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A Fractional Derivative Viscoelastic Model for
Hybrid Active–Passive Damping Treatments in
Time Domain – Application to Sandwich Beams

A. C. GALUCIO,* J.-F. DEÜ AND R. OHAYON

Structural Mechanics and Coupled Systems Laboratory, Conservatoire National des Arts et Métiers

2 rue Conté, 75003 Paris, France

ABSTRACT: This work presents a finite element formulation for the dynamic transient
analysis of a damped adaptive sandwich beam composed of a viscoelastic core and elastic–
piezoelectric laminated faces. The latter are modeled using the classical laminate theory, which
takes the electromechanical coupling into account by modifying the stiffness of the
piezoelectric layers. For the core, a fractional derivative model is used to characterize its
viscoelastic behavior. Equations of motion are solved using a direct time integration method
based on the Newmark scheme in conjunction with the Grünwald approximation of fractional
derivatives. Emphasis is given to the finite element implementation of the fractional derivative
model and to the influence of the electromechanical coupling.

Key Words: hybrid piezoelectric–viscoelastic damping treatment, fractional derivatives,

sandwich beam, finite element method, transient dynamic analysis

INTRODUCTION

MANY investigations have demonstrated the

potential of viscoelastic materials to improve

the dynamics of lightly damped structures. There are

numerous techniques to incorporate these materials into

structures. Among them, the constrained layer passive

damping treatment is already largely used to reduce

structural vibrations, and more and more in conjunction

with active vibration control (Baz, 1997; Trindade

et al., 2001). The satisfactory performance of the passive

treatments combined with the progress obtained in the

field of the smart structures has motivated the develop-

ment of hybrid active–passive damping treatments.

This kind of technique consists of either adding to or

replacing the elastic constraining layer by a piezoelectric

one. In the context of hybrid damping treatments,

classical dynamic formulations are usually employed

while the viscoelastic models are relatively sophisticated.

For example, adaptive composite-laminated plates with

active constrained layer damping have been studied

by Yi and Sze (2000) using a Prony series represen-

tation of the viscoelastic behavior. Lesieutre and

Lee (1996) have used hybrid active–passive treatment

with a time-domain viscoelastic model based on

anelastic displacement fields (ADF). In the same

context, Trindade et al. (2001) have used the Golla–

Hughes–McTavish (GHM) mini-oscillator viscoelastic

model (Golla and Hughes, 1985). All these damping

models involve ordinary integer differential operators

that are relatively easy to manipulate. The Prony series

method is largely used in commercial finite element

codes due to the low numerical cost introduced by the

representation of the relaxation function in terms of

decreasing exponentials. For the ADF and GHM

approaches, additional damping coordinates are used

to more accurately describe the frequency dependence of

the viscoelastic material. Usually, the frequency band

chosen for performing the curve fitting of master curves

is the transition band since it is the region where the loss

factor attains its maximum value. Furthermore, all these

approaches can provide a state-space form of the

structural equations in order to facilitate the implemen-

tation of a control law. However, due to the important

number of material parameters needed, these curve

fitting procedures can quickly become cumbersome. One

of the alternatives to overcome this limitation is the

utilization of fractional derivative rheological models.

In this work, a finite element formulation for trans-

ient dynamic analysis of sandwich beams with active

constrained layer damping treatment is proposed. The

sandwich beam is composed of a viscoelastic core, which

is entirely covered by elastic faces that are provided*Author to whom correspondence should be addressed.
E-mail: galucio@cnam.fr
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with piezoelectric patches on their top and bottom

surfaces. The model combines a classical three-layer

sandwich theory for the face–core–face system (i.e.,

Euler-Bernoulli faces and Timoshenko core) and a

piecewise linear electric potential for each piezoelectric

sublayer. The laminated piezoelectric faces are modeled

using the classical laminate theory which takes the

electromechanical coupling into account by modifying

the stiffness of the piezoelectric layers. Concerning the

viscoelastic damping, its mathematical representation is

carried out by a four-parameter fractional derivative

model (Bagley and Torvik, 1983). This choice is related

to the small number of parameters necessary to take into

account the frequency dependence of the material over

a broad range of frequency. Moreover, this model can

be easily extended in order to take into account the

influence of the temperature. Twomain hypotheses about

the viscoelastic behavior are considered throughout this

investigation: isothermal conditions and frequency-

independent Poisson’s ratio. For the finite element

implementation of the fractional derivative viscoelastic

model, the basic idea is to use the Grünwald formalism

for the fractional order derivative of the stress–

strain relation in conjunction with a time discretization

scheme based on the Newmark method (Schmidt and

Gaul, 2001; Galucio et al., 2004). For this purpose, the

time-dependent terms, arising from the viscoelastic

constitutive law, are shifted to the right-hand member

of the governing equation, modifying in this way the

transient excitations. A recent investigation on the finite

element implementation of fractional derivative opera-

tors in the modeling of viscoelastic damping has been

carried out by Galucio et al. (2004) in the context of

structural dynamics. Such a theoretical formulation is

used here together with a multilayer adaptive beam

theory, which is validated through a static and a free-

vibration analysis. The static analysis consists of com-

paring the numerical results with the analytical ones

obtained by Zhang and Sun (1996) for a cantilevered

elastic beam with short-circuited piezoelectric electro-

des. Eigenfrequencies of a simply supported elastic–

piezoelectric laminated beam are compared to those

obtained with an exact three-dimensional solution. This

analytical solution is based on the mixed state-space

approach developed by Benjeddou and Deü (2001) for

transverse shear actuation of plates in statics. It is

extended here for extension actuation in cylindrical

bending in order to validate the present finite element

model through a free-vibration analysis. Some numer-

ical examples are considered. The influence of the

Grünwald series truncation over the dynamic response

of the sandwich beam is emphasized. Finally, an

example using a sensor voltage feedback control

scheme is presented in order to show the effectiveness

of the proposed numerical implementation of hybrid

active–passive treatments.

THEORETICAL FORMULATION

Consider a sandwich beam composed of a viscoelas-

tic core and elastic–piezoelectric laminated faces. The

first part of this section addresses the kinematical

assumptions for the mechanical displacement field and

the electrostatic hypotheses for the electric potential. In

the second part, constitutive equations for the piezo-

electric and viscoelastic materials are outlined. Finally,

the variational formulation derived from the Hamilton’s

principle is presented.

Mechanical and Electrical Field Assumptions

The sandwich beam is modeled using Euler-Bernoulli

assumptions for the faces and Timoshenko ones for the

core. The elastic–piezoelectric faces are modeled using

the classical laminated theory with linear electric

potential through the thickness of each piezoelectric

sublayer.

The mechanical displacement field within the ith layer

can be written as

uxiðx; z; tÞ ¼ uiðx; tÞ � ðz� ziÞ�iðx; tÞ ð1aÞ

uziðx; z; tÞ ¼ wðx; tÞ ð1bÞ

where the subscript i ¼ a, b, c stands for upper (com-

posed of Na sublayers), lower (composed of Nb

sublayers) and middle layers, respectively. uxi and uzi
are the axial and transverse displacements of each layer,

ui and �i are the axial displacement of the center line and

the fiber rotation of each layer, and w is the transverse

displacement (see Figure 1).

Let us introduce the mean and relative axial displace-

ments given by �uu ¼ ðua þ ubÞ=2 and ~uu ¼ ua � ub. Euler-

Bernoulli hypotheses for the faces lead to �k ¼ w0 for

k ¼ a, b with ð�Þ0 ¼ @ð�Þ=@x. As all layers are supposed to

be perfectly bonded, the displacement continuity condi-

tions at the interface layers can be written as uxa ¼ uxc at

z ¼ hc=2 and uxb ¼ uxc at z ¼ �hc=2. Therefore, axial

displacements of the centerlines and rotations of each

layer can be written in terms of w0 and the above-defined

variables �uu and ~uu as

ua ¼ �uuþ
~uu

2
, �a ¼ w0; ub ¼ �uu�

~uu

2
, �b ¼ w0;

uc ¼ �uuþ
~hh

4
w0, �c ¼ �

~uuþ �hhw0

hc

ð2Þ

where �hh and ~hh are defined by �hh ¼ ðha þ hbÞ=2 and
~hh ¼ ha � hb.

From (1) and (2), and taking the hypothesis of plane

stress state into account, the axial strain of the ith layer "1i
and the shear strain of the core "5c can be written
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as follows

"1i ¼ �i þ ðz� ziÞ�i, "5c ¼ �c ð3Þ

where membrane strain �i and curvature �i of the ith

layer, and shear strain of the core �c, are defined by

�a ¼ �uu0 þ
~uu0

2
, �b ¼ �uu0 �

~uu0

2
, �a ¼ �b ¼ �w00 ð4Þ

�c ¼ �uu0 þ
~hh

4
w00, �c ¼

~uu0 þ �hhw00

hc
, �c ¼

~uu

hc
þ 1þ

�hh

hc

 !

w0

ð5Þ

Without covering face layers (i.e., ha ¼ hb ¼ 0), the

previous generalized strain quantities of the core

correspond to those of a single Timoshenko beam.

Concerning the electrostatic aspects, twomain assump-

tions are taken under consideration. The first one con-

cerns the electric potential, which is supposed to be

linear within the thickness of each piezoelectric sublayer:

�kj ðx, z, tÞ ¼
���kj ðx, tÞ þ ðz� zkj Þ

Vkj ðx, tÞ

hkj
ð6Þ

where ���kj ¼ ð�þ
kj
þ ��

kj
Þ=2 and Vkj ¼ �þ

kj
� ��

kj
. The quan-

tities �þ
kj
and ��

kj
are the electrical boundary conditions

at the top (z ¼ zkj þ hkj=2) and at the bottom

(z ¼ zkj � hkj=2) surfaces. The local z-axis of the kjth

face sublayer is situated at (for k ¼ aðþÞ, bð�Þ)

zkj ¼ �
hkj þ hc

2
�
X

j�1

r¼1

hkr

with hkj being the thickness of the kjth layer.

Second, the axial component of the electrical field can

be neglected because its contribution to the electro-

mechanical energy is small when compared to that of the

transverse one (Trindade et al., 2001).

The two above assumptions imply a constant transverse

electrical field within the kjth piezoelectric sublayer:

E3kj ¼ �
@�kj

@z
¼ �

Vkj

hkj
ð7Þ

Piezoelectric Constitutive Equations

The piezoelectric sublayers of the laminated faces are

poled in the thickness direction with an electrical field

applied parallel to this polarization. Such a configura-

tion is characterized by the electromechanical coupling

between the axial strain "1 and the transverse electrical

field E3. The three-dimensional constitutive equations

can be reduced to

�1 ¼ �cc11"1 � �ee31E3

D3 ¼ �ee31"1 þ �dd33E3

ð8Þ

where �1 and D3 are the axial stress and the transverse

electrical displacement. Modified elastic, piezoelectric

and dielectric constants are respectively given by

�cc11 ¼ c11 �
c13

2

c33
, �ee31 ¼ e31 �

c13e33

c33
, �dd33 ¼ d33 þ

e33
2

c33

ð9Þ

For elastic faces, the piezoelectric constants vanish.

Moreover, if the material is isotropic �cc11 ¼ E=ð1� �2Þ,

Figure 1. Sandwich beam kinematics.
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where E and � are the elastic modulus and the Poisson’s

ratio.

Viscoelastic Constitutive Equations

The one-dimensional constitutive equation intro-

duced by Bagley and Torvik (1983) is adopted in this

work to describe the viscoelastic behavior of the core:

�i þ �	D	�i ¼ 
i "i þ �	
E1

Eo

D	"i

� �

ð10Þ

where � and " are stress and strain. As the core behaves

as a Timoshenko beam, let the subscript i stand for axial

(i¼ 1) and shear (i¼ 5) components that are associated

with the constants 
1¼Eo=ð1��2Þ and 
5¼Eo=2ð1þ�Þ.

Furthermore, Eo and E1 are the relaxed and nonrelaxed

elastic moduli, � is the relaxation time, 	 is the fractional

order of the time derivative 0<	<1ð Þ, and D	 denotes

the operator of fractional derivation of 	th order

according to Riemann-Liouville definition

D	�ðtÞ ¼
1

�ð1� 	Þ

d

dt

Z t

0

�ðsÞ

ðt� sÞ	
ds

in which � is the gamma function.

This four-parameter fractional derivative model has

been shown to be an effective tool to describe the weak

frequency dependence of most viscoelastic materials

(Bagley and Torvik, 1983; Pritz, 1996). Its behavior

in the frequency domain is described between two

asymptotic values: the static modulus of elasticity

Eo ¼ E�ð! ! 0Þ and the high-frequency limit value of

the dynamic modulus E1 ¼ E�ð! ! 1Þ, where E�ð!Þ is

the complex modulus of elasticity, which is obtained by

the Fourier transform of Equation (10). The statements

0 < 	 < 1, � > 0, and E1 > Eo fulfill the second law of

thermodynamics.

The identification of the model parameters for the

ISD112 at 27�C viscoelastic material is performed using

the shear relaxed and nonrelaxed moduli (Galucio

et al., 2004) that are proportional to the elastic ones

since the Poisson’s ratio is supposed to be frequency

independent.

Variational Formulation

The dynamic equations of the previously described

sandwich beam are derived from the Hamilton’s

principle

Z t2

t1

�

�T � �U þ �W
�

dt ¼ 0 ð11Þ

where �T ¼ �Taþ�Tbþ�Tc is the variation of the kinetic

energy, �U¼ �Uaþ�Ubþ�Uc is the variation of the

internal energy, and �W is the variation of the work

done by external forces acting on the system.

Using Equation (1), integrating by parts

Equation (11), the variation of the kinetic energy of

the kth lamina is written as (for k ¼ a, b)

�Tk ¼ �
X

Nk

j¼1

Z

�kj

�kj
�

€uuxk�uxk þ €uuzk�uzk
�

d�

¼ �b

Z L

0

�

Ik0 ð €uuk�uk þ €ww�wÞ

� Ik1 ð €uuk��k þ
€��k�ukÞ þ Ik2

€��k��k

�

dx

ð12Þ

where an over dot represents the differentiation with

respect to time, b and L are the width and the length of

the beam, and �kj and �kj are the mass density

and the domain of the kjth sublayer. The zero-, first-,

and second-order inertia moments are classically

defined as

Ik0 , I
k
1 , I

k
2

� �

¼
X

Nk

j¼1

�kj H
kj
0 ,H

kj
1 ,H

kj
2

h i

where H
kj
0 , H

kj
1 , and H

kj
2 are the thickness, the first and

second moments of area by unit of width of each

sublayer, respectively, defined by

H
kj
0 ,H

kj
1 ,H

kj
2

h i

¼

Z zkjþhkj =2

zkj�hkj =2

1, ðz� zkÞ, ðz� zkÞ
2

� �

dz

The local z-axis of the kth face layer is situated at

(for k ¼ aðþÞ, bð�Þ)

zk ¼ �
1

2

	

hc þ
X

Nk

j¼1

hkj




The procedure used to compute the kinetic energy of

the core is similar to the one for the faces. Then, the

variation of the kinetic energy of the core is classically

written as

�Tc ¼ �

Z

�c

�c
�

€uuxc�uxc þ €uuzc�uzc
�

d�

¼ �b

Z L

0

�c

�

hcð €uuc�uc þ €ww�wÞ þ
h3c
12

€��c��c

�

dx

ð13Þ

where �c and �c are the mass density and the domain

of the core.

As described above, the second term in the varia-

tional equation (11) corresponds to the virtual internal

energy of the sandwich beam. Its electromechanical

contribution associated with the kth lamina can be
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written as

�Uk ¼
X

Nk

j¼1

Z

�kj

�

�1kj�"1k �D3kj�E3kj

�

d�

¼ �UM
k þ �UME

k þ �UEM
k þ �UE

k

ð14Þ

where �UM
k and �UE

k are the virtual mechanical and

dielectrical internal energies, and �UME
k and �UEM

k

comprise the virtual piezoelectric internal energy, i.e.,

the electromechanical coupling.

Using strain relations (3), piezoelectric constitutive

equations (8), and electrical field expression (7), each

term in the right-hand side of Equation (14) is

thoroughly described below. The virtual mechanical

internal energy can be written as

�UM
k ¼ b

Z L

0

�

Ak�k��k þ Bkð�k��k þ �k��kÞ þDk�k��k

�

dx

ð15Þ

where Ak is the extensional stiffness, Dk is the bending

stiffness, and Bk is the bending–extensional coupling

stiffness defined as

Ak, Bk, Dk
� �

¼
X

Nk

j¼1

�cc
kj
11 H

kj
0 , H

kj
1 , H

kj
2

h i

ð16Þ

The three last terms in Equation (14) are related

to the electromechanical coupling and the dielectrical

quantities in the virtual internal energy of the faces.

These terms are defined as follows

�UME
k ¼ b

X

Nk

j¼1

Z L

0

�ee
kj
31Vkj

�

��k þ ðzkj � zkÞ��k
�

dx ð17aÞ

�UEM
k ¼ b

X

Nk

j¼1

Z L

0

�ee
kj
31

�

�k þ ðzkj � zkÞ�k
�

�Vkjdx ð17bÞ

�UE
k ¼ �b

X

Nk

j¼1

Z L

0

�dd
kj
33

Vkj

hkj
�Vkjdx ð17cÞ

It is easy to see in Equations (17a) and (17b) that the

electromechanical coupling is taken into account by

means of the piezoelectric constant �ee
kj
31. This electro-

mechanical coupling describes the so-called inverse and

direct piezoelectric effects.

INVERSE PIEZOELECTRIC EFFECT

(ACTUATOR)

An actuator configuration consists of applying an

electric field to a piezoelectric ceramic in order to induce

a mechanical deformation. This electric field is imposed

by means of an external force, which is written as a

function of the voltage applied to the piezoelectric

patch. In this case, the variation of the difference

of electrical potential of the kjth lamina vanishes.

This implies that the electromechanical coupling is

described by Equation (17a). Consequently, the above-

mentioned external force is extracted from Equation

(17a) and is written in its discretized form later.

DIRECT PIEZOELECTRIC EFFECT (SENSOR)

The case where an electric field is induced by a

mechanical deformation in the piezoelectric material

corresponds to a sensor configuration. The unknown is

the difference of electric potential of the kjth piezo-

electric layer. In this way, Equations (17b) and (17c)

supply the following expression

E3kj ¼ �
�ee
kj
31

�dd
kj
33

�

�k þ ðzkj � zkÞ�k
�

ð18Þ

Substituting Equations (7) and (18) into (17a) and

adding the result to (15), the virtual electromechanical

internal energy of the kth lamina is rewritten as

�Uk ¼ �Um
k þ b

Z L

0

�

ÂAk�k��k þ B̂Bkð�k��k þ �k��kÞ

þ D̂Dk�k��k

�

dx ð19Þ

where the terms related to the electromechanical

coupling are given by

ÂAk, B̂Bk, D̂Dk
h i

¼
X

Nk

j¼1

ð �ee
kj
31Þ

2

�dd
kj
33

H
kj
0 ,H

kj
1 , ðH

kj
1 Þ

2=H
kj
0

h i

ð20Þ

In Equation (19), an increase in the stiffness of the

beam due to the direct piezoelectric effect is noted.

For the sake of simplicity, the core is assumed to be

elastic (i.e., � ¼ 0) in this section. Then, the virtual

internal energy of the core is given by

�Uc¼

Z

�c

�

�1c�"1cþ�5c�"5c
�

dV

¼b

Z L

0

Eo

1��2
hc�c��cþ

h3c
12

�c��c

� �

þ
Eo

2ð1þ�Þ
hc�c��c

� �

dx

ð21Þ

The viscoelastic behavior of the core will be addressed

in the following section.

FINITE ELEMENT MODEL

The finite element formulation of the three-layer

sandwich beam is thoroughly described in (Galucio

et al., 2004). Such a formulation is extended here

to the case of a beam composed of elastic–piezoelectric

laminated faces and a viscoelastic core. We recall
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that the displacements are discretized with linear (axial

displacement) and cubic (deflection) shape functions.

They are related to the elementary degrees-of-freedom

vector qe ¼ ½ �uu1 w1 w
0
1 ~uu1j �uu2 w2 w

0
2 ~uu2� by

ui ¼ Hxiqe, w ¼ Hzqe, �i ¼ Hriqe ð22Þ

where i ¼ a, b, c and where the subscripts x, z, and r

stand for axial displacement, transverse displacement,

and rotation. Let subscript e stand for elementary

quantities. Moreover, membrane, bending, and shear

strains can be expressed by

�i ¼ Bmiqe, �i ¼ Bbiqe, �c ¼ Bscqe ð23Þ

Using Equations (22) and (23), the discretization of the

variation of the kinetic energy, the virtual internal energy

and the work done by external forces is �Te ¼ ��qTe Me €qqe,
�Ue ¼ �qTe K

�
eqe, and �We ¼ �qTe F

�
e . Consequently, the

equation of motion of the system is written as

Me €qq
nþ1
e þ K�

eq
nþ1
e ¼ F�nþ1

e ð24Þ

where Me is the mass matrix of the beam defined

by Me ¼ Ma
e þMb

e þMc
e. The stiffness matrix of the

beam K�
e and the external force vector F�

e comprise

the piezoelectric behavior of the laminated faces

and the viscoelastic behavior of the core. In the

following, these terms will be first described for the

piezoelectric faces (assuming an elastic core) and

then for the viscoelastic core (assuming elastic faces).

Finally, a complete formulation which takes piezo-

electric and viscoelastic aspects into account is

presented.

Piezoelectric Laminated Faces

The finite element formulation used to describe the

coupling between the electrical and mechanical proper-

ties of a laminated beam has no electrical degrees of

freedom. The electromechanical coupling is made by

changing the stiffness of the piezoelectric layer (sensor

configuration) or by modifying an electric field within

the piezoelectric layer (actuator configuration). Since

the electric potential is supposed to be linear through

the thickness of the piezoelectric ceramic, the electro-

mechanical coupling is neglected for a short-circuited

piezoelectric layer. This formulation requires a post-

treatment of results in order to obtain the induced

voltage within the piezoelectric patches taken as

sensors.

In the following, mass and stiffness matrices of the

piezoelectric faces are written in terms of membrane,

bending, and a membrane–bending coupling term.

The element mass matrix of each piezoelectric

face (k ¼ a, b), arising from the discretization of

Equation (12), is given by

Mk
e ¼ b

Z Le

0

Ik0 HT
xkHxk þHT

z Hz

� ��

�Ik1 HT
xkHrk þHT

rkHxk

� �

þ Ik2H
T
rkHrk

�

dx

ð25Þ

After discretizing Equation (15), the elementary

mechanical stiffness matrix of each piezoelectric face

(k ¼ a, b) is defined as

Kk
e ¼ b

Z Le

0

AkBT
mkBmk þ BkðBT

mkBbk þ BT
bkBmkÞ

�

þDkBT
bkBbk

�

dx

ð26Þ

If the laminate is constructed such that it has

complete symmetry of individual lamina thickness,

properties, and orientations about the middle plane

of the laminate, then there is no coupling between

bending and membrane effects (Bk ¼ 0). For an

orthotropic material, the constants �cc
kj
11 can be simply

written as functions of the elastic components as in

Equation (9).

INVERSE PIEZOELECTRIC EFFECT

(ACTUATOR)

If an electric field is imposed through the thickness

of the piezoelectric patches, the equation of motion of

the structure, whose core is supposed to be elastic, is

given by

Me €qq
nþ1
e þ Keq

nþ1
e ¼ F̂Fnþ1

ekj
ð27Þ

where the elementary stiffness matrix is Ke ¼ Ka
e þ Kb

eþ

Kc
e. The applied electrical field corresponds to an

electrical force which arises from the discretization of

Equation (17a):

F̂Fnþ1
ekj

¼ �b

Z Le

0

�ee
kj
31V

nþ1
kj

BT
mk þ ðzkj � zkÞB

T
bk

� �

dx ð28Þ

It is noted that the electromechanical coupling is taken

into account by means of this external force.

DIRECT PIEZOELECTRIC EFFECT (SENSOR)

For a sensor configuration, the stiffness matrix is

modified in order to take the electromechanical coupling

into account according to Equations (17b) and (17c),

since the electrical field is unknown. The equation of

motion of the structure with an elastic core is then

written as

Me €qq
nþ1
e þ ðKe þ K̂KeÞq

nþ1
e ¼ Fnþ1

e
ð29Þ

where Fnþ1 is the external force vector and K̂Ke ¼

K̂Ka
e þ K̂Kb

e is the supplementary stiffness matrix arising

6



from the discretization of Equation (19), given by (for

k ¼ a, b)

K̂Kk
e ¼ b

Z Le

0

ÂAkBT
mkBmk þ B̂BkðBT

mkBbk þ BT
bkBmkÞ

h

þD̂DkBT
bkBbk

i

dx

ð30Þ

After solving Equation (29), the electrical field in the

kj piezoelectric sublayer is simply obtained using

Equation (18). This method of posttreating the results

in order to obtain the difference of electric potential

is equivalent to the one used by Trindade et al.

(2001), which consists of introducing electrical degrees

of freedom in the finite element formulation and then to

carry out a static condensation a posteriori.

Viscoelastic Core

The equation of motion of the beam, assuming elastic

laminated faces and viscoelastic core, is given by

Me €qq
nþ1
e þ ðKa

e þ Kb
eÞq

nþ1
e þ

Z

�c
e

BT
c �

nþ1
c d� ¼ Fnþ1

e ð31Þ

where Kk (k ¼ a, b) is the mechanical stiffness matrix of

the faces (Equation (26)) and the mass matrix of the core

is classically defined as

Mc
e ¼ b

Z Le

0

�c hc HT
xcHxc þHT

z Hz

� �

þ
h3c
12

HT
rcHrc

� �

dx

ð32Þ

where �c is the mass density of the core.

Concerning the stiffness matrix of the core, the third

term on the left-hand side of Equation (31) can be

developed as

Z

�e
c

BT
c �

nþ1
c d� ¼

Z

�e
c

�

ðBT
mc þ zBT

bcÞ�
nþ1
1c þ BT

sc�
nþ1
5c

�

d�

ð33Þ

If the core is elastic, i.e. �1c ¼ 
1"1c and �5c ¼ 
5"5c,

this last expression corresponds to Kc
eq

nþ1
e , with

Kc
e ¼ b

Z Le

0

Eo

1� �2
hcB

T
mcBmc þ

h3c
12

BT
bcBbc

� ��

þ
Eo

2ð1þ �Þ
hcB

T
scBsc

�

dx

ð34Þ

APPROXIMATION FOR FRACTIONAL

DERIVATIVES

The fractional operator D	, appearing in the con-

stitutive equation (10), can be approximated by several

methods. One of them is the Grünwald definition,

which is often adopted in literature as it is valid for all

values of 	 and easy to implement numerically. The

finite difference approximation of the Grünwald defini-

tion is given by

D	fð Þn�
1

�t	

X

Nt

j¼0

Ajþ1 fn�j ð35Þ

where �t is the time step increment of the numerical

scheme (the function fn is approximated by f(tn), with

tn ¼ n�t), Nt is the truncation number of the series,

and Ajþ1 represents the Grünwald coefficients given

either in terms of the gamma function or by a recurrence

formula

Ajþ1 ¼
�ð j � 	Þ

�ð�	Þ�ð j þ 1Þ
or Ajþ1 ¼

j � 	� 1

j
Aj

Let us introduce the internal variable as a strain

function �""i ¼ "i � Eo�i=ð
iE1Þ, such that the constitutive

equation (10) can be rewritten as (Galucio et al., 2004)

�""i þ �	D	
�""i ¼

E1 � Eo

E1

"i ð36Þ

This variable change implies that Equation (36) contains

only one fractional derivative term instead of two as

in (10). Using the Grünwald approximation (35) and

noting that A1 ¼ 1, relation (36) takes the following

discretized form

�""nþ1
i ¼ ð1� cÞ

E1 � Eo

E1

"nþ1
i � c

X

Nt

j¼1

Ajþ1 �""
nþ1�j
i ð37Þ

where c is a dimensionless constant given by

c ¼ �	=ð�	 þ�t	Þ.

It should be stated that the Grünwald coefficients

in Equation (37), which are strictly decreasing when

j increases, describe the fading memory phenomena.

In other words, the behavior of the viscoelastic material

at a given time step depends more strongly on the recent

time history than on the distant one.

Combining the variable change described above with

Equation (37) and substituting the result into (33),

one obtains

Z

�c
e

BT
c �

nþ1
c d� ¼ 1þ c

E1 � Eo

Eo

� �

Kc
eq

nþ1
e

þ c

Z

�c
e

h

ðBT
mc þ zBT

bcÞ
X

Nt

j¼1

Ajþ1 ���
nþ1�j
1c

þ BT
sc

X

Nt

j¼1

Ajþ1 ���
nþ1�j
5c

i

d� ð38Þ

so that the elementary semidiscrete equation of motion

(31) can be rewritten as follows

Me €qq
nþ1
e þ ðKe þ �KKeÞq

nþ1
e ¼ Fnþ1

e þ �FFnþ1
e ð39Þ
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where the modified stiffness matrix �KKe and loading

vector �FFnþ1
e , arising from the viscoelastic behavior of the

core, are given by

�KKe ¼ c
E1 � Eo

Eo

Kc
e ð40Þ

�FFnþ1
e ¼ �c

E1

Eo

Kc
e

X

Nt

j¼1

Ajþ1 �qq
nþ1�j
e ð41Þ

By abuse of language, we shall denote the discretized

unknowns �qqnþ1
e , associated with �"", by ‘‘anelastic

displacements’’. These unknowns depend on the dis-

placement memory and are updated using the following

equation

�qqnþ1
e ¼ ð1� cÞ

E1 � Eo

E1

qnþ1
e � c

X

Nt

j¼1

Ajþ1 �qq
nþ1�j
e ð42Þ

It should be noted that the vector �qq does not constitute

a new degree of freedom in the system, it is just a

numerical artifice used in the time integration scheme

for the characterization of the fading memory pheno-

mena.

General Case

Finally, the equation of motion (24) can be rewritten

for a complete configuration with piezoelectric faces

(sensor–actuator) and a viscoelastic core:

Me €qq
nþ1
e þ ðKe þ K̂Ke þ �KKeÞq

nþ1
e ¼ Fnþ1

e þ F̂Fnþ1
ekj

þ �FFnþ1
e

ð43Þ

where the mass matrix Me arises from the sum of

Equations (25) and (32), while the stiffness matrix K�
e is

split up into three terms: (i) Ke associated with an elastic

behavior of faces-core which is composed of the sum of

the Equations (26) and (34); (ii) K̂Ke associated with a

sensor configuration of the faces (Equation (30)); and

(iii) �KKe associated with the viscoelastic behavior of the

core (Equation (40)). Concerning the right-hand side

of Equation (43), F�
e is composed of a mechanical

external load Fe, an electrical force F̂Fe associated with

the actuator configuration for the faces (Equation (28)),

and a dissipative force �FFe associated with the viscoelastic

behavior of the core (Equation (41)). It is worthwhile

to notice that all the time history-dependent terms

were shifted to the right-hand side of the governing

equation.

ALGORITHM IMPLEMENTATION

The Newmark scheme is adopted here due to its

versatility for implementation in structural dynamics.

Some modifications are carried out in the classical

algorithm in order to obtain a modified scheme that is

suitable to achieve the transient responses of a sandwich

beam with laminated elastic–piezoelectric faces and a

viscoelastic core in fractional calculus. The Newmark

parameters  ¼ 1=4 and � ¼ 1=2 are chosen in order to

obtain an unconditionally stable and second-order

accurate scheme. From Equation (41), it is noted that

this approach requires the storage of the ‘‘anelastic

displacement’’ history (Galucio et al., 2004). Concerning

the stiffness matrix evaluation, recall that for a constant

time step, it is evaluated once.

VALIDATION ASPECTS

The first part of this section focuses on the validation

of the finite element formulation of the multilayer beam

based on the comparison with the analytical results

found in literature. Two analyses have been chosen for

this: a static and a free-vibration analysis with different

mechanical and electrical boundary conditions.

Concerning the viscoelastic behavior of the core, some

examples of validation were carried out in a previous

work (Galucio et al., 2004).

The first example is extracted from the work of Zhang

and Sun (1996). Consider a clamped-free sandwich

beam composed of an elastic core (aluminum) entirely

covered by piezoelectric faces (PZT5H). The latter are

short-circuited and the voltage applied to each of the

piezoelectric actuators is 20V. The mechanical and

piezoelectric properties of the beam are described in

Table 1. The geometrical characteristics are: length –

100mm, thickness of the elastic core – 16mm, and

thickness of each piezoelectric layer – 1mm. In

Figure 2(a), the typical quadratic behavior of the tip

deflection when the beam is actuated by extension is

noted. It is observed that the finite element result (with

10 elements) is in very good agreement with the

analytical solution. The variation of the axial stress is

shown in Figure 2(b), where one can observe very clearly

the discontinuity at the layer interfaces. Horizontal solid

lines indicate the geometrical position of each sublayer

in the sandwich beam.

The second example of validation consists of a simply

supported five-layer beam composed of a soft elastic

core (E ¼ 1:5MPa, � ¼ 0:5, and � ¼ 1600 kg/m3) cov-

ered by symmetrical elastic layers (aluminum) that are

Table 1. Mechanical and piezoelectric characteristics of
the sandwich beam.

Aluminum � ¼ 2690 kg=m3, � ¼ 0:345, E ¼ 70:3GPa

PZT5H � ¼ 7500 kg=m3, c11 ¼ c33 ¼ 126GPa

c13 ¼ 84:1GPa, e31 ¼ �6:5C=m2

e33 ¼ 23:3C=m2, d33 ¼ 1:3� 10�8 F=m

ISD112 � ¼ 1600 kg=m3, � ¼ 0:5

Eo ¼ 1:5MPa, E1 ¼ 69:95MPa

	 ¼ 0:7915, � ¼ 1:4052� 10�2 ms
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provided with thin piezoelectric faces (PZT5H). The

mechanical properties are given in Table 1. The total

length of the beam is L¼ 280mm and total thickness

is h ¼ 4:2mm (0.20 mm for the core, 1.5mm for each

elastic face, and 0.50mm for each piezoelectric sub-

layer). The exact three-dimensional solution is based on

a mixed state-space approach previously developed for

the free-vibration analysis of laminated piezoelectric

plates actuated by transverse shear mechanisms (Deü

and Benjeddou, 2002). Its version for extension actua-

tion in cylindrical bending is employed here.

First, only the exact three-dimensional solution is

presented in order to clearly show the through-thickness

profiles of the mechanical and electrical variables. In

the following, these variables are normalized using the

maximum absolute value of the axial displacement uxmax

and piezoelectric material properties

Ux ¼
1

uxmax

ux, Uz ¼
1

uxmax

uz,

�z ¼
e31

c13uxmax

�, Dz ¼
L

e31uxmax

D3

ð44Þ

where Ux and Uz are the nondimensional axial and

transverse displacements, and Dz and �z are the

nondimensional electric transverse displacement and

potential.

The exact three-dimensional solution of the open-

circuited simply supported sandwich beam for the first

bending mode is shown in Figure 3. The evolution of the

axial displacement through the thickness, computed at

x¼ 0 or x¼L, is plotted in Figure 3(a) with a thick solid

line. One can observe in this figure the interest of

working with a sandwich formulation since piezo-

electric–elastic faces are much stiffer than the elastic

core. In the same figure, the evolution of the transverse

displacement at x ¼ L=2 is presented (dashed line).

Although the transverse displacement has a nonlinear

shape, its value is quasi-constant (from approximately

75.4825 up to 75.4875 in the top scale). In Figure 3(b),

the evolution of electric transverse displacement and

potential through the thickness is plotted. Both are

computed at x ¼ L=2. Electric transverse displacement

and potential distributions are strongly dependent on

the electric boundary conditions and the mode type

(Deü and Benjeddou, 2002). For the first bending

mode and open circuit conditions, the electric transverse

displacement is parabolic within the piezoelectric

sublayer (dashed line). Under the same conditions,

the electric potential in the piezoceramic face is slightly

nonlinear (thick solid line).

Exact and numerical first nine natural frequencies of

the sandwich beam with short- and open-circuited

piezoelectric faces are presented in Table 2. Owing to

the supplementary stiffness added to the system by

means of the electromechanical coupling when the

piezoelectric layers are treated as sensors, the natural

frequencies are higher in the open-circuit case than in

the closed-circuit one. It is noted that the error

committed by the finite element approximation does

not exceed 0.40%. In order to illustrate this good

agreement between analytical and numerical solutions,
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Figure 2. (a) Tip displacement vs axial location and (b) axial stress distribution through the thickness.
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Figure 4 presents the mechanical displacement field

evolution through the thickness calculated for the first

natural frequency when the piezoelectric layers are short

and open circuited. In Figure 4(a), the axial displace-

ment through-thickness distribution is shown. A very

good agreement between the exact and the finite element

solution is noted. In particular, a constant approxima-

tion for the transverse displacement is quite enough in

this case (Figure 4(b)). Concerning the electric potential,

due to the limitations on its approximation (see

Equation (6)), one can only reproduce the voltage

between the top and bottom surfaces of the piezoelectric

faces. In order to compare this value with the exact

one, one can extract from Figure 3(b) the difference

of potential between the top and bottom surfaces of

the piezoelectric sublayer. Hence, the absolute non-

dimensional value of the induced voltage measured

within the piezoelectric layers for the finite element

solution is 4:5048� 10�4 and for the exact one is

4:5044� 10�4. As expected, in all the cases, the exact

solution is very well approximated by the proposed

finite element formulation.

RESULTS AND DISCUSSION

The present analysis consists of a cantilevered

sandwich beam with a viscoelastic core (ISD112 at

27�C) constrained by symmetrical elastic faces (alumi-

num) with piezoelectric patches (PZT5H), as shown in

Figure 5. The top piezoelectric patch works as an

actuator and the bottom one as a sensor. The material

properties and geometry data of the structure are shown

in Table 1 and Figure 5, respectively. The beam is

discretized by a regular mesh with 56 elements

distributed as: two elements between the clamped end

of the beam and the left edge of the piezoelectric

patch, 14 along the patch, and 40 elsewhere. The

mechanical excitation is performed by means of a

transverse triangular impulse at the free end of the
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Figure 3. Exact three-dimensional solution of the open-circuited simply supported sandwich beam for the first bending mode:
(a) nondimensional axial (at x¼0 or x¼ L) and transverse (at x¼L/2) displacement through-thickness distributions and (b) nondimensional
electric transverse displacement (at x¼L/2) and potential (at x¼ L/2) distributions.

Table 2. First nine bending eigenfrequencies (Hz) of the
sandwich beam with open- and short-circuited piezo-

electric layers.

Short circuit Open circuit

Exact Numerical Error (%) Exact Numerical Error (%)

1 65.492 65.375 0.178 70.803 70.697 0.150

2 219.687 219.166 0.237 237.552 237.088 0.195

3 469.881 468.784 0.234 508.546 507.614 0.183

4 818.493 816.848 0.201 886.208 884.937 0.143

5 1265.682 1263.785 0.150 1370.625 1369.464 0.085

6 1811.129 1809.613 0.084 1961.385 1961.188 0.010

7 2454.321 2454.225 0.004 2657.862 2659.974 0.079

8 3194.618 3197.455 0.089 3459.284 3465.621 0.183

9 4031.272 4039.096 0.194 4364.756 4377.881 0.301
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beam, whose duration is 4ms and amplitude 1N. The

study is performed up to 200ms with a fixed time step

�t ¼ 1ms.

The validation of the implementation of the fractional

derivative model is first focused. For this case, the top

piezoelectric patch in Figure 5 is short-circuited. The

crucial question is how to truncate the Grünwald series

without losing information on the damping character

of the viscoelastic material. Figure 6 shows the time

evolution of the tip displacement for various values of

truncation. When taking either 10 terms (dotted line) or

the whole history, i.e., 200 terms (dashed line), dynamic

responses of the beam are very close. However, if only

five terms (solid line) are retained in the series, the

amplitude of the transverse displacement is overesti-

mated. In order to better understand such a behavior,

the error (in total dissipated energy) versus the number

of terms in the Grünwald expansion of the fractional

operator approximation is plotted in Figure 7. This

error is expressed by ðkDref �DkÞ=ðkDrefkÞ, where D

is related to the passive treatment only and given by

D ¼ Ud �Wd , with:

�

Ud

�tnþ1

tn
¼

1

2
ðqnþ1 � qnÞT ð �FFnþ1 þ �FFnÞ

�

Wd

�tnþ1

tn
¼

1

2
ðqnþ1 � qnÞT �KKðqnþ1 � qnÞ

where Dref is the total dissipated energy associated to the

reference solution. The so-called reference solution is

computed with all the terms in the Grünwald series.

Points A and B in Figure 7 are related to solid and

dotted lines in Figure 6. It is noted that a noticeable

error is committed when only five terms are taken to

truncate the series (� 2.52%), while for 10 terms this

error considerably decreases (� 0.16%). In fact, there

is a constant time where the Grünwald series should

be truncated (Galucio et al., 2004). For example, the

point A corresponds to an underestimation of the

fading memory phenomena, since five terms are not
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Figure 4. Nondimensional (a) axial and (b) transverse displacement through-thickness distribution calculated for the first natural frequency when
the piezoelectric layers are short- and open-circuited.
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sufficient to accurately describe the viscoelastic behavior

of the core.

The second part of this study is addressed to the

hybrid piezoelectric–viscoelastic treatment for con-

trolling vibrations arising from transient excitations.

In the following example, both piezoelectric patches

are activated and the fractional operator is approxi-

mated with the whole history in the Grünwald series.

A sensor voltage feedback control scheme is used.

The time derivative of the voltage measured in the

sensor is used for the feedback signal and then applied

to the top piezoelectric patch with a constant gain Kd,

as VA ¼ �Kd
_VVS. In Figure 8, the enhancement of

the passive damping treatment (solid line) when a

closed-loop control is applied for two constant

gains �2ms (dotted line) and �6ms (dashed line) is

observed. As expected, the results show that the

combination of the active and passive damping treat-

ments is more effective than the passive damping

treatment only.
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CONCLUSION

A finite element formulation for transient dynamic

analysis of sandwich beams with active constrained

layer damping treatment is proposed. The sandwich

beam is composed of a viscoelastic core, which is

entirely covered by elastic faces that are provided with

piezoelectric patches on their top and bottom surfaces.

No electrical degrees of freedom are introduced in

the finite element formulation. The electromechanical

coupling is taken into account by means of an

augmentation of the stiffness of the piezoelectric layers

for a sensor configuration. A four-parameter fractional

derivative model is used to describe the viscoelastic

behavior of the core. Fractional operators are appro-

ximated by the Grünwald discretization, requiring the

storage at each time step of the recent history only. The

present formulation allows a relatively simple finite

element implementation of hybrid piezoelectric–visco-

elastic damping treatments for controlling vibrations,

which is validated through results found in the lite-

rature. Preliminary results using a simple proportional

derivative feedback control scheme are performed

in order to show the effectiveness of the proposed

numerical approach.
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