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Reduced models for fluid–structure interaction problems

Roger Ohayon∗,†

Conservatoire National des Arts et Métiers (CNAM), Structural Mechanics and Coupled Systems Laboratory,

2 rue Conté 75003 Paris, France

Several so-called reduced order formulations are reviewed for linear vibration analysis of bounded 
fluid–structure systems for low modal density situations. Compressibility effects in the fluid for interior 
structural–acoustic problems, and free surface gravity effects, for hydroelastic–sloshing interaction 
problems in the case of incompressible liquids, are examined. Reduced order models leading to 
symmetric matrix systems are then described using the static well-posed behaviour of the irrotational 
fluid. In this respect, the fluid–structure boundary value local equations, expressed in terms of fluid 
scalar field variables for the fluid (and displacement variables for the structure) are regularized for zero-
frequency limit. 

KEY WORDS: structural-acoustics; compressible hydroelasticity; reduced symmetric models

1. INTRODUCTION

We review in this paper reduced order models for modal analysis of elastic structures containing

an inviscid fluid (gas or liquid, [1, 2]). These methods, based on the Ritz–Galerkin projection

using appropriate Ritz vectors, allow us to construct reduced models expressed in terms of

physical displacement vector field u in the structure, and generalized co-ordinates vector r

describing the behaviour of the fluid. Those reduced models lead to symmetric generalized

eigenvalue matrix system involving a reduced number of degrees of freedom for the fluid. For

this purpose, we construct symmetric matrix models of the fluid considered as a subsystem, by

considering the response of the fluid to a prescribed normal displacement of the fluid–structure

interface. Two distinct situations are analysed. On the one hand, we consider linear vibrations

of an elastic structure completely filled with a compressible gas or liquid and on the other

hand, we consider the case of an elastic structure containing an incompressible liquid with

free surface effects due to gravity. The first case is a structural–acoustic situation with modal

interaction between structural modes in vacuo for structure containing a gas or hydroelastic

modes including ‘static’ inertial and potential compressibility effects for structure containing
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liquids, with acoustic modes in rigid motionless cavity. Interface local fluid–structure dissipation

through a local wall impedance can also be introduced easily in the formulations.

The second case is a hydroelastic–sloshing problem with modal interaction between in-

compressible hydroelastic structural modes with incompressible liquid sloshing modes in rigid

motionless cavity, involving an elastogravity operator related to the wall normal displacement

of the fluid–structure interface [3, 4]. For the construction of reduced models, the static be-

haviour at zero frequency plays an important role. Therefore, we review ‘regularized’ variational

formulations of the problem, in the sense that the limit zero-frequency static behaviour must

be in taken into account in the boundary value problem. Those ‘quasi-static’ potential and

inertial contributions plays a fundamental role in the Ritz–Galerkin procedure (error trunca-

tion). The general methodology corresponds to dynamic substructuring procedures adapted to

fluid–structure modal analysis. For general presentations of computational methods using ap-

propriate finite element and dynamic substructuring procedures applied to modal analysis of

elastic structures containing inviscid fluids (sloshing, hydroelasticity and structural–acoustics),

we refer the reader to References [3, 5–10], taking into account fluid dissipation models for

structural–acoustics [11, 12].

2. STRUCTURAL–ACOUSTIC PROBLEM

Let us consider the linear vibrations of an elastic structure completely filled with an homoge-

neous, inviscid and compressible fluid. We also consider the particular case of a compressible

liquid with a free surface, neglecting gravity effects.

After the derivation of the linearized equations of the fluid–structure coupled system, we

introduce a linear constraint in order to obtain a regularized problem at zero frequency, and we

then construct a reduced model of the fluid subsystem. Acoustic modes in rigid motionless cavity

are introduced as Ritz projection vector basis, including the static solution of the coupled system.

As this fluid–structure system has a resonant behaviour a direct finite element computation

may lead to prohibitive time costs. That is why, starting from one of the possible variational

formulations of the problem, convenient reduced symmetric matrix models are reviewed.

3. STRUCTURAL–ACOUSTIC EQUATIONS

3.1. Structure subjected to a fluid pressure loading

We consider an elastic structure occupying the domain �S at equilibrium. The interior fluid

domain is denoted as �F and the fluid–structure interface is denoted � (see Figure 1). The

angular frequency is denoted as �. The chosen unknown field in the structure domain �S

is the displacement field u. The linearized deformation tensor is denoted as �ij (u) and the

corresponding stress tensor is denoted as �ij (u). We denote by �S the constant mass density

at equilibrium and by n the unit normal, external to the structure domain �S. Let �u be the

test function, associated to u, belonging to the admissible space Cu.

The weak variational formulation describing the response of the structure �S to given har-

monic forces of amplitude F d on the external structure boundary ��S\�, and to fluid pressure

field p acting on the internal fluid–structure interface � is written as follows.
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Figure 1. Elastic structure containing a gas.

For all real � and ∀�u ∈ Cu, find u ∈ Cu such that

k̃(u, �u) − �2

∫

�S

�Su · �u dx −

∫

�

pn · �u d� =

∫

��S\�

F d · �u d� (1)

in which

k̃(u, �u) = k(u, �u) + kG(u, �u) + kP0
(u, �u) (2)

and where k(u, �u) is the mechanical elastic stiffness such that

k(u, �u) =

∫

�S

�ij (u)�ij (�u) dx (3)

and where kG(u, �u) and kP0
(u, �u) are such that

kG(u, �u) =

∫

�S

�0ijul,i�ul,j dx, kP0
=

∫

�

P0n1(u) · �u d� (4)

In Equations (4) and (5), kG(u, �u) represents the classical structural prestress geometric sym-

metric bilinear form in which �0ij denotes the prestress tensor, and kP0
(u, �u) represents an

additional prestress symmetric bilinear form due to rotation of normal n, in which P0 denotes

the initial pressure existing in the reference equilibrium configuration. Finally, n1(u) represents

the variation of normal n between the reference configuration and the actual configuration.

3.2. Fluid subjected to a wall normal displacement

Since the fluid is inviscid, instead of describing the small motion of the fluid by a fluid

displacement vector field uF (see for instance Reference [13]), which requires an appropriate

discretization of the fluid irrotationality constraint curl uF = 0, we will use the pressure scalar

field p. It should be noted that, the small movements corresponding to � �= 0 are obviously
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irrotational, but, in the static limit case, i.e. at zero frequency, we consider only fluids which

exhibit a physical irrotational behaviour.

Let us denote by c the (constant) sound speed in the fluid, and by �F, the (constant) mass

density of the fluid at rest. We denote as �F the domain occupied by the fluid at rest (which

is taken as the equilibrium state). The local equations describing the harmonic response of the

fluid to a prescribed arbitrary normal displacement u · n of the fluid–structure interface � are

such that

∇p − �F�
2uF = 0|�F

(5)

p = −�Fc
2∇ · uf |�F

(6)

uF · n = u · n|� (7)

curl uF = 0|�F
(8)

Equation (5) corresponds to the linearized Euler equation in the fluid. Equation (6) corresponds

to the constitutive equation of the barotropic fluid. Equation (7) corresponds to the wall slipping

condition. Equation (8) corresponds to the irrotationality condition, only necessary in order to

ensure that when � → 0, uF tends to static irrotational motion, which corresponds to the

hypothesis that for � = 0, we only consider irrotational motions (for simply connected fluid

domain).

Relation between static pressure ps and u · n. For � = 0, Equations (6) and (7) lead to the

constant pressure static field which is related to the normal wall displacement by the relation

(see References [3, 7])

ps = −
�Fc

2

|�F|

∫

�

u · n d� (9)

in which |�F| denotes the measure of the volume occupied by domain �F.

3.3. Equations in terms of p and u · n

The elimination of uF from Equations (5)–(8) leads to

�p +
�2

c2
p = 0|�F

(10)

�p

�n
= �F�

2u · n|� (11)

with the constraint

1

�Fc
2

∫

�F

p dx +

∫

�

u · n d� = 0 (12)

Equation (10) is the classical Helmholtz equation expressed in terms of p. Equation (11)

corresponds to the kinematic condition defined by Equation (7). The linear constraint defined

by Equation (12) corresponds to the global mass conservation which ensures that the boundary

problem defined by Equations (10)–(11) is equivalent to the problem defined by Equations (5)
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to (8). In the absence of the condition defined by Equation (12), we would obtain a boundary

value problem in terms of p which is not valid for � = 0 and which does not allow us to

retrieve the value of ps given by Equation (9).

3.4. Variational formulation in terms of (u, p)

Let �p be the test function, associated to p, belonging to the admissible space Cp. The

weak variational formulation corresponding to Equations (10)–(12) is obtained by the usual

test-function method using Green’s formula.

The weak variational formulation corresponding to the modal analysis of the structural–

acoustic problem is then obtained by setting F d = 0 in Equation (1). The eigenvalue structural–

acoustic variational formulation is then stated as follows. Find �2 and u ∈ Cu and p ∈ Cp,

such that for all �u ∈ Cu and �p ∈ Cp, we have

k̃(u, �u) −

∫

�

pn · �u d� = �2

∫

�S

�Su · �u dx (13)

1

�F

∫

�F

∇p · ∇�p dx =
�2

�Fc
2

∫

�F

p�p dx + �2

∫

�

u · n�p d� (14)

with the constraint

1

�Fc
2

∫

�F

p dx +

∫

�

u · n d� = 0 (15)

The variational formulation defined by Equations (13)–(15) is original due to the presence of

the constraint defined by Equation (15) which regularizes the (u, p) formulation for � = 0

(see also References [8, 9]). In effect, usually, only Equations (13) and (14) are written, and as

pointed out above, are not valid for � = 0. In the case of a direct finite element discretization

of Equations (13)–(15), we obtain a matrix eigenvalue system of the type AY = �2BY, in

which A and B are not symmetric. That is why various symmetric formulations using for the

fluid pressure field p and displacement potential �, defined up to an additive constant and

such that uF = ∇�, have been derived. The resulting symmetric formulations are then obtained

by elimination of p or �. In the present case, we are not considering a direct finite element

approach of the variational formulation defined by Equations (13)–(15).

3.5. Symmetric reduced model

We will consider hereafter a dynamic substructuring approach through an appropriate decom-

position of the admissible class into direct sum of admissible vector spaces (see Figure 2 and

References [3, 6]).
Let us consider the following two basic problems. The first one corresponds to the acoustic

modes in rigid motionless cavity and is obtained by setting u = 0 into Equations (14) and (15).

The calculation of these acoustic modes is generally done by using a finite element procedure.

If we introduce the admissible subspace C
∗
p of Cp

C
∗
p =

{

p ∈ Cp;

∫

�F

p dx = 0

}

(16)
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Figure 2. Dynamic substructuring scheme.

the variational formulation of acoustic modes is stated as follows: find �2 > 0 and p ∈ C
∗
p

such that, for all �p ∈ C
∗
p, we have

1

�F

∫

�F

∇p · ∇�p dx = �2 1

�Fc
2

∫

�F

p�p dx (17)

with the constraint
∫

�F

p dx = 0 (18)

It should be noted that, in practice, if the constraint condition (18) is ‘omitted’, we only add

a first non-physical zero frequency constant pressure mode, the other modes corresponding to

� �= 0 remaining the same as those defined by Equations (17) and (18). This zero frequency

mode must not be retained in any Ritz–Galerkin projection analysis. In addition, we have the

following orthogonality conditions:

1

�Fc
2

∫

�F

p�p� dx = 	����,
1

�F

∫

�F

∇p� · ∇p� dx = 	��
2
���� (19)

The second basic problem corresponds to the static response of the fluid to a prescribed wall

normal displacement u ·n. The solution, denoted as ps(u ·n), is given by Equation (9). For any

deformation u · n of the fluid–structure interface, ps(u · n) belongs to a subset of Cp, denoted

as C
u·n

C
u·n =

{

ps ∈ Cp; ps = −
�Fc

2

|�F|

∫

�

u · n d�

}

(20)

In the variational formulation defined by Equations (13)–(15), p is searched under the form

p = ps(u · n) +
Np
∑

�=1

r�p� (21)

in which Np denotes the number of retained acoustic modes. Decomposition (21) is unique. In

addition, it should be noted that, since each eigenvector p� corresponding to �� �= 0, verifies

the constraint defined by Equation (18), then, using Equation (9), we deduce that p and u · n
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satisfy the constraint defined by Equation (15). The decomposition defined by Equation (21)

corresponds to a decomposition of the admissible class Cp into the direct sum of the admissible

classes defined, respectively, by Equations (20) and (16)

Cp = C
u·n ⊕ C

∗
p (22)

Following Equation (21), the test function �p is then searched under the following form:

�p = ps(�u · n) +
Np
∑

�=1

�r�p� (23)

Variational formulation in �u defined by Equation (13) becomes

k̃(u, �u) + ks(u, �u) −
Np
∑

�=1

r�

∫

�

p�n · �u d� = �2

∫

�S

�Su · �u dx (24)

in which k̃(u, �u) is defined by Equation (2) and ks(u, �u) is such that

ks(u, �u) =
�Fc

2

|�F|

(∫

�

u · n d�

) (∫

�

�u · n d�

)

(25)

If we consider a finite element discretization of the structure, the corresponding discretized

form of Equation (24) can be written as

[K̃ + Ks]U −
n
∑

�=1

C�r� = �2MU (26)

in which symmetric matrices K̃ and Ks correspond to finite element discretization of stiffness

symmetric bilinear forms defined by Equations (2)–(4) and (25) respectively. In Equation (26),

M denotes the structural symmetric mass matrix and rectangular coupling matrix C� corresponds

to the discretization of the coupling fluid–structure contribution
∫

� p�u · n d�. The discretized

form of Equation (14) in �p can then be written as

�2
�	�r� = �2	�r� + �2CT

�U (27)

From Equations (26) and (27), we obtain the following symmetric matrix reduced model:

(

Ktot 0

0 Diag 	�

) (

U

r

)

= �2

(

Mtot D

DT Diag(	�/�
2
�)

) (

U

r

)

(28)

in which r denotes the vector of N generalized co-ordinates r�, with 1� � �Np, and

Ktot = K̃ + Ks (29)

Mtot =M +
Np
∑

�=1

1

�2
�	�

C�C
T
� (30)

D� =
Np
∑

�=1

1

�2
�

C� (31)

7



Further diagonalization of Equation (28) implies a projection of U on the solutions of the

following eigenvalue problem

KtotU� = 
�M
totU� (32)

Setting

U =
Nu
∑

�=1

q�U� (33)

in which q� are the generalized co-ordinates describing the structure. Using the orthogonal-

ity conditions associated with the solutions of Equation (32), i.e. UT
�′M

totU� = 	s
�
���′ and

UT
�′K

totU� = 	s
�

����′ , Equation (28) becomes

(

Diag 
� 0

0 Diag�2
�

) (

q

r

)

= �2

(

INu [C��]

[C��]
T INp

) (

q

r

)

(34)

It should be noted that two different situations must be considered hereafter.

Case of a liquid filling the enclosure. For the case of a heavy fluid, one must mandatory use

the eigenmodes defined by Equation (32), i.e. hydroelastic modes including ‘static’ inertial and

potential compressibility effects. In effect, if only the ‘dry’ structural modes were used, very

slow (poor) convergence would be expected. Of course, some other alternatives are possible for

slightly compressible liquids (this depends upon the frequency range and is particularly true

for low modal density cases). One may use for instance incompressible hydroelastic modes

combined with a variation of volume mode.

Case of a gas filling the enclosure. For the case of a light fluid, such as a gas filling the

enclosure, instead of using the eigenmodes defined by Equation (32), one may use instead, the

in vacuo structural modes, but, of course, the resulting matrix system would not be diagonal

with respect to U (in this case, fast convergence is expected).

Wall impedance condition. Referring to Reference [12] or for more detailed modelling, to

Reference [11], wall impedance condition corresponds to a particular fluid–structure interface

modelling. This interface is considered as a third medium with infinitesimal thickness, without

mass, and with the following constitutive equation:

p = j�Z(�)(u · n − uF · n) (35)

in which Z(�) denotes a complex impedance. Equations (7) and (11) must be replaced by

Equation (35), using �p/�n = �F�
2uF · n.

Case of a liquid with a free surface. Let us consider a liquid with a free surface at rest

denoted as �, If we neglect gravity effects, the boundary condition on � is such that

p = 0|� (36)

In this case, constraint condition (12) (or (15)) is replaced by Equation (36). Equation (9) is

replaced by ps = 0. Admissible space defined by Equation (16) becomes C∗
p = {p ∈ Cp; p = 0}.

In this case, the static problem defined Section 3, leads to a zero pressure field.

Let us remark that in this case, the ‘structural’ modal basis may be constituted by the

hydroelastic incompressible modes using the classical added mass operator.
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The reduced modal matrix models has been extended to the dissipative case (dissipative

internal fluid with non-homogeneous local impedance wall condition) in Reference [11].

4. INCOMPRESSIBLE HYDROELASTIC–SLOSHING PROBLEM

We consider the linear vibrations of an elastic structure partially filled with an homogeneous,

inviscid and incompressible liquid, taking into account gravity effects on the free surface �. We

neglect in the present analysis compressibility effects of the liquid and we refer to Reference

[14] for those aspects. After a derivation of the linearized equations of the fluid–structure

coupled problem, introducing an appropriate linear constraint in order to obtain a ‘regularized’

problem at zero frequency, we construct a reduced model of the ‘liquid subsystem’. For this

analysis, sloshing modes in rigid motionless cavity are introduced as Ritz projection vector

basis, including the static solution of the coupled system. This interior fluid–structure system

has a resonant behaviour. A direct finite element computation may lead therefore to prohibitive

time costs. To avoid those drawbacks, reduced symmetric matrix models of this system are

derived.

5. HYDROELASTIC–SLOSHING EQUATIONS

5.1. Structure subjected to a fluid pressure loading

The notations are the same that those defined in Section 3 adapted to liquid with a free surface

at rest denoted � (see Figure 3 and Reference [3]).
The weak variational formulation describing the response of the structure �S to given vari-

ation F d of the applied forces with respect to the equilibrium state on the external structure

boundary ��S\�, and to fluid pressure field p acting on the internal fluid–structure interface

� is written as follows.

For all real � and ∀�u ∈ Cu, find u ∈ Cu such that

k̂(u, �u) − �2

∫

�S

�Su · �u dx −

∫

�

pn · �u d� =

∫

��S\�

F d · �u d� (37)

ηΓ

Σ
ΩF

Ωs

ns

Fd

n

Figure 3. Structure containing a liquid.
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in which

k̂ = k̃ + k� (38)

In Equation (38), k̃(u, �u) is defined by Equation (2), and k� is the elastogravity symmetric

bilinear form such that [3, 4]

k�(u, �u) = −
1

2
�Fg

{∫

�

[zn1(u) · �u + uz�u · n] d� +

∫

�

[zn1(�u) · u + �uzu · n] d�

}

(39)

5.2. Fluid subjected to a wall normal displacement

We assume that the liquid is homogeneous, inviscid and incompressible. Free surface � is

horizontal at equilibrium. We denote by z the external unit normal to �, and by g the gravity.

The notations are similar to those of Section 3. The local equations describing the response of

the fluid to a prescribed arbitrary normal displacement u · n of the fluid–structure interface �

are such that

∇p − �F�
2uF = 0|�F

(40)

∇ · uf = 0|�F
(41)

uF · n = u · n|� (42)

p = �FguF · n|� (43)

curl uF = 0|�F
(44)

Equation (41) corresponds to the incompressibility condition. Equation (43) is the constitutive

equation on the free surface � due to gravity effects.

Relation between static pressure ps and u · n. For � = 0, Equations (41)–(43) lead to the

constant pressure static field which is related to the normal wall displacement by the relation

ps = −
�Fg

|�|

∫

�

u · n d� (45)

in which |�| denotes the measure of the area of free surface �.

Equations in terms of p and u · n. The elimination of uF into Equations (40)–(44) leads to

�p = 0|�F
(46)

�p

�n
= �F�

2u · n|� (47)

�p

�z
=

�2

g
p|� (48)

with the constraint

1
∫

p d� +

∫

�

u · n d� = 0 (49)
�Fg  

� 
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The linear constraint defined by Equation (49) ensures that the boundary problem defined

by Equations (46)–(49) is equivalent to the problem defined by Equations (40)–(44). This

condition is usually omitted in literature (see also References [8, 9]).

5.3. Variational formulation in terms of (u, p)

Let �p be the test function, associated to p, belonging to the admissible space Cp. The weak

variational formulation corresponding to Equations (46)–(49) is obtained by the usual test-

function method using Green’s formula. Using Equation (37), the variational formulation of the

hydroelastic–sloshing problem is then stated as follows. Find u ∈ Cu and p ∈ Cp, such that

for all �u ∈ Cu and �p ∈ Cp, we have

k̂(u, �u) − �2

∫

�S

�Su · �u dx −

∫

�

pn · �u d� =

∫

��S\�

F d · �u d� (50)

1

�F

∫

�F

∇p · ∇�p dx =
�2

�Fg

∫

�

p�p dx + �2

∫

�

u · n�p d� (51)

with the constraint

1

�Fg

∫

�

p d� +

∫

�

u · n d� = 0 (52)

The variational formulation defined by Equations (50)–(52) is original due to the presence of

the constraint defined by Equation (49) which regularizes the (u, p) formulation for � = 0

(see also References [8, 9]).

5.4. Symmetric reduced matrix model

Let us consider the following two basic problems. The first one corresponds to the sloshing

modes in rigid motionless cavity and is obtained by setting u = 0 into Equations (47) and (49).

The calculation of these acoustic modes is generally done by using a finite element procedure.

If we introduce the admissible subspace C
∗
p of Cp

C
∗
p =

{

p ∈ Cp;

∫

�

p d� = 0

}

(53)

the variational formulation of acoustic modes is stated as follows: find �2 > 0 and p ∈ C
∗
p

such that, for all �p ∈ C
∗
p, we have

1

�F

∫

�F

∇p · ∇�p dx = �2 1

�Fg

∫

�

p�p d� (54)

with the constraint
∫

�

p d� = 0 (55)

It should be noted that, in practice, if the constraint condition (55) is ‘omitted’, we only add

a first non-physical zero frequency constant pressure mode, the other modes corresponding to
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� �= 0 remaining the same as those defined by Equations (54) and (55). This zero frequency

mode must not be retained in any Ritz–Galerkin projection analysis. In addition, we have the

following orthogonality conditions:

1

�Fg

∫

�

p�p� d� = 	����,
1

�F

∫

�F

∇p� · ∇p� dx = 	��
2
���� (56)

The second basic problem corresponds to the static response of the fluid to a prescribed wall

normal displacement u ·n. The solution, denoted as ps(u ·n), is given by Equation (45). For any

deformation u · n of the fluid–structure interface, ps(u · n) belongs to a subset of Cp, denoted

as C
u·n

C
u·n =

{

ps ∈ Cp; ps = −
�Fg

|�|

∫

�

ucṅ d�

}

(57)

In the variational formulation defined by Equations (50)–(52), p is searched under the form

p = ps(u · n) +
Np
∑

�=1

r�p� (58)

in which Np denotes the number of retained sloshing modes. Decomposition (58) is unique. In

addition, it should be noted that, since each eigenvector p� corresponding to �� �= 0, verifies

the constraint defined by Equation (55), then, using Equation (45), we deduce that p and u · n
satisfy the constraint defined by Equation (52). The decomposition defined by Equation (58)

corresponds to a decomposition of the admissible class Cp into the direct sum of the admissible

classes defined respectively by Equations (56) and (57), Cp = C
u·n ⊕ C

∗
p.

The variational formulation in u defined by Equation (50) becomes

k̂(u, �u) + ks(u, �u) −
Np
∑

�=1

r�

∫

�

p�n · �u d� = �2

∫

�S

�Su · �u dx (59)

in which k̂(u, �u) is defined by Equation (38) and ks(u, �u) is such that

ks(u, �u) =
�Fg

|�|

(∫

�

u · n d�

) (∫

�

�u · n d�

)

(60)

If we consider a finite element discretization of the structure, the corresponding discretized

form of Equation (60) can be written as

[K̂ + Ks]U −
n
∑

�=1

C�r� − �2MU = Fd (61)

in which symmetric matrices K̂ and Ks correspond to finite element discretization of stiffness

symmetric bilinear forms defined by Equations (38) and (60), respectively. The discretized form

of Equation (51) in �p can then be written as

�2
�	�r� = �2	�r� + �2CT

�U (62)

From Equations (61) and (62), we obtain a symmetric matrix reduced model whose expression

is similar to the one given by expression (28).
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Similarly to Section 3.5, further diagonalization can be obtained by setting

U =
Nu
∑

�=1

q�U� (63)

in which q� are the generalized co-ordinates describing the structure and U� are the eigenmodes

of an eigenvalue problem similar to the one described by Equation (32). We then obtain a

similar matrix system than the one described by Equation (34)

(

Diag 
� 0

0 Diag�2
�

) (

q

r

)

− �2

(

INu [C��]

[C��]
T INp

) (

q

r

)

=

(

F
d

0

)

(64)

It should be noted that we can also use the incompressible hydroelastic modes, i.e. the modes

of the coupled system constituted by the elastic structure containing an incompressible liquid,

with p = 0 on � (through an added mass operator). In this case, the resulting matrix system

is not completely diagonal with respect to U variables [3, 6, 9].

6. CONCLUSION

In the present paper, we have reviewed appropriate formulations for low modal density frequency

computations of the eigenmodes of elastic structures containing linear inviscid homogeneous

fluids for structural–acoustics problems, using structural modes in vacuo for structure containing

a gas or hydroelastic modes including ‘static’ inertial and potential compressibility effects for

structure containing liquids, with acoustic modes in rigid motionless cavity. For incompressible

hydroelastic–sloshing free surface problems, we have derived symmetric reduced order formu-

lations using incompressible hydroelastic modes including ‘static’ potential gravity effects with

sloshing modes in rigid motionless tanks. Those formulations, using various modal interaction

schemes, with dynamic substructuring techniques lead to symmetric reduced matrix systems

expressed in terms of generalized co-ordinates for the fluid–structure system.
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