
T which regroups the posi-

tion of Op = (xp,yp,zp)
T and the usual roll, pitch and yaw

angles (ox,oy,oz)
T Those angles are defined so that G turns

first about the z−axis with angle oz, then about the y−axis
with angle oy and finally about the x− axis with angle ox.
Then rotation matrix that transforms a point coordinate from
P to G can be computed by

Rgp =

Coz −Soz 0
Soz Coz 0
0 0 1

 ... (42)

 Coy 0 Soy
0 1 0
−Soy 0 Coy

 1 0 0
0 Cox −Sox
0 Sox Cox


The platform motion w.r.t. ground are given by the twist

expressed in P

vp = [$gp]
p
Op

=

(
RT

gp 03×3
03×3 Go

)


ẋp
ẏp
żp
ȯx
ȯy
ȯz


= Apgẋp (43)

with

Go =

 1 0 −Soy
0 Cox SoxCoy
0 −Sox CoxCoy

 (44)

C Inputs computation
Inputs parameters of the previous direct differential

kinematic model are composed by:

- wheel’s rates θ̇i
r,

- and steer angles θi
t .

These parameters are computed from a planar kinematic
model based on ideal rolling assumptions and the features
of the instantaneous center of rotation. This assumption is
generally used during the definition of the low-level control
of rover motion as it is difficult at this stage to take into
account the local ground surface map.

Assuming that the rover has to follow a desired trajec-
tory (xd(t),yd(t)) given on the horizontal plane and the rover
x direction is tangent to this path, the forward velocity and
the yaw rate can be written as follow

 vd
p,x =

√
ẋ2

d + ẏ2
d

ωd
p,z =

ẋd ÿd− ẏd ẍd
ẋ2

d + ẏ2
d

(45)

Assuming the rotation center along the y-axis and an
ideal-rolling, the steer angle of the ith wheel is given by

θ
i
t = arctan

xi
cωd

p,z

vd
p,z− yi

cωd
p,z

(46)

and its rate by

θ̇
i
r =
√
(vd

p,z− yi
cωd

p,z)
2 +(xi

cωd
p,z)

2 (47)

with (xi
c,y

i
c) the wheel center coordinates in the platform

frame P .

D Contact parameters

kx 0.01 s.mm−1

ky 0.01 s.mm−1

Table 1. Kineto-Static contact model parameters

Static friction coefficient 0.8

Dynamic friction coefficient 0.6

Stiction transition velocity 80 mm.s−1

Friction transition velocity 160.0 mm.s−1

Table 2. Adams friction model parameters


