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Abstract— This paper concerns the control of an autonomous
high mobility wheel-legged rover crossing uneven terrains. A
new control strategy, using active redundancies of the robot,
leads to elaborate a posture control based on the potential
field approach of the stability measurement. Then a decoupled
posture and trajectory control algorithm based on the velocity
model of the robot is proposed. Last, simulation results showing
performance of the control algorithm are presented.

I. I NTRODUCTION

The main field of this research project deals with the mo-
bility of autonomous robotic rovers moving on an unknown
natural environment. Many potential applications like plane-
tary or extreme environment (volcanic, arctic or desert) ex-
ploration, agriculture, defense, demining, and others various
missions in hazardous areas can be considered. Therefore
autonomous mobile robots must be able to move on a wide
variety of terrains while ensuring the integrity of the system
(i.e. the stability holding to avoid tipover). The main diffi-
culties in this kind of environment are due to the geometrical
and physical soil properties (large slopes, roughness, rocks
distribution, soil compaction, friction characteristics, etc) – it
is easier for an autonomous system to move on flat tar road
than to cross a uneven stony field.

Lots of robotic systems have been developed in order to
attempt to answer to these issues. Rovers such as Sojourner
[1], Shrimp [2], or Nomad [3] are articulated multibody
structures permitting a passive adaption to the ground sur-
face. Other robotic systems like these of Gofor [4], SRR [5],
Lama [6], Azimut [7], or MTR [8] use an active suspension
allowing the control of some attitude parameters of the robot.
High mobility hybrid systems – such as Hylos [9], Workpart-
ner [10], or Athlete [11] robots – combine the advantages of
both wheeled and legged vehicles – i.e. the ability to ensure
some higher velocity than legged systems for the first one,
and to cross terrains with high discontinuities (like rocks,
steps, gaps, etc) for the second.

In this paper, we propose to analyze the problem of stabi-
lity control for the Hylos robots which were developed in our
lab (see Fig. 1) [9]. These rovers are high mobility redun-
dantly actuated hybrid systems. They are lightweight (around
twenty-five kilogrammes) robots with sixteen actively ac-
tuated degrees-of-freedom (four wheel/leg sub-assemblies,
each one is made up of a two-degrees-of-freedom suspension

Fig. 1. Hylos I (left) and Hylos II (right)

mechanism and a steering and drive wheel). Because of
active internal mobilities, the control of their posture could
be considered. The problem of posture control for this kind of
robotic system is a challenge regarding its complex dynamic
interactions with the environment when moving on roughly
irregular terrains.

Control approaches of such redundantly actuated systems
have been proposed in previous works [4], [5]. They are usu-
ally based on the modeling and analysis of vehicle motion,
and lead to improve the stability of the vehicle. In [9], authors
propose a posture adjustment algorithm which controls the
robot around a suboptimal posture, which, itself, optimizes
both the traction force balance and the tipover margin for
the Hylos robot. This suboptimal posture is defined when the
Hylos robot is evolving on a sloping terrain, and corresponds
to the case when the vertical components of the contact force
are equally distributed.

In this study, the used strategy is different. Posture control
consists in modifying the robot posture in order to ensure
its stability without specifying strictly a postural state. The
posture correction is so made only when the stability of
wheel-legged vehicle is jeopardized. The proposed controller
is based on the technique of “potential fields” for which
an artificial potential, reflecting the rover tipover stability
margin, is used.

In section II, after the introduction of the used stability
margin, the potential field based on the stability measurement
is proposed. Section III presents the formulation used to
develop the differential kinematic model of a hybrid wheel-
legged robot. Next, decoupled posture and trajectory control
algorithm is described in section IV. Finally, results of
dynamic simulation to validate this new stability control
strategy are shown in the last section V.



II. STABILITY MARGIN AND L INKED POTENTIAL FIELD

A. Dynamic Stability Margin

The control of robotic systems under stability margin
conditions was mainly addressed in the field of legged
locomotion. Since the first stability criterion [12] estimating
stability for machine walking at constant speed on flat, even
terrain, many of these stability criteria have been developed
to adapt in more complex cases.

The control method presented in this paper considers the
vehicle movement on an irregular terrain without discontinui-
ties. Thus, the tipover stability margin is mainly constrained
by the terrain geometry. In order to ensure the integrity of
the vehicle during its navigation stage on an uneven terrain,
its stability margin index must be estimated all the time.
The “tipover stability margin” proposed by Papadopoulos
and Rey [13] is used.

This tipover stability margin takes into account both the
distance of the projected center-of-gravity (c.o.g) to the
support polygon and its vertical position relatively to the
average plane defined by contact pointsCi. Moreover, all
the external forces working on the c.o.g of the vehicle,
including gravity, are considered. The formalism can be
described briefly as follows (see Fig. 2): the line joining two
consecutive terrain-contact pointsCi defines a tipover axis
ai. The unit vectorhi of the axis, joining the vehicle c.o.g
G to the center of each tipover axis, is computed. Then,
the angleυi between eachhi and the tipover contribution
f∗

i, computed from the total external forceτt = {ft,mt}
applied to the vehicle, gives the stability angle over the
corresponding tipover axis. The system dynamics has been
considered. A preliminary study has shown that the inertial
terms of the central body of the robot prevail. The stability
angleυi is therefore defined as the angle betweenhi and the
total external forceτt including the gravitational and inertial
forces. The overall vehicle stability marginms is also defined
as the minimum of all stability anglesυi:

ms = min (υi) for i = {1, ..., n} (1)
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Fig. 2. Used Stability Margin

B. The Artificial Potential Field Approach

The idea of the artificial potential field approach is to
consider that the robot moves in a field of forces. Each force,

Fi is parallel to the opposite gradient of some potential field,
Ui

Fi = −∇Ui (2)

This method has been described by Khatib [14] for the first
time in 1986 and has been often used since. This approach
is very flexible and allows to consider many and varied kind
of constraints. The total potential fieldU can result from
numerous functionsUi defined by:

U =
∑

αiUi (3)

whereUi express the potential functions for obstacle avoi-
dance, path tracking [15], joint limit avoidance or, in the
present case, to guarantee the stability of the system.

The potential field could be either attractiveUi[att]
or

repulsive Ui[rep]
. Both forms are respectively depicted in

figures 3(a) and 3(b):
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Fig. 3. Both forms of potential functions

C. Stability Potential Field

To get a differential form for the potential field (as it
is required), the stability potential function relative tothe
stability marginUstab is not directly issued from the stability
marginms. In fact a potential functionUstab i

is defined for
each tipover axis corresponding to each stability angleυi.
The stability potential functionUstab results from the sum of
eachUstab i

, of which the specific form of repulsive potential
function has been chosen in accordance with the potential
field approach.

Ustab(q) =
∑

i

Ustab i
(q) (4)

with

Ustab i
(q) =





1

2
kstab

(
1

υi(q)
−

1

υ∗

)2

if υi ≤ υ∗

0 if υi > υ∗

(5)

where υi is the stability angle or tipover angle relative
to ith tipover axis, υ∗ is the stability angle limit. Thus,
the threshold of stability measurement from action must be
defined in order to maintain an acceptable stability.kstab is
a constant gain.

This function has a zero-band as shown on the figure 3(b),
what results in having a correction in the robot control only
when necessary.



III. D IFFERENTIAL K INEMATIC MODEL

In this paper, the same formalism as the one defined on
previous works ([9], [16]) is used and adapted to the specific
differential kinematics of the Hylos II robot.

For this class of system, a robot is composed of a main
body connected to serial articulated chains ended by a
cylindrical wheel. Let us defineR0 the fixed frame,RP the
platform frame,RCi

the contact frame for each wheel and
R4i

the frame attached to theith rotating wheel (see Figs. 4
and 5).
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Fig. 4. General differential kinematical model of Hylos robot

The operational configuration of the robot is defined by
p = (x, y, z)t and φ = (ϕ,ψ, θ)t respectively the position
and the orientation of the main body with respect to the fixed
frameR0.

First, the velocity of the contact point due to the platform
motion with respect to the ground and expressed in the
platform frameRP can be written as:

vx = Rṗ + ω×pi (6)

where ṗ is the platform velocity expressed inR0 and ω

is the platform rotation velocity vector expressed inRP . R

is the rotation matrix between the platform frame and the
ground one andpi is the position of the contact point in the
platform frame.

The vectorpi depends on leg parametersqi (includingq1i

and q2i
). It is obtained by writing the kinematic model of

the leg:
pi = Gi(qi) (7)

Then equation (6) can be rewritten in a matrix form:

vx = Rṗ − p̃iTφ φ̇

=
[
R −p̃iTφ

]
ẋ

= Li ẋ

(8)

where p̃i is the skew matrix corresponding to the cross-
product,ẋ is the platform velocity twist with respect to the
ground frameR0 andTφ is the rotation velocity decoupling
matrix, detailed in appendix. This matrix expresses the
rotation velocity vectorω as a function of the rotation angle
derivative φ̇. Li is called locomotion matrix with a3×6
dimensions.

The velocity of the contact pointCi due to the leg motion
with respect to the platform is expressed by a classical serial
chain differential kinematic model:

vpi
= Jpi

q̇i
=

[
σ1×a1 . . . σm×am

]
q̇i

(9)

The differential kinematic model is obtained by means of
the velocity composition principle expressed in the contact
frameRCi

:
vs = −vc + vpi

+ vx (10)

where:
• vs is the sliding velocity of the contact pointCi,
• vx is the velocity ofCi due to platform motion with

respect to ground,
• vpi

is the velocity ofCi due to leg’s motion with respect
the platform,

• vc = rωiti is the wheel circumferential velocity with
respect to the leg.

On the assumption of pure rolling (slip velocity is null), we
obtain then from equation (10) by projection on the contact
frameRCi

=(Ci, ti, li,ni):

Ri
t Li ẋ + Ri

t Jpi
q̇i − r ωiti = 0 (11)

whereRi is the matrix rotation of the contact frame with
respect to the platform frame andωi is the ith wheel rate.

Finally, we obtain, in a matrix-form, the velocity equation
for the whole system composed of four wheel-legged chains:

L ẋ + J q̇ = 0 (12)

where L is the locomotion matrix which gives the wheel
contribution to the platform movement,J corresponds to
the Jacobian matrix of wheel-legged differential kinematic
chain, and wherex and q are respectively the vectors of
the platform parameters and the articular-joint parameters of
wheel-legged chains.
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Fig. 5. One wheel-legged structure scheme of Hylos robot

IV. D ECOUPLEDCONTROL

The motion control of the studied redundant system is
based on the resolution of the inverse velocity model. Several
classical approaches of redundancies control and issued from
manipulators control have been considered ([17], [18], [19],
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[20]). In order to solve the inverse model of equation (12),
the task in the operational space is defined following two
modalities: one relative to the robot posture and the other to
the trajectory control.

Thus the vector of platform velocitieṡx=(ẋ, ẏ, ż, ϕ̇, ψ̇, θ̇)t

– input of inverse model – is split into two sub-vectorsẋt
andẋp. Each of them put together respectively the trajectory
and posture terms:{

ẋt = (ẋ, ẏ, θ̇)t = St ẋ

ẋp = (ż, ϕ̇, ψ̇)t = Sp ẋ
(13)

whereSt andSp are the appropriate sorting matrices, which
are detailed in appendix.

The trajectory following task is realized by controlling the
velocity termẋt using a classical control approach. Then, the
problem is to compute the joint velocity terṁq in order to
obtain the desireḋxt while ensuring the robot stability using
a decoupled inverse differential kinematic model.

Furthermore, the actuated joint velocities are also split into
three groups considering their effects on the reference body
velocity:

q̇ = (q̇a, γ̇,ω)
t (14)

where q̇a groups together the set of the leg joints,γ̇ the
wheel steering joint andω the wheel spin velocity, which
are respectively introduced by the associated sorting matrix,
explained in appendix:

q̇a = Sqa
q̇ γ̇ = Sγ q̇ ω = Sω q̇ (15)

Posture motion analysis:The projection of the differen-
tial kinematic constraints on each contact normalni leads to
eliminate theγ̇ andω velocities in the kinematic equation as
they do not contribute to the robot motion in this direction:

Pn

[
L

(
St
t St ẋ + Sp

t Sp ẋ
)

+ J
(
Sqa

t Sqa
q̇
)]

= 0 (16)

wherePn is the projection matrix associated ton, the set of
the vectorsni. Pn is also defined in appendix.

Then, considering that the leg motion marginally con-
tributes to the reference body motion with respect to the
wheel rotation, the termPnL

(
St
t St ẋ

)
is negligible with

respect to the termPnL
(
Sp
t Sp ẋ

)
. Finally, the relation (16)

comes down to:

nLp ẋp + nJqa
q̇a = 0 (17)

with nLp =
(
Pn LSp

t
)

and nJqa
=

(
Pn JSqa

t
)
.

Trajectory motion analysis: The same analysis can be
conducted by considering then the projection of the differen-
tial kinematic constraints on each longitudinal contact vector
ti and last on each lateral contact vectorli:

tL ẋ + tJqa
q̇a + tJω ω = 0 (18)

l L ẋ + lJqa
q̇a = 0 (19)

The termJγ γ̇ is neglected in the differential kinematic
equations by considering that the castor angle is very small
during the robot motion. Thus,̇γ the steering velocity as no
effect on the instantaneous reference body velocityẋ. So,γ
is determined by the equation (19) that corresponds here to
the non-holonomic constraints (N.H.C.).

Once this decoupled analysis is established, the solving
method is set up. The desired leg jointsq̇a are substituted
for the potential field gradient∇U , established previously
in order to control the robot posture (see Sec. II):

ẋp = − (nLp)
+ nJqa

q̇a

= − (nLp)
+ nJqa

∇U
(20)

where(nLp)
+ represents the pseudo-inverse matrix ofnLp.

Lastly, the trajectory control leads to compute the wheel
velocity ω and the steering velocitẏγ. The first is stemmed
from the relation (18) where the posture controlẋp, issued
of the relation (20), and the desired trajectoryẋt are inputed
into the relation (21). As previously,̇qa is substituted for the
potential field gradient∇U :

ω = − (tJω)–1
(
tLt ẋt + tLp ẋp + tJqa

∇U
)

(21)

The second comes from the compatible steering angleγi,
computed from the non-holonomic equation (19).

γ̇ = {γ̇i} with γ̇i = Kγ(γi − γim) (22)

whereγim is the measure of the steering angle, andKγ is a
gain control.

The whole posture control algorithm is summed up
through the control scheme depicted in figure 6.
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Fig. 7. Hylos robot moving on an uneven terrain with a “loop” trajectory

V. RESULTS

The proposed posture control algorithm has been evalu-
ated in dynamic simulation in order to validate its running
principle. As shown in figure 7, this one has consisted in
modeling the dynamic behaviour of the Hylos robot moving
on an uneven ground in following a “loop” trajectory (from
point “A” to point “B”). The results of this simulation are
presented through figures 9 and 10, which depict respectively
the evolution of the stability margin and the global potential
generated for the posture correction. Figure 8 allows to
observe the evolution of the robot joint angles during the
whole simulation.

The first observation we have made is that the robot tips
over when the posture control is not activated (see Fig. 7(a)).
This stability loss is depicted on the figure 9 when the stabil-
ity margin becomes negative. The point “C” on figures 7(a)
and 9 shows this moment.

On the contrary, when the posture control is engaged the
robot completes the set trajectory in spite of the elevation
terrain variations. The analysis of the figures 8, 9 and 10
shows there is a synchronisation between those variables.
As planned by the control strategy, a posture correction of
the robot is made when the stability margin drops under
the stability margin limit (υ∗=0,35 rad). Every time that this
case appears, the potential function relative to the stability
measurement becomes non-null (see Fig. 10). Then the robot
posture is modified only if a potential field is generated
(see Fig. 8). Thus the robot stability is preserved without
imposing a specific posture.

VI. CONCLUSION

In this paper, a new stability control strategy for a wheel-
legged robot has been proposed. This one has come from the
idea to use active redundancies of the studied rover in order
to ensure its stability without imposing a particular posture,
as made in previous works [9]. This strategy needed to set
up a decoupled control of posture and trajectory. An original
velocity based control algorithm has been presented. This
approach allows to carry out the desired behaviour of the
robot. The algorithm has been validated through dynamic
simulations, showing the capabilities of such a redundantly
actuated robot to ensure both its stability margin during the
whole motion on uneven terrain and a specified trajectory.

Experiments with the Hylos robot are in progress. Shortly
the practical feasibility of this control approach will be
evaluated and validated through these experiments.
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APPENDIX

A. Differential Kinematics Matrices details

ω = Tφ φ̇ with Tφ(φ) =



cθcψ −sθ 0
sθcψ cθ 0
−sψ 0 1




[3×3]

J =




J1 0 0 0

0 J2 0 0

0 0 J3 0

0 0 0 J4




[12×16]

with

Ji =


Ri

t Jpi
0




−rR
0
0







[3×4]

L =




R1
t L1

R2
t L2

R3
t L3

R4
t L4




[12×6]

ẋ=(ẋ, ẏ, ż, ϕ̇, ψ̇, θ̇)
t
[6×1]

q̇=(q̇11 , q̇21 , γ̇1, ω1, q̇12 , q̇22 , γ̇2, ω2, q̇13 , q̇23 , γ̇3, ω3, q̇14 , q̇24 , γ̇4, ω4)
t
[16×1]

B. Sorting Matrices details

St=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1




[3×6]

Sp=




0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




[3×6]

Sqa
=




Sq1 0 0 0

0 Sq2 0 0

0 0 Sq3 0

0 0 0 Sq4




[8×16]

with Sqi
=

(
1 0 0 0
0 1 0 0

)

Sγ =




Sγ1 0 0 0

0 Sγ2 0 0

0 0 Sγ3 0

0 0 0 Sγ4




[4×16]

with Sγi
=

(
0 0 1 0

)

Sω =




Sω1 0 0 0

0 Sω2 0 0

0 0 Sω3 0

0 0 0 Sω4




[4×16]

with Sωi
=

(
0 0 0 1

)

C. Projection Matrices details

Pt =




Pt1 0 0 0

0 Pt2 0 0

0 0 Pt3 0

0 0 0 Pt4




[4×12]

with Pti
= (1 0 0)

Pl =




Pl1 0 0 0

0 Pl2 0 0

0 0 Pl3 0

0 0 0 Pl4




[4×12]

with Pli
= (0 1 0)

Pn =




Pn1 0 0 0

0 Pn2 0 0

0 0 Pn3 0

0 0 0 Pn4




[4×12]

with Pni
= (0 0 1)
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