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Abstract— The paper develops a method for analyzing and
improving by control obstacle clearance capacities of articu-
lated multi-wheeled rovers. On uneven ground surface, load
and traction force distributions through the wheel/ground
contact system are highly coupled. They are both conditioned
by the global equilibrium of the mechanical system and the
contact stability constraints. The optimal traction force distri-
bution problem is formulated here as a convex optimization
problem using Linear Matrix Inequalities (LMIs). Velocity
and force transmissions in articulated multi-wheeled mobile
robots are introduced under a generic form decomposed in
task, joint and contact levels. A tyre-model is used for the
evaluation of the robustness of the solution with respect to
slippage phenomena. Simulation results show that the traction
distribution forces which is so determined lead to a significant
increase in obstacle clearance capacities compared to an usual
velocity control technique.

Index Terms— Rovers, obstacle clearance, mobility, kine-
matics

I. INTRODUCTION

Mobile robotic systems use dedicated elements for
propulsion, such are wheels, tracks or legs, which are
integrated into a mechanical system. Generally they
present internal mobilities allowing an active or passive
adaptation to geometrical complexity of the ground
and more generally to their operational environment.
Locomotion systems can be seen as multi-body articulated
systems interacting with the environment by a set of
unilateral contacts with adhesion or slippage, the number
and the nature of those contacts evolving in time and
space. From a topological point of view, locomotion
systems can be compared to articulated hands and the
analysis of the mechanical properties of locomotion
systems can be inspired by grasp analysis. Force and
velocity transmissions in these systems can be analyzed
by the use of similar mathematical tools, as for the
optimization of contact force distribution [1] or for
evaluating quantitatively the obstacle clearance capabilities
[2].

The work developed in this paper tries to bring an
answer to the evaluation of traction capabilities and the
optimal traction distribution for obstacle clearance of
wheeled-based mobile robots evolving on uneven surfaces.
Off-road mobile robots have generally complex structure
(several joints for suspension or for auxiliary locomotion

modes). Comparatively to cars, suspension mechanism
mobilities of mobile robots satisfy to different functionality
operational needs: they have to ensure a permanent contact
with a highly irregular ground surface, to contribute to
robot stabilization and sometimes to its propulsion like in
walking locomotion systems for instance [3].

Most of articulated wheeled robots have 6 wheels, which
are either multi-platforms or mono-platform. The formers
are generally composed by 3 articulated axles called
modules [4], and the seconds one have a main body and
more complex mechanisms such as rocker-bogie structure
[5] [6], or with multi-parallelogram systems [7]. Generally,
the motion of these systems are controlled by using their
differential kinematic model. The method for deriving the
input/output velocity relationship consists in introducing
geometrical transformations between the moving bodies
and their time-derivative in order to obtain velocity
equations by assuming ideal rolling conditions between
the wheels and the ground, as closed-loop constraints [8].
Systematic formulations have been developed for various
combinations of driving and steering wheels [9] [10].
Sliding models in the wheel/ground interaction have been
also introduced for developing more realistic models [11]
[12] [3].

The problem of obstacle clearance of off-road robots
has been addressed slightly, in particular either from
experimental point of view or by using dynamic
simulation [13] [6]. However, there is no theoretical study
based on analytical formulation of the problem of force
and velocity transmissions between joint, contact and task
spaces.

The paper proposes a general framework for analysis
and optimization of the obstacle clearance process. The
framework can be applied to any articulated wheeled
system with active or passive mobilities. The method is
based on a kineto-static model which takes into account the
slippage and friction condition in wheel-ground contacts.
In the next section, we first present the kinematics of
the considered robot and then we develop its kineto-static
model used for the analysis and the optimization. After,
we discuss the mechanical model of the wheel-ground



contact and show the similarities between the Coulomb
friction model and the tyre model. Section (4) draws up
the problem of contact force distribution in multi-wheeled
articulated robots and proposes a formulation based on a
convex optimization that involves linear matrix inequalities
LMIs. The method defines the stability contact by using the
maximal friction condition. Simulation results developed in
the last section show the efficiency of the method and its
robustness in relation to a realistic tyre model that considers
wheel slippage. Results are also compared to a simple
control method based on an equi-distribution of wheel’s
rate and demonstrate the relevance of the optimization of
force distribution.

Fig. 1. RobuRoc6 negotiating an obstacle.

II. KINETO-STATIC MODEL OF ROBUROC6

The vehicle considered in this paper is called RobuROC6
(figure 1). It can be considered as a series of 3 monocycles
modules linked together by two orthogonal revolute joints
allowing roll and pitch motions of each module. Each
monocycle module is steered and driven by two actuated
conventional wheels on which a lateral slippage may
occur. The rear and the front modules are symmetrically
arranged about the central one. The two revolute
joints along the pitch axis are coupled by means of 4
hydraulic actuators with interconnected cylinders. This
interconnection ensures that the front and rear pitch joints
rotate symmetrically with respect to the middle axle. This
kinematics permits to transform RobuRoc6 into a 4-wheel
configuration as shown in figure (2) mainly to increase its
manoeuvrability when needed. However the robot could
operate without actuating the hydraulic pump and then the
pitch suspension works as a differential mechanical system.

In this paper, we restrain the analysis to the sagittal
plane and we will not consider the parallel mechanisms
composed by the hydraulic cylinders controlling the pitch
rotoide joints. We consider also that the pitch suspension
is not actuated, and that the robot has all its wheels in
contact with the ground.

We establish in this section for the considered rover
(fig.3) the relationships between the time-derivative of
joint parameters θ̇ and the middle axle absolute velocity
ẋ. We study here the 2D sagittal motion of the vehicle,
then only one suspension mobility around the pitch axis

roll joint roll joint

pitch joints

hydraulic cylinders

for pitch motion

Fig. 2. Kinematics scheme of RobuROC6 : 2 configurations illustrating
the central module manipulation.

will be taken into account. The two mobilities of front
and rear axle around the roll axis will not be considered
in this analysis. Likewise, the closed kinematic loops of
hydraulic cylinders actuating the pitch motion (fig.2) are
not considered in this model. We denote by ψ the pitch
motion parameter of the front axle and then by −ψ for
that of the rear one, by θ1, θ2, θ3 the joint parameters
of respectively the front, the central and the rear wheel.
We denote also by x = (x, z, o) planar position and
orientation of the central axle expressed in the wheel
center P . Then joint and task parameters are respectively
θ = (ψ, θ1, θ2, θ3)t, x = (x, z, o)t.

For each wheel-ground contact Ci, thanks to motion
composition principle we can write

~V (Ci, SP /S0) = −~V (Ci, SWi
/SP ) + ~V (C, SWi

/S0) (1)

where SP , S0, SWi
denote frames attached to the plat-

form (central module), the ground and the ith wheel.
~V (Ci, SP /S0) represents, in point Ci, the platform twist
with respect to the ground, then it can be expressed by an
adjoint matrix in se(2), ~V (Ci, SWi

/SP ) characterizes the
velocity of point Ci with respect to the platform, then it
can be given by a jacobian matrix, and ~V (C, SWi/S0) is
a slippage velocity in the wheel-ground contact.

Applying again the motion composition law along the
kinematic path joining SWi

to SP , we obtain respectively
for the front, center and rear contacts

u~i+ v~k + ȯ~j × ~a1 = −ψ̇~j ×~b1 − ω1
~j ×−r~n1 + ~vs,1

u~i+ v~k + ȯ~j ×−r~n2 = −ω2
~j ×−r~n2 + ~vs,2

u~i+ v~k + ȯ~j × ~a3 = +ψ̇~j ×~b3 − ω3
~j ×−r~n3 + ~vs,3

where (u, v)t = Ro(ẋ, ż)
t are velocity components of

the center of the middle wheel expressed in the local
platform frame (P,~i,~k), ωi = θ̇i is the rate of the ith
wheel, r is wheel radius, ~b1,~b3 are vectors from point P
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Fig. 3. Planar scheme of the suspension kinematics and geometrical
parameters definition.

to, respectively, the front and rear contact points C1 and
C3, ~vs,i is the wheel-ground slippage velocity in the ith
contact. By projecting these equations along the tangential
and normal vectors ~ti ~ni of contact frames (figure (3)), we
obtain

Gt

 ẋ
ż
ȯ

 = J


ψ̇
ω1

ω2

ω3

+ vs (2)

with

Gt =


Cα1

−Sα1
−r + aψCα1

+ bψSα1

Sα1
Cα1

aψSα1
− bψCα1

Cα2 −Sα2 −r
Sα2 Cα2 0
Cα3

−Sα3
−r + aψCα3

− bψSα3

Sα3
Cα3

aψSα3
+ bψCα3

Ro, (3)

J =


r − bψSα1

− cψCα1
r 0 0

bψCα1
− cψSα1

0 0 0
0 0 r 0
0 0 0 0

−r − bψSα3
+ cψCα3

0 0 r
bψCα3

+ cψSα3
0 0 0

 , (4)

 aψ = dCψ − d− lSψ
bψ = lCψ + dSψ
cψ = dCψ − lSψ

, (5)

Ro =

 Co −So 0
So Co 0
0 0 1

 (6)

where Cx = cosx, Sx = sinx, l and d are constant
kinematic parameters defined on figure (3).

The principle of virtual work leads to the dual static
model, {

Gf = gx

Jtf = −τ + gθ
(7)

which represents the equilibrium equations of the system
subject to generalized gravitational forces g, joint actuator
torques τ and contact forces f . As kinematic contact con-
ditions (2) are given in the local contact frame (~ti, ~ni), the
contact force vector is composed with tangential and nor-
mal components f = (f1,T , f1,N , f2,T , f2,N , f3,T , f3,N )t.

g is the generalized force due to gravity. It can be
computed by gx = ∂U

∂x = w, gθ = ∂U
∂θ with U the total

potential energy. we obtain

gx =

 0
(m1 +m2 +m3)g

−m1g(aψSo + bψCo) +m3g(−aψSo + bψCo)


gθ =

 −m1g(cψSo + bψCo) +m3g(cψSo − bψCo)
0
0
0


These generalized forces assume that the center of grav-

ity of each module is located on its axle. mi depicts the
mass of the ith module and g the gravitational acceleration.

III. WHEEL-GROUND CONTACT MODEL

Robot-ground interaction is of high importance in land
locomotion. Moreover, wheeled-based locomotion systems
have continuous contacts with the ground. An efficient
vehicle navigation needs a realistic model that characterizes
force and velocity transmission through this contact. In first
approximation, the contact can be modeled by an ideal
rolling contact without slippage and a Coulomb friction
law. This is a first order model which is commonly used
for grasping and for locomotion analysis. However, this
model could be not sufficient when the friction and the
stiffness of the contact are slight. For off-road as well
as for on-road vehicles, the contact model expresses the
force and moment components as function of the contact
geometry, the relative displacement parameters and their
time-derivative. Most of tyre models uses for characterizing
the longitudinal slippage, the following ratio

si =
vs,i

sup(rωi, vi)

=
vi − rωi

sup(rωi, vi)
(8)

where vi is the longitudinal linear velocity of the wheel
center. The sup function allows to avoid division by zero
in case of pure spinning (vi = 0) or total wheel locking
(ωi = 0).

Equation (2) can be split into two parts, according the
normal (N) and tangential (T) projections

{
Gt
N ẋ− JN,ψψ̇ = 0

Gt
T ẋ− JT,ψψ̇ − JT,ωω = vs

(9)

JT,ψ and JT,ω are jacobians associated to the suspension
joint parameter and to wheel’s rates. Then the slippage
velocity is
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Fig. 4. Tyre traction model and Coulomb friction model.

vs =
[
Gt
T | − JT,ψ

]( ẋ

ψ̇

)
− JT,ωω (10)

Let BN = null([Gt
N | − JNψ]), then

(
ẋ

ψ̇

)
= BNζ (11)

Assuming that ωi 6= 0, the slippage ratio vector can be
written

si =
ζ

rωi

([
Gt
T | − JT,ψ

]
BN

)
i
− 1 (12)

Brush tyre model [14] explains that the contact surface
contains two areas: (1) an adhesion area where contact
forces are given by the tyre stiffness and the tyre
deformation and (2) a slippage area where the elastic
forces exceed the friction limit and then contact forces
are detrmined only by the friction coefficient and the
contact pressure. In this model, when the slippage is above
a critical value sc, all the tyre-ground contact surface
is sliding. Below this value, the contact surface has an
adhesion area which provides a certain contact stability
due to the reversibility of elastic force.

Traction (or braking) force developed by a tire is plotted
in general as function of the slippage ratio si (figure 4).
This curve has a quasi-linear stage whose slope depending
on longitudinal tire stiffness and where the contact can be
considered stable. The critical slippage value sc varies from
0.05 to 0.2 depending on tire stiffness, friction coefficient,
and contact length. A first-order approximation of a tyre
model can be given by the following monotone function

fi,T =
2

π
µfi,N arctan(4si/sc) (13)

where µ is the friction coefficient and sc is a critical
slippage which depending on tyre stiffness, contact length...

The next section, considers the optimization problem
of traction force distribution and characterizes the friction
constraint as expressed by a Coulomb model. The model of
tyre is mainly used for simulation of quasi-static motion,
for computing stationary slippage ratio and for evaluating
the robustness of the optimization in relation to slippage
phenomena.

IV. OPTIMAL TRACTION DISTRIBUTION

Traction and load distributions are of great importance
when contact geometrical characteristics are uneven i.e.
contact normals are not parallel and contact points are
not coplanar. In this case, traction and load distribution
problems can not be decoupled. We can then use the well
known frameworks developed for the analysis of grasping
systems. Wheeled mobile systems can be considered as a
system where multiple interconnected wheels ”grasp” the
ground.

If we consider quasi-static equations associated to the
generalized parameters (x, z, o) defining the platform and
ψ defining the joint suspension parameter, we obtain

[
G
−Jt

ψ

]
f =

[
gx
gψ

]
(14)

and can take the compact form

Ḡf = ḡ (15)

Solving this model consists in computing (f) for a given
configuration q = (x,θ) and a given external gravitational
generalized force g. Most of models of articulated rovers
have a high number of static indeterminacy. This force
indeterminacy has two sources : (1) internal, because
of the use of a redundant actuation (all the wheels
are actuated) and (2) external, because of the multiple
frictional wheel/ground contacts. For the considered
system, the indeterminacy is equal to 2 when the pitch
joint is passive, and is equal to 3 when this joint is actuated.

The main issue of the contact stability problem is to
determine a contact force distribution which satisfies :

• unilateral contact condition : fi,N > 0,
• no (or small) slippage condition : (fi,T )2 < (µfi,N )2.
These conditions can be transformed, as proven by [15]

and extended by [16], into positive definiteness of certain
symmetric matrices which is for a punctual contact with
friction (PCWF), restricted here to a planar problem,

P(f) =

3∑
i=1

fi,TSi,T + fi,NSi,N > 0 (16)

with Si,T ,Si,N are constant block diagonal symmetric
matrix. For i = 1

S1,T = blockdiag(E2
12 + E2

21,02×2,02×2)



S1,N = blockdiag(µ(E2
11 + E2

22),02×2,02×2)

and et cetera for i = 2, 3. In these relations, Eabc is a square
matrix of dimension a with element (b, c) to be 1 and all
others to be zero.

The problem can be formulated as a set of convex
optimization problems involving Linear Matrix Inequalities
(LMIs) which can be handled by general-purpose LMI
solvers in computationally viable conditions.

We define a measure of optimality for traction forces by

Ψ(f) = w2f tT fT + log detP−1(f)

where fT = (f1,T , f2,T , f3,T )t depicts the vector of
traction forces, w is a weighting factor. The first term of
the measure will grow with the contact tangential forces,
and the second term grows to infinity as any contact force
approaches the boundary of its friction cone.

The traction force optimization problem can therefore be
stated as follows

minimize Ψ(f) = f tWtWf + log detP−1(f)

subject to Ḡf = ḡ (17)

with W corresponds to a weighting matrix of
dimensions (6,6) where elements are 0, except
W11 = W33 = W55 = w.

Finally, wheel torques can be computed by using Jt and
equation (7), which can be written more simply by

τi = rFi,T (18)

V. SIMULATION RESULTS

TABLE I
ROBOT AND OBSTACLE PARAMETERS.

module mass m1,2,3 50Kg
arm length l 0.60m
pitch joint position d 0.10m
wheel radius r 0.25m
Friction coefficient µ 0.8
Step height 0.25m
critical slippage sc 0.2

This section gives simulation results of a quasi-static
step-like obstacle crossing, using the vehicle and ground
parameters given in table (I). The robot crosses a step of
height equal to the wheel radius. Geometry of the robot
and wheel-ground contacts are computed by integration of
velocity parameters and by using the differential kinematic
model developed in section (3).

Simulations are carried out by Matlab software TMand
cvx toolbox [17] dealing with convex programming.
Figure (5) shows the traction coefficient (fi,T /fi,N ) and
the slippage ratio si for each wheel i as function of time.
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Fig. 5. Traction coefficient ft/fn and slippage ratio si obtained by
traction optimization (weight factor w = 0.01).
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These curves have three parts, each corresponds to the
phase when a wheel is climbing the step. We verify that
traction coefficient obtained by optimization is less than
the friction coefficient and then each contact force is
inside its friction cone. Also the slippage ratios are kept
below the critical slippage sc, and prove the robustness
of the model in relation to the slippage phenomena and a
realistic tyre model. Slippage could be minimized more
by decreasing the weight factor w, but this will inevitably
decrease the global traction of the system and then its
dynamics.

We compare these results with a simple control model
which assumes an equal velocity distribution ωi = ω.
This is a basic control which is usually used as it can
be carried out by a simple feedback of the wheel’s rate.
In this case, we solve the non-linear system equation
composed by the 4 equilibrium equations (15) and 4
unknown variables which are the three normal forces
Fi,N , i = 1, 2, 3 and the slippage parameter ζ

rω . Tyre
model (13) is used to express tangential forces as function
of the last unknown parameters. Curves of figure (6)
shows traction coefficients during the step-like obstacle
crossing with an equal velocity distribution. The robot can
not cross the step as, at each frontal contact two wheels
are highly spinning while the other is braking; this latter
has a rate smaller than the theoretical ideal rolling rate.
We can notice also that high internal forces are created by
applying simultaneously tractive and braking torques.

More generally, we can show, as seen on the figure (7),
that an optimal torque distribution allows high clearance
capacity in comparison with a simple velocity control. This
plot gives the ratio Hmax/r for different friction coefficient
values µ varying from 0.1 to 0.8, Hmax is the maximal
clearance height of a step-like obstacle.
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VI. CONCLUSION

Taking inspiration from researches in optimal grasping of
multifingered tasks, a new method is proposed for comput-

ing an optimal traction force distribution in multi-wheeled
articulated robot. The method is based on a Linear Matrix
Inequalities formulation which leads directly to a simple
convex optimization problem that can be solved efficiently
in polynomial time. The magnitude of traction forces is
used as a measure of optimality of the clearance task.
The approach considers cone friction constraint and turns
out to be robust to slippage phenomena. This approach
has to be extended to 3D motion in order to study for
example the effect, of the robot configuration angle along
the yaw direction, on the clearance capacity. Experimental
validation of such optimal torque distribution requires the
estimation of contact parameters (position and normal).
However for structured obstacles (stair, step, etc...), this
problem can be solved easily by using a ground elevation
map and an on-line obstacle sensing.

REFERENCES

[1] Y. P. Li, T. Zielinska, M. H. A. Jr., and W. Lin, “Vehicle dynamics
of redundant mobile robots with powered caster wheels,” in Proc.
of the 16th CISM IFToMM Symposium, Romansy, 2006.

[2] F. Le Menn, P. Bidaud, and F. Ben Amar, “Generic differential
kinematic modeling of articulated multi-monocycle mobile robots,”
2006. ICRA 2006. Proceedings 2006 IEEE International Conference
on Robotics and Automation, pp. 1505–1510, May 2006.

[3] C. Grand, F. Ben Amar, F. Plumet, and P. Bidaud, “Stability and
traction optimization of a reconfigurable wheel-legged robot.” Int.
Journal of Robotic Research, vol. 23, no. 10-11, pp. 1041–1058,
2004.

[4] S. Sreenivasan and K. Waldron, “Displacement analysis of an
actively articulated wheeled vehicule configuration with extensions
to motion planning on uneven terrain,” Transactions of the ASME,
vol. 118, no. 6, pp. 312–317, 1996.

[5] R. Volpe, “Rocky 7: A next generation mars rover prototype,”
Journal of Advanced Robotics, vol. 11, no. 4, pp. 341–358, 1997.

[6] T. Thueer, A. Ambroise Krebs, R. Siegwart, and P. Lamon, “Perfor-
mance comparison of rough-terrain robots simulation and hardware,”
J. of Field Robotics, vol. 24, no. 3, pp. 251–271, 2007.

[7] R. Siegwart, P.Lamon, T. Estier, M. Lauria, and R. Piguet, “Innova-
tive design for wheeled locomotion in rough terrain,” Robotics and
Autonomous Systems, vol. 40, pp. 151–162, 2002.

[8] P. Muir and C. Neuman, “Kinematic modeling of wheeled mobile
robots,” Journal of robotics systems, vol. 4, no. 2, pp. 281–340,
1987.

[9] R. Rajagopalan, “A generic kinematic formulation for wheeled
mobile robots,” Journal of Robotic Systems, pp. 77–91, 14-2 1997.

[10] B. Y. Yi and W. Kim, “The kinematics for redundantly actuated
omnidirectional mobile robots,” Journal of Robotic Systems, pp.
255–267, 14-2 2002.

[11] G. M. M. Tarokh, “Kinematics modeling and analyses of articulated
rovers,” IEEE Transactions on Robotics and Automation, vol. 21,
no. 4, pp. 539–553, 2007.

[12] K. Iagnemma and S. Dubowsky, “Vehicle wheel/ground contact
angle estimation : with application to mobile robot control,” in
Proceedings of International Symposium on Advances on Robot
Kinematics ARK’00, 2000, pp. 137–146.

[13] B. C. Bouzgarrou, F. Chapelle, and J. C. Fauroux, “A new principle
for climbing wheeled robots: Serpentine climbing with the open
WHEEL platform,” in 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems,, Beijing, Oct. 2006, pp. 3405–3410.

[14] H. B. Pacejka, Tyre and vehicle dynamics. Oxford, UK:
Butterworth–Heinemann, 2002.

[15] M. Buss, H. Hashimoto, and J. Moore, “Dextrous hand grasping
force optimization,” IEEE Transactions on Robotics and Automa-
tion, vol. 12, pp. 406–418, 1996.

[16] L. Han, J. C. Trinkle, and Z. Li, “Grasp analysis as linear matrix in-
equality problems,” IEEE Transactions on Robotics and Automation,
vol. 16, pp. 1261–1268, 2000.

[17] M. Grant and S. Boyd, “Cvx: Matlab software for disciplined convex
programming,” in www.stanford.edu/ boyd/cvx/, ..


