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Blind Source Separation with outliers in transformed domains∗1

Cécile Chenot † and Jérôme Bobin†2
3

Abstract. Blind Source Separation (BSS) methods are well suited for the analysis of multichannel data. In4
many applications, the observations are corrupted by an additional structured noise, which hinders5
most of the standard BSS techniques. In this article, we propose a novel BSS method able to6
jointly unmix the sources and separate the source contribution from the structured noise or outliers.7
This separation builds upon the difference of morphology between the components of interest, often8
encountered in imaging problems, by exploiting a sparse modeling of the components in two different9
domains. Numerical experiments highlight the robustness and precision of the proposed method in10
a wide variety of settings, including the full-rank regime.11

Key words. Blind Source Separation, Sparse Modeling, Robust Recovery, Morphological Diversity.12
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1. Introduction. Blind Source Separation (BSS) is a powerful tool to extract the mean-14
ingful information of multichannel data, which are encountered in various domains such as15
biomedical engineering [39] or remote-sensing [3] to cite only a few. Notably, it has played a16
key role in the analysis of the multispectral observations of the ESA-Planck mission [7], [30]17
in astrophysics. Its instantaneous linear mixture model assumes that n sources {Si}i=1..n of18
t samples are mixed into m ≥ n observations {Xj}j=1..m. This model can be conveniently19
recast in the following matrix formulation:20

(1) X = AS + N,21

where X ∈ Rm×t designates the linear observations, A ∈ Rm×n the unknown mixing matrix,22
S ∈ Rn×t the sources and N ∈ Rm×t a Gaussian noise term accounting for model imper-23
fections. BSS aims at recovering both A and S from X. This is an ill-posed problem as24
the number of solutions is infinite. Recovering the relevant sources and mixing matrix then25
requires additional prior information on the sources and/or the mixing matrix such as: the26
mutual independence of the sources in the ICA framework [17], the non-negativity of S and A27
for Non-negative Matrix Factorization (NMF) [35], or the compressibility of the sources in a28
given domain [57]. Further details on standard BSS can be found in [17] and references therein.29

30
This model is too simple to represent accurately some complex processes. In the ESA-31

Planck mission for instance, the observations deviate from the above model 1 because of32
the presence of point-source emissions with unknown position and amplitude as well as the33
spectral variability of some components [30]. The spectral variability of some components is34
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2 C. CHENOT, AND J. BOBIN

also a major issue in hyperspectral imaging and has encountered a growing interest during the35
last years [52],[21]. More generally, deviations from the standard model 1 are encountered in36
numerous applications and encompass the presence of unexpected physical events [44], [47],37
instrumental artifacts [31] or non-linearity of the physical process [21]. These large errors will38
be designated in the following as outliers. In order to take into account these deviations in39
the data model, we propose to model the observations with the following expression:40

(2) X = AS + O + N,41

where O ∈ Rm×t stands for the outliers.42
43

Robust BSS in the literature. Most standard BSS methods lead to inaccurate or erroneous44
results in the presence of outliers [22]. This mandates the development of robust BSS methods,45
which should tackle both following tasks:46

• Unmixing of the sources, i.e. estimating precisely the mixing matrix A.47
• Separating the source contribution AS from the outliers O so as to return non-48

corrupted sources.49
Only few robust methods have been proposed in the literature. They can be classified50

into three different groups according to their strategies: replacement of the sensitive metrics51
in the cost-functions of optimization based-methods (i.e. only task i)), removal of the outliers52
prior to the unmixing (i.e. task ii) followed by task i)), and joint estimation of O, S and A53
(i.e. tasks i) and ii) simultaneously).54

55
A robust unmixing of the sources without an explicit estimation of the outliers has been56

proposed in several works. This approach consists of replacing the most sensitive metrics of57
the cost functions of the usual optimization-based BSS methods. In the NMF framework for58
instance, the authors of [25] and [27] opt respectively for the `1 and the `2,1 norms for the59
data fidelity term, instead of the common Frobenius norm which is sensitive to large errors.60
In the ICA framework, the authors of [32] promote the mutual independence of the sources61
by using the robust β-divergence in place of the Kullback-Leibler divergence [17]. The major62
drawback of this class of methods is that only the mixing matrix can be recovered precisely,63
while the sources are still contaminated by the outliers.64

65
The second popular approach consists in: first, estimating and discarding the outliers from66

the observations, and then, performing the BSS on the denoised observations. In order to un-67
mix the sources accurately in the second step, the estimation of the outliers should be very68
precise. However, this step is challenging and necessitates further assumptions (see Section 2).69
A popular strategy for discarding the outliers assumes that m� n so that AS has low-rank.70
In [11], it has been proven that an exact separation between the outliers and AS is possible if71
the support of the outliers is, in addition, uniformly distributed. This approach has been in72
particular used in hyperspectral imaging for which the assumption on the low-rankness holds73
true [53]. The major drawback of this strategy is that it does not take into account explicitly74
the clustering aspect of AS and the assumption made on S for the following unmixing (e.g.75
independence or sparsely represented in a given dictionary) since A and S are not estimated76
explicitly. This can greatly hamper the unmixing by propagating the error made at the first77
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BLIND SOURCE SEPARATION WITH OUTLIERS IN TRANSFORMED DOMAINS 3

step.78
79

The third class of methods estimates jointly A, S and O. This allows to constrain all80
the components and limits the propagation of errors encountered with the previous two-steps81
methods. This strategy has been developed essentially with non-negativity [40], [54] and82
low-rank priors for hyperspectral unmixing [1], [21], [33]. In [14], we proposed a robust BSS83
method assuming that both the outliers and the sources are sparsely represented in a same84
domain. The proposed method estimates reliably the mixing matrix, but was however unable85
to separate precisely the sources and the outliers without additional assumption (see Section86
2) in the full-rank setting.87

88
Contributions. To the best of our knowledge, there is currently no BSS method able to89

estimate the mixing matrix, the sources and the outliers in a general framework i.e. without90
the low-rank assumption.91
In this paper, we propose to exploit the difference of morphology/geometrical content between92
the outliers and the sources to separate precisely the two contributions [20]. This difference of93
morphology is often encountered in imaging problems: stripping lines due to malfunctions of94
captors have a different morphology than natural images in multi/hyperspectral imaging or95
point-source emissions fig.1b have a different geometry than the sought-after signals fig.1a in96
the ESA-Planck mission. By only assuming that the outliers and the sources have a different97
morphology, our new strategy coined tr-rGMCA (robust Generalized Morphological Compo-98
nent Analysis in transformed domains), preliminarily presented in [15], is able to separate99
precisely the sources and the outliers, in a wide variety of problems, including in the challeng-100
ing determined case (n = m).101

102

(a) Simulated synchrotron
emission.

(b) Simulated point-source
emissions.

Figure 1: Simulated components of the ESA-Planck mission: synchrotron’s map (one row of
S) (a) and observation of the point-sources contamination at a given frequency (one row of
O) (b).

The structure of this article is the following: in Section II, we focus on the separation of the103
outliers from the sources contribution for which we explain why the morphological diversity104
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4 C. CHENOT, AND J. BOBIN

is a powerful assumption, in Section III, we introduce the tr-rGMCA problem, the associated105
algorithm and the strategies used for the automatic choice of the parameters, and last in106
Sections IV to VI, the results of numerical experiments on 1D Monte-Carlo simulations and107
2D simulated astrophysics data are displayed for the comparison of tr-rGMCA with standard108
robust BSS methods.109

Notations.110
Matrix notations. Matrices are denoted by uppercase boldface letters. The ith row and111

jth column of a matrix M are designated respectively by Mi and Mj , and its i, jth entry by112
Mi,j . The Moore-Penrose inverse of M is noted M† and its transpose MT .113
The notation M̃ denotes the estimate of M and, M̃(k) designates the estimate at the kth114
iteration of a loop.115

Norms. Three ‘entrywise’norms will be used: ‖M‖1 =
∑
i,j
|Mi,j |, ‖M‖2,1 =

∑
j

∥∥Mj
∥∥

2, and116

‖M‖2, the Frobenius norm of M.117
Operators. The operators �,~,⊗ designate the Hadamard product, the convolution, and118

the tensor product respectively.119
The proximal operator of a real-valued, convex, proper and lower semicontinuous function120
f : Rp×r → R, (p, r ∈ N), is noted proxf , such that proxf : Rp×r → Rp×r,121
X 7→ argminY

1
2 ‖X−Y‖22 + f (Y).122

In particular, the soft-thresholding operator of M, with threshold λ, is denoted Sλ(M), where123

[Sλ(M)]i,j =
{

Mi,j − sign(Mi,j) ∗ λi,j if |Mi,j | > λi,j

0 otherwise
124

Last, the operator mad designates the median absolute deviation.125

2. Separation between the outliers and the sources. Robust blind source separation126
can merely be split into two distinct problems: i) the robust estimation of the mixing matrix127
from the data without considering outliers removal and ii) the exact or accurate separation128
between the outliers O and the sources AS. In this section, we discuss the properties needed129
to tackle these two problems.130

2.1. Spectral diversity.131
A robust PCA perspective. In this paragraph, we first focus on the second problem: sep-

arating the contribution of the sources AS from the outliers O. If one defines L = AS, the
data can be described as

X = L + O

Assuming that the outliers have a sparse distribution and are in general position (they do132
not cluster in a specific direction), and that L is low-rank (i.e. the number of observations133
is much larger than the number of sources m � n), this separation problem refers to robust134
PCA (rPCA - [11], [13]). To illustrate this particular setting, we display in fig.3, the scatter135
plot of the observations in a determined setting fig.2b and an over-determined setting fig.2b.136
Intuitively, the fact that corrupted samples do not lie in the span of L facilitates their detection137
as illustrated in fig.2b. This is however not a sufficient condition for the identifiability of the138
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BLIND SOURCE SEPARATION WITH OUTLIERS IN TRANSFORMED DOMAINS 5

two components.139
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(a) Determined case. (b) Over-determined case.

Figure 2: On the left, 2 sources are mixed into 2 corrupted observations. On the right,
2 sources are mixed into 3 observations. For both, the red star symbolizes the corrupted
sample, at the kth column and the arrows symbolize the two contributions to this sample Ok

and (AS)k.

140
It was shown in [11] and [13] that the identifiability of the components can be proved if141

i) the entries of O are sparse, in general position and independently distributed (O is row142
and column sparse) and ii) the component L lies in a low-dimensional subspace, with broadly143
distributed entries (L is not row or column sparse).144
The PCP algorithm, designed to perform this separation [11], estimates both components by145
solving:146

(3) min
L,O:X=L+O

‖L‖∗ + λ ‖O‖1 .147

where ‖L‖∗ stands for the nuclear norm of L (i.e. the sum of its singular values).148
149

However, in the framework of rPCA, the exact or accurate [56] separation between the150
sources and the outliers is guaranteed as long as the entries of O are independently distributed,151
which excludes column-sparse outliers. For this case, PCP has been extended in [49]. The152
outliers pursuit (OP) algorithm minimizes:153

(4) min
L,O:X=L+O

‖L‖∗ + λ ‖O‖2,1 .154

Interestingly, it has been shown that the OP algorithm allows retrieving the support of the155
outliers and the column span of A. However, the separation of L and O is not guaranteed156
since the contribution of the outliers that lies in the span of A cannot be recovered exactly.157
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6 C. CHENOT, AND J. BOBIN

In the framework of robust BSS. Both the rPCA and OP algorithms strongly rely on the158
low-rankness of the source contribution in the data. This assumption makes perfect sense in159
applications such as hyperspectral imaging [21, 45], where few sources (typically n < 10) have160
to be estimated from a large number of observations (i.e. m ∼ 102). However, the so-called161
hyperspectral unmixing methods take advantage of additional constraints to improve the sep-162
aration between AS and O [3], [26]: i) the non-negativity of the mixing matrix A and the163
sources S and ii) the sources samples (i.e the columns of the sources matrix) are assumed to164
lie on the `1 simplex.165

166
Unfortunately, neither the low-rankness nor the non-negativity assumptions are valid in167

a broad range of applications such as the Planck data. For that purpose, we introduced in168
[14] a robust BSS algorithm coined rAMCA that jointly estimates A, S and O. The rAMCA169
algorithm builds upon the sparse modeling of the sources and the outliers in the same dic-170
tionary. If the rAMCA algorithm has been shown to outperform the state-of-the-art robust171
BSS methods including in the determined setting, it only provides a robust estimation of the172
mixing matrix and fails at accurately separating the sources and the outliers. Indeed, whether173
the low-rankness of the sources holds or not, column sparse outliers are not identifiable, which174
makes the sources/outliers separation impossible without additional assumptions.175

176

2.2. Combining spectral and morphological diversity. In this section, we introduce an177
additional property that helps differentiating between the sources and the outliers: morpho-178
logical diversity. While spectral diversity refers to the relative distributions of the sources and179
the outliers in the column-space, morphological diversity deals with their relative distribution180
in the row-space. Morphological diversity has first been exploited in the monochannel case to181
separate multiple images that share different geometrical structures. In that context, it has182
been quite successful at separating contour and texture parts in images. This concept is at183
the origin of the MCA algorithm (Morphological Component Analysis - [20, 6]).184
In a large number of applications, the sources to be retrieved and the outliers share different185
morphologies, such as in Planck data fig.1. In this case, spurious points sources are the perfect186
example of column sparse outliers. These components are local singularities that are morpho-187
logically distinct from more diffuse astrophysical components. Therefore, building upon the188
concept of morphological diversity, we hereafter propose to reformulate robust BSS as special189
case of multichannel MCA problem. In the remaining of this paper, we will make use of the190
following assumptions:191

192
• Morphological diversity between the sources and the outliers: We assume

that the sources are sparsely represented in the transformed domain or dictionary ΦS
and that the outliers have a sparse representation in ΦO:

Oj = αOjΦO, ∀j ∈ {1..m} and Si = αSiΦS, ∀i ∈ {1..n} ,

where
{
αOj

}
j=1..m

and {αSi}i=1..n are composed of few significant samples. These193

dictionaries should be chosen according to the main structural characteristics of the194
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BLIND SOURCE SEPARATION WITH OUTLIERS IN TRANSFORMED DOMAINS 7

components to assure that the expansion coefficients are sparse, e.g. wavelets for piece-195
wise smooth signals, curvelets for curves like cartoons or DCT for oscillating textures196
[43]. A toy example is provided in fig.3. It highlights the benefits of exploiting the197
morphological diversity: in ΦS, the outlier contribution is broadly distributed with a198
very small amplitude fig.3d,3f, whereas in ΦO, they can be easily detected fig.3a,3c199
(and reciprocally for the sources samples).200

201
• Sparse modeling of the outliers: We also consider that the sparse representations202

of the outliers corrupt entirely some columns and are broadly distributed in all the203
directions. For this purpose, we will assume that OΦT

O is column sparse such as in204
fig.3. For instance, in the applications for which the outliers are sparse in the domain205
of observation, it amounts supposing that most of the sensors record the spurious206
outliers at a same instant/position: that is the case of the point source emissions in207
astrophysics fig.1b. We point out that assuming that the outliers are column and row208
sparse in ΦO only requires minor changes, which will be indicated in the following.209
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Figure 3: Two sources sparse in DCT are mixed into three observations, corrupted with sparse
outliers. (a): scatter plot of the two first rows of O in ΦO, (d): scatter plot the same rows of
O in ΦS, (b): scatter plot of the first two sources in ΦO, (e): scatter plot of the same sources
in ΦS, (c): scatter plot of the two first corrupted observations in ΦO and last, (f): scatter
plot of the same observations in ΦS. The source contribution is represented with the blue
dots and the outliers with the red stars.

2.2.1. Robust (non-blind) source separation as a sparse decomposition problem.210
A special case of sparse decomposition in an overcomplete dictionary. Following standard211

sparse BSS approaches [57, 5], the sources are assumed to be sparsely distributed in a signal212
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8 C. CHENOT, AND J. BOBIN

representation or dictionary ΦS such that S = αSΦS. The sources’ contribution L = AS to213
the data X is therefore sparsely represented in the multichannel dictionary: A ⊗ΦS, whose214
atoms are composed of tensor products between the columns of A and the atoms of ΦS.215

216
Similarly, the rows of the outlier matrix O are assumed to be sparse in some dictionary ΦO217

so that O = αOΦO, where the coefficients αO are column sparse. Let OD be the submatrix218
made of the normalized non-zero columns of αO, built so that the kth non-zero column of αO219
at the position t equals Ok

D = αO
t

‖αOt‖2
. We then denote αO′ the expansion coefficients of O220

in OD ⊗ΦO, such that ODαO′ = αO. The matrix αO′ is then column and row sparse and221
‖αO′‖1 = ‖αO‖2,1. With this parameterization, the outliers are sparsely represented in the222
multichannel dictionary OD ⊗ΦO.223

224
The observations are consequently sparsely represented in the multichannel dictionary

D = [A⊗ΦS,OD ⊗ΦO]:

X =
[
A OD

] [αS 0
0 αO′

] [
ΦS
ΦO

]
.

Assuming that A and OD are known, estimating the sources S and the outliers O from
X boils down to tackling a sparse decomposition problem in the overcomplete multichannel
dictionary D. In the very large literature devoted to sparse decompositions in overcomplete
dictionaries (see [9] for a review), different approaches have been proposed to investigate the
identifiability and recovery of sparse decompositions. In the next, we make use of the so-
called mutual coherence of the dictionary to provide a deeper insight into the proposed robust
component separation.
Assuming that the components are K-sparse in D with K = ‖αS‖0 + ‖αO′‖0, a sufficient
condition for the identifiability of αS and αO′ [19] is given by:

K <
1
2

(
1 + 1

µD

)
,

where µD designates the so-called mutual coherence of the dictionary D. The mutual coher-225
ence of D is defined as µD = maxi,j |〈di,dj〉| where di stands for an atom of the multichannel226
dictionary D (i.e. multichannel atoms are composed of tensor products of atoms from the227
spectral dictionaries and morphological dictionaries). Furthermore, the same condition also228
guarantees that αS and αO′ can be recovered by solving the following basis pursuit problem229
[19]:230

(5) argmin
αO′,αS

‖αO′‖1 + ‖αS‖1 s.t. X = AαSΦS + ODαO′ΦO.231

The term of interest in the above recovery condition is the mutual coherence µD, which is232
equal, in this specific case, to:233
(6)

max
(

max
(i,p)6=(j,q)

|〈Ai,Aj〉||〈Φp
S,Φ

q
S〉|, max

(m,u)6=(n,v)
|〈Om

D ,On
D〉||〈Φu

O,Φ
v
O〉|, max

(l,c),(k,d)
|〈Al,Ok

D〉||〈Φc
S,Φ

d
O〉|
)
,234
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BLIND SOURCE SEPARATION WITH OUTLIERS IN TRANSFORMED DOMAINS 9

where the columns of A, ΦO and ΦS are normalized to have unit `2 norm. In this expres-235
sion, the cross-terms max(l,c),(k,d) |〈Al,Ok

D〉||〈Φc
S,Φ

d
O〉| are the most relevant to discriminate236

the outliers and the sources’ contribution and provide a different way to re-interpret robust237
(non-blind) source separation:238

239
• Spectral diversity or rPCA regime: In case the outliers and sources share a240

same morphology, (see [29] for more precise recovery guarantees), only the cross-term241
between the mixing matrix and the outlier columns max(l,k) |〈Al,Ok

D〉| is relevant for242
the separation. In the framework of rPCA, whenever the source contribution AS has243
low rank, max(l,k) |〈Al,Ok

D〉| vanishes when OD lies in the subspace that is orthogonal244
to the span of A, which naturally ensures the identifiability of both the sources and245
the outliers. In the general case, assuming that O has independently and sparsely246
distributed entries and that A is broadly distributed such as in the setting of rPCA,247
leads to spectral dictionaries A and OD with low coherence. This is precisely in this248
regime that rPCA can ensure the identifiability of the components.249

250
• Morphological diversity or MCA regime: When the low-rankness of the obser-251

vations is not a valid assumption or when the span of A and OD are not incoherent,252
such as in the determined case, only the morphological diversity can help identifying253
the components. In that case, the dictionaries ΦO and ΦS are assumed to be inco-254
herent, which makes max(c,d) |〈Φc

S,Φ
d
O〉| the relevant term for the separation. The is255

precisely in this regime that the MCA can ensure the separation between components256
that can only be identified thanks to their difference of morphologies. In this case257
only, robust component separation can be solved in the determined case.258

259
• Morpho/Spectral diversity: In the general case, both the spectral and mor-260

phological dictionaries are incoherent, the relevant coherence term is the product261
max(l,c),(k,d) |〈Al,Ok

D〉||〈Φc
S,Φ

d
O〉|. In this regime, robust component separation bene-262

fits from incoherence of both the morphological and spectral dictionaries:263
max(l,c),(k,d) |〈Al,Ok

D〉||〈Φc
S,Φ

d
O〉| ≤ min(max(l,k) |〈Al,Ok

D〉|,max(c,d) |〈Φc
S,Φ

d
O〉|).264

This is expected to greatly improve the accuracy of the separation. For instance,265
in this regime, column-sparse outliers can be identified while methods that only make266
use of the spectral diversity like Outliers Pursuit [49] can only ensure the identification267
of the support of the outliers and not their amplitude.268

269
In the framework of robust blind source separation, the spectral dictionary

[
A OD

]
is270

not known and has also to be learned. For this purpose, we describe in the next section a novel271
algorithm coined tr-rGMCA that makes use of both spectral and morphological diversity to272
estimate jointly A, S and O given the two dictionaries ΦS and ΦO so as to build upon the273
spectral and the morphological diversities between the components. Based on whether they274
rely on spectral or morphological diversity, currently available blind separation strategies are275
summarized in table.1.276

277
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10 C. CHENOT, AND J. BOBIN

Estimation Diversity Regime Methods Advantages Weaknesses
AS and O Morphological m ≥ n MCA [20] No assumption on

the collinearity of O
and A.

AS should be
sparse in ΦS.
The spectral
structure may
not be preserved.

Spectral m� n PCP [11],
or refine-
ments such
as [55], [34]

Proven separability. OΦT
O column

and row sparse.

OP [49] OΦT
O column sparse. No identifiability

of O.
A, S and
O

Spectral m� n rNMF [21] Well adapted for
hyperspectral un-
mixing.

Non-negativity,
sources samples
in the simplex
and presence
of almost pure-
pixels.

m ≥ n rAMCA
[14]

Estimation of A No identifiability
of O.

Morphological
& spectral

m ≥ n tr-
rGMCA

Identifiability in all
regimes

Table 1: Strategies able to separate AS and O.

3. Robust GMCA in transformed domains. In this section, we introduce the tr-rGMCA278
(rGMCA in transformed domains) algorithm that builds upon both spectral and morpholog-279
ical diversities to estimate simultaneously A, S and O. The tr-rGMCA algorithm performs280
the separation by minimizing a cost function whose elements are based on the following as-281
sumptions:282

283
• Data fidelity term: The data are assumed to be described by the linear mixture model284

X = AS + O + N. The squared Frobenius norm ‖X−AS−O‖22 is used as fidelity285
term to measure a discrepancy between the data and the model. This distance is well286
suited to account for the additive Gaussian noise N that usually contaminates the287
data.288
• Penalty term for the sources: In the spirit of sparse BSS [57, 5], the sources are as-289

sumed to be sparsely represented in some dictionary ΦS. The compressibility of S in290
ΦS is enforced with a weighted `1 norm of the expansion coefficients of S:

∥∥∥Λ� SΦT
S

∥∥∥
1
.291

The weighting matrix Λ ∈ Rn×tΦS includes both the regularization parameters and292
the weights defined in standard re-weighting `1 penalization [12].293
• Penalty term for the outliers: The outliers are assumed to be column-sparse in ΦO.294

This structure is enforced in the cost function using the composite `2,1 norm [21, 28]:295 ∥∥∥Υ�OΦT
O

∥∥∥
2,1

. Again the matrix Υ ∈ R1×tΦO , taille a relier aux dimensions des296
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dicos where contains the regularization parameters as well as weights in the sense of297
re-weighting `2,1. The morphological diversity assumption implies that ΦO and ΦS298
are somehow incoherent.299
• Scaling indeterminacy: In order to control the scaling indeterminacy between A and300

S, the columns of A have an energy bounded by 1. The columns of A are constrained301
to lie in the `2 ball with unit radius: χY:‖Yk‖2≤1,∀k (A).302

303
Therefore, the algorithm tr-rGMCA estimates jointly A, O and S by minimizing the304

following cost function:305

(7) minimize
A,S,O

1
2 ‖X−AS−O‖22 +

∥∥∥Λ� SΦT
S

∥∥∥
1

+
∥∥∥Υ�OΦT

O

∥∥∥
2,1

+ χY:‖Yk‖2≤1,∀k (A) .306

The resulting cost function is a multi-convex non-smooth optimization problem: it is glob-307
ally non-convex but subproblems with all variables fixed except one are convex. Hence, it308
is customary to optimize this type of cost function by iteratively and alternately minimizing309
it for each variable A, S and O assuming the others are fixed (namely the Block Coordi-310
nate optimization strategy, see [41] for a review). In particular, this is used by two standard311
strategies: the Block Coordinate Descent method (BCD - [46]), and Proximal Alternating312
Linearized Minimization (PALM - [8]).313

314

3.1. Block Coordinate Minimization. Updating each block A, S and O alternately at315
each iteration can be carried out in different ways. In the BCD setting, each block is updated316
by exactly minimizing Problem 7 assuming all the other blocks are fixed to their current317
values:318

PA : minimize
A

1
2 ‖X−AS−O‖22 + χY:‖Yk‖2≤1,∀k (A) .(8)319

PS : minimize
S

1
2 ‖X−AS−O‖22 +

∥∥∥Λ� SΦT
S

∥∥∥
1
.(9)320

PO : minimize
O

1
2 ‖X−AS−O‖22 +

∥∥∥Υ�OΦT
O

∥∥∥
2,1
.(10)321

322

These three problems can be written as argminY fY (Y)+gY (Y), where fY (.) is related to the323
differentiable data-fidelity term (whose gradient noted ∇fY is LY -Lipschitz) and gY (.) is the324
proximable regularization associated with the component Y App. A. In general, they do not325
admit a closed-form solution and therefore require resorting to iterative minimization proce-326
dures such the Proximal Forward-Backward Splitting algorithm (FB) [16], [36]. In that case,327
BCD yields a computationally intensive minimization strategy. In the sequel, we therefore328
opted for the prox-linear approach, which is at the origin of the PALM algorithm [8]. In this329
framework, the PALM strategy updates each variable using a single proximal gradient step330
(it minimizes exactly the proximal linearization of each subproblem PA, PS and PO, [50]).331
Whether it is based on BCD or PALM, it is possible to design a minimizer that provably332
converges to a local stationary point of Problem 7. In this context, either the BCD or the333
PALM algorithm can be chosen. However, the PALM procedure seems to generally converge334
faster: this can be understood with the fact that the components are updated with only one335
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12 C. CHENOT, AND J. BOBIN

proximal descent step, and not until convergence of each variable independently as done by336
BCD. For that reason, we opted for a prox-linear or PALM-based approach to design the337
algorithm.338

3.2. A prox-linear implementation. In the framework of PALM, each component is up-339
dated with one proximal gradient step eq.11 at the kth iteration:340

(11) Ỹ(k) ← prox 1
LY

gY
(Ỹ(k−1) − 1

LY
∇fY ((Ỹ(k−1))).341

From this generic update, the three steps that compose the tr-rGMCA algorithms are de-342
scribed as follows:343

344
• Update of the sources. Assuming ΦS is orthonormal, the proximal operator of the345

function S 7→
∥∥∥Λ� SΦT

S

∥∥∥
1

is exactly S 7→ SΛ
(
(S)ΦT

S

)
ΦS. Therefore, at iteration k of346

the PALM procedure, the update of S̃(k) is given by:347

(12) S̃(k+1) ← S Λ
LS

((
S̃(k) + 1

LS
Ã(k)T

(
X− Ã(k)S̃(k) − Õ(k)

))
ΦT

S

)
ΦS,348

where the step size LS is chosen to be equal to the Lipschitz constant of the gradient,349
i.e. the maximal eigenvalue of Ã(k)T Ã(k).350
When ΦS is not orthonormal, the proximal operator of the function S 7→

∥∥∥Λ� SΦT
S

∥∥∥
1

351
does not admit a closed form. However, in the next experiments, the dictionaries used352
of ΦS will be tight frames (e.g. undecimated wavelets) whose Gram matrix is close to353
the identity matrix. In that specific case, the update (12) provides a good approxima-354
tion for the proximal operator.355

356
• Update of the outliers. Assuming ΦO is orthonormal, the update of the outliers357

at the kth iteration of the PALM procedure is given by:358

Õ(k+1) ← α̃OΦO where, ∀j = 1..t and ∀i = 1..n :(13)359

α̃O
j
i ←

((X− Ã(k)S̃(k)
)
ΦT

O

)j
i
×max

0, 1− Υj
i∥∥∥∥((X− Ã(k)S̃(k)
)
ΦT

O

)j∥∥∥∥
2


 .360

361

In contrast to S, the proximal gradient step eq.13 exactly solves PO. If ΦO is not362
orthogonal, but has a Gram matrix close to the identity, this update provides also a363
good approximation of the proximal gradient step. Besides, in this paper, we assume364
that the outliers corrupt entirely few columns of the observations in their associated365
transformed domain. However, it would be straightforward to account for row and366
column sparse outliers in ΦO by replacing the `2,1 norm with the `1 norm. In this367

case, (13) is simply replaced by: Õ← SΥ
(
(X−AS)ΦT

O

)
ΦO.368

369
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• Update of the mixing matrix. The proximal gradient step for A is two step: ((a)370
corresponds to the gradient step, and (b) to the proximal operator of the characteristic371
function):372

(a) Ã(k+1) ← Ã(k) + 1
LA

(X− Ã(k)S̃(k) − Õ(k))S̃(k)T ,373

(b) Ãi(k+1) ← Ãi(k+1)

max
(
1,
∥∥∥Ãi(k+1)

∥∥∥
2

) ,∀i = 1..n,374

where LA is chosen to be equal to the Lipschitz constant of the gradient, i.e. the375
maximal eigenvalue of S̃(k)S̃(k)T .376

377
Algorithm. The prox-linear minimization of (7) can be found in Alg.1.

Algorithm 1 PALM
1: procedure PALM(X, S̃,ΦS, Õ,ΦO, Ã,Λ, Υ )
2: Set S̃(0) ← S̃, Õ0 ← Õ and Ã0 ← Ã
3: while p < P do
4: Compute LA
5: Ã(p+1) ← Ã(p) + 1

LA
(X− Ã(p)S̃(p) − Õ(p))S̃(p)T

6: Ãi(p+1) ← Ãi(p+1)

max(1,‖Ãi(p+1)‖2)
,∀i = 1..n

7: Compute LS
8: S̃(p+1) ← S Λ

LS

((
S̃(p) + 1

LS
Ã(p+1)T

(
X− Ã(p+1)S̃(p) − Õ(p)

))
ΦT

S

)
ΦS

9: Õ(p+1) ← αÕ(p+1)ΦO where ∀j = 1..t and ∀i = 1..m :

10: αÕ(p+1)
j
i ←

((X− Ã(p+1)S̃(p+1)
)
ΦT

O

)j
i
×max

0, 1− Υj
i∥∥∥((X−Ã(p+1)S̃(p+1))ΦT

O)j
∥∥∥

2


return S̃(P−1), Ã(P−1), Õ(P−1).

378
Limitations of the standard block coordinate minimizers. The proposed prox-linear imple-379

mentation is sensitive to the setting of the parameters and the initialization, which makes380
the joint estimation of the regularization parameters and the components highly challenging.381
In practice, algorithms like GMCA for standard sparse BSS [5], are based on BCD but with382
additional heuristics, which play a key role to provide robustness to the initialization and an383
automatic setting of the parameters. If these heuristics, which are detailed in Section 3.3,384
yield more robust minimization procedures, they lack provable convergence. Therefore the385
global optimization strategy used in the tr-rGMCA algorithm is composed of two successive386
steps:387

388
• The warm-up step: a solution of Problem (7) is approximated using a BCD-based389

algorithm with heuristics. This first step, which is described in Section 3.3, aims at390
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14 C. CHENOT, AND J. BOBIN

providing a robust first guess of the components as well as the parameters values for391
the next, provably convergent, step.392
• The refinement step: The goal of this stage, which we described in Alg.1, is to provide393

a local stationary point of (7).394
395

We point-out that the efficient warm-up procedure is key to the matrix-factorization prob-396
lem, and prevents the computationally intensive and inefficient multi-starts method. We would397
like to highlight that the need for appropriate heuristics to build reliable matrix factorization398
procedures has also been pointed out in the framework of NMF in [24].399

3.3. Warm-up procedure. In this section, we describe the so-called “warm-up”stage of400
the tr-rGMCA algorithm. This procedure aims at providing an approximated solution of401
Problem (7) as well as robustly determining the regularization parameters. The proposed402
strategy builds upon an appropriate choice of the variables to be updated based on either403
morphological or spectral diversity, that leads to the following BCD-like procedure:404

405
• Joint estimation of O and S based on morphological diversity. Jointly es-406

timating O and S for fixed A amounts to solving the following convex optimization407
problem:408

(14) minimize
S,O

1
2 ‖X−AS−O‖22 +

∥∥∥Λ� SΦT
S

∥∥∥
1

+
∥∥∥Υ�OΦT

O

∥∥∥
2,1
,409

which we previously interpreted as a multichannel extension of Morphological Com-410
ponent Analysis. This step, which is detailed in Section 3.3.1, essentially exploits the411
morphological diversity between the outliers and the sources.412

413
• Joint estimation of A and S based on spectral diversity. Updating A and S414

boils down to tackling the sparse BSS problem from the residual term X−O:415

(15) minimize
S,A

1
2 ‖X−AS−O‖22 +

∥∥∥Λ� SΦT
S

∥∥∥
1

+ χY:‖Yk‖2≤1,∀k (A) .416

While being non-convex, algorithms like GMCA [5] or AMCA [4] provide efficient ap-417
proximate minimization that have been shown to be robust to spurious local stationary418
points. This stage is described in Section 3.3.2.419

420
The warm-up procedure alternates between these two problems to minimize (7), such as421

presented in Alg.2. As it will be described in the remaining of this subsection, the warm-up422
procedure involves key heuristics that rely on particular parameter strategies and approxima-423
tions which are made to fasten the process and improve its robustness with respect to the424
initialization and the spurious local stationary points.425

426
In the numerical experiment section 5, we provide a comparison between the performances427

of the warm-up step alone, the refinement (PALM-based) step alone, and the combination of428
both (tr-rGMCA), showing the robustness of the warm-up procedure as well as the benefit in429
term of accuracy for using the refinement step.430
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Algorithm 2 WarmUp Procedure
1: procedure WarmUp(X, Ã,ΦS,ΦS)
2: Initialize S̃(k=0) ← 0, Ã(k=0) ← Ã and Õ(k=0) ← 0.
3: while k < K do
4: Set αS

(i=1,k) ← S̃(k−1)ΦT
S , Ã(i=1,k) ← Ã(k−1), and αX−O ←

(
X− Õ(k−1)

)
ΦT

S
5: while i < I do . Joint estimation of A and S
6: αS

(i,k) ← SΛ
(
Ã(i−1,k)†α(X−O)

)
7: Ã(i,k) ← α(X−O)αS

(i=1,k)†

8: Decrease Λ
9: Set S̃(k) ← αS

(i=I−1,k)ΦS and Ã(k) ← Ã(I−1,k)

10: Set S̃(`=0,j=0,k) ← S̃(k) and Õ(`=0,j=0,k) ← Õ(k−1)

11: for ` < L do . Reweighting Procedure
12: while j < J do . Joint estimation of S and O
13: Update S̃(`,j,k) with FISTA using the proximal gradient step (12)
14: Update Õ(`,j,k) with the closed form (13)
15: Update Λ and Υ for the reweighting procedure according to (16)
16: Set S̃(`+1,0,k) ← S̃(`,J,k), Õ(`+1,0,k) ← Õ(`,J,k)

return Ã(K), S̃(L,J,K), Õ(L,J,K).

3.3.1. Estimating O and S using the morphological diversity. For fixed A, the outliers431
O and the sources S are the solutions of Problem (14). Since, for fixed sources, updating432
the outliers allows a closed-form expression, we opted for the BCD strategy that alternates433
between estimations of O and S:434

435
• Updating the sources. The estimation of S is given by PS (9). As stated in436

Section 3.2, PS can be solved with the FB algorithm: S is updated with the proximal437
gradient step eq.12 until convergence. This algorithm is also known as Iterative Soft-438
Thresholding (ISTA). We point out that in practice, the accelerated FISTA [2] is439
preferred.440
• Updating the outliers. The estimation of O is given by PO (10). The correspond-441

ing update with the FB algorithm is the closed form eq.13.442
443

Parameter updates. In this subproblem, an adapted setting of the parameters Λ and Υ is444
important to control the leakages between the two components and so achieve a good separa-445
tion between AS and O.446

447
• Reweighted scheme: The `1 and `2,1 norms introduce some biases [38], which can be448

detrimental to the BSS problem in the presence of outliers, or at least lead to inaccurate449
solutions with artifacts. For this reason, a reweighted scheme is implemented [12, 38]:450
the values of the parameters Λ and Υ depend on the values of the estimated variables.451
More precisely, we will set Λ = λDWS and Υ = υ ×WO, where λD ∈ Rn×n is a452
diagonal matrix, whose diagonal coefficients {λi}i=1..n set the sparsity level of each453
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16 C. CHENOT, AND J. BOBIN

source, and WS ∈ Rn×tΦS corresponds to the varying weights. Similarly υ is a scalar454
setting the global sparsity level of the columns of OΦT

O, while WO ∈ Rm×tΦO contains455
the weighting parameters. Since we assume that the Gaussian noise N is constant from456
one channel to another, the parameters WO do not vary from one row to another.457
• Fixed parameters λ and υ Similarly to the algorithms using sparse modeling in the458

presence of Gaussian noise in [43], the values {λi}i=1..n are fixed to kσi, where σi are459
obtained with the mad of

(
AT (X−O−AS)ΦT

S

)
i
.460

The value of υ is set so as to limit the impact of the remaining Gaussian noise on461
the estimation of O. Outside the support of OΦT

O, the `2 norm of the columns of462
the centered Gaussian residual follows a χ-law with m degrees of freedom, whose463

expectation is given by σ ×
√

2× Γ( m+1
2 )

Γ( m
2 ) , where σ can be estimated with the value of464

the mad of (X−AS−O)ΦT
O. The parameter υ is set to υ = k × σ ×

√
2× Γ( m+1

2 )
Γ( m

2 ) .465

• Weights WS and WO. At every iteration ` > 1 such as in Alg.2, the parameters WS466
and WO are updated according to the current values of S and O respectively such as:467

(16) WS = λ

λ+ |
(
S̃ΦT

S

)
|

and Wq
O = υ

υ +
∥∥∥(ÕΦT

O

)q∥∥∥
2

∀q = 1..t.468

We point out that WS and WO are reset to 1 for ` = 1 so as to limit the propagation469
of the errors and make full benefit of the new estimation of A by not enforcing the470
solutions to be similar to the previous ones.471

3.3.2. Sparse BSS for the joint estimation of A and S. The joint estimation of A and472
S with fixed O amounts to perform a standard sparse BSS on the current denoised obser-473
vations X − O. For that purpose, we will make use of either the GMCA [5] or the AMCA474
(Adaptive Morphological Component Analysis [4]) algorithm to update these variables. The475
algorithm AMCA, compared to GMCA, further implements an iterative weighting scheme476
when estimating A. This weighting strategy aims at penalizing the samples of X− Õ which477
behave as corrupted samples, and which can be traced using the sparsity level of the estimated478
expansion coefficients of the sources [4]. The AMCA algorithm has been used to improve the479
separation of A and S in the presence of outliers when no morphological diversity can help480
distinguishing between the sources and the outliers [14].481
During the very first iterations of the warm-up stage, a large large part of the outliers is very482
likely to be misestimated and still present in the residual X−Õ, which will eventually hamper483
the unmixing process. Choosing the BSS algorithm that is the most robust to this residual484
will help enhancing the estimation A. For that purpose either GMCA or AMCA will be used485
based on the relative choices of ΦS and ΦO:486

487
• Highly incoherent dictionaries: If ΦO and ΦS are highly incoherent, the outlier resid-488

ual is likely to be dense in ΦS, similarly to the case displayed in fig.3. Using the489
standard fast GMCA, which is robust to the presence of Gaussian noise, and more490
generally to dense noise, is the best choice.491

492
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• Mildly incoherent dictionaries: In this case, the algorithm AMCA should be preferred493
[7]. Indeed, the representations of the outliers and their residues in ΦS are likely to494
be mildly sparse. In that case, we showed in [14] that the AMCA algorithm provides495
a more robust estimate of A.496

497
• Additional priors on the sources: Besides the morphology of the residual of the outliers498

in ΦS, another additive knowledge on the data may justify the use of a specific sparse499
BSS algorithm. For example, if the sources are correlated, the algorithm AMCA, which500
was originally developed to handle partially correlated sources, should be preferred to501
GMCA, even if the residual of the outliers is dense in ΦS.502

503
Since AMCA and GMCA only differ by this weighting scheme, we will present the warm-504

up procedure using GMCA. The AMCA algorithm is implemented by adding the weighting505
proposed in [4].506

507
Component updates. The fast version of GMCA performs the separation directly in the

transformed domain ΦS. The returned results are exact if ΦS is orthonormal, and provide
a good approximation if ΦS is diagonally dominant [5]. The GMCA algorithm estimates
alternatively A and αS by minimizing:

minimize
A,αS

1
2

∥∥∥((X−O)ΦT
S −AαS

)∥∥∥2

2
+ ‖Λ�αS‖1 .

The algorithm estimates alternatively A and the coefficients αS with projected least-squares508
to fasten the unmixing process [5], [4].509
The corresponding updates are given in Alg.2 and further details can be found in [5], [4].510

511
Parameter updates. The strategies used for the setting of the parameters involved in GMCA512

are crucial for the robustness against the noise and local minima. They are presented below:513
• The values of Λ = λ�WS plays a key role in AMCA and GMCA. In order to adopt the514

efficient scheme used in [5] and to limit the propagation of the errors due to a previous515
misestimation of S, the weights WS are set to 1 during the unmixing process.516
In [5], the authors propose a decreasing strategy for Λ. At the beginning, only the517
largest coefficients, which are the most discriminant for the separation, are selected.518
Then, the solutions are refined by decreasing the value of λ. This “coarse to fine strat-519
egy ”[5] improves the robustness of the algorithm against local minima. In practice, an520
increasing number of entries is selected at every iteration. The final threshold λi for521
each αSi is kσi where σi corresponds to the standard deviation of the noise corrupting522
the coefficients of the ith source, and k ∈ (1, 3)[5]. The value of σi, if not known, can523
be estimated with the value of the mad of the coefficient αSi before the thresholding524
operation.525

Convergence and stability of the tr-rGMCA. Ajouter un paragraphe ?526

4. Numerical experiments: algorithms for comparison and performance criteria. We527
compare tr-rGMCA with standard robust BSS methods. These methods as well as the different528
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criteria used to compare the algorithms are presented in this section. The different strategies529
are compared first with simulated data allowing Monte-Carlo simulations (40 runs for each530
varying parameter). Last, they are compared on realistic simulated data from the ESA-Planck531
mission in the presence of additional point-sources emissions which act as outliers.532

4.1. Algorithms for the comparison. Only few methods presented in the literature can533
handle the considered problem. Most of these methods require additional assumptions, which534
will not be always valid in the following experiments. In this section, we present the selected535
strategies for the comparison explaining in which experiments they will be used.536

537
Proposed optimization strategy. In order to highlight the robustness of the proposed mini-538

mization strategy, we will compare it with the following other implementations:539
• Oracle with A known. In this case, we assume that A is known, and we separate

O from AS using the morphological diversity between the two components:

argmin
O,S

1
2 ‖X−AS−O‖22 +

∥∥∥Λ� SΦT
S

∥∥∥
1

+
∥∥∥Υ�OΦT

O

∥∥∥
2,1
.

The difference between these results and the ones of tr-rGMCA illustrates the loss of540
accuracy led by the blind unmixing process.541
• The PALM procedure only. In order to underline the advantage of using the542

initialization procedure, we also minimize 7 using only the refinement step in Alg.1.543
Since a reweighted procedure is implemented in tr-rGMCA, the refinement procedure544
is run three times: first, it is initialized with null S and O and the matrix A used545
for tr-rGMCA1, and for the second and third times, the regularization parameters546
are updated given the current estimates of S and O with the weighting procedure eq.547
(16)), see Alg.??.

Algorithm 3 Reweighted PALM
1: procedure Reweighted PALM(X, Ã,ΦS,ΦS)
2: Initialize S̃(k=0) ← 0, Ã(k=0) ← Ã and Õ(k=0) ← 0.
3: for k < 3 do . Reweighting Procedure
4: S̃(k), Ã(k), Õ(k) ← PALM(X, S̃(k−1),ΦS, Õ(k−1),ΦO, Ã(k−1),Λ,Υ)
5: Update Λ and Υ for the reweighting procedure according to (16)

return Ã(2), S̃2), Õ(2).

548
• The warm-up step only. The intermediate performances, obtained by the initial-549

ization step only, will be also displayed. A difference between these results and the550
PALM procedure would bring out the robustness of this initialization step, and the551
dissimilarity with the all process tr-rGMCA would show the gain of using a more pre-552
cise refinement step.553

554

1The mixing matrix is initialized with PCA on X, for all algorithms
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Methods used for the comparisons.555
• The combination Outlier Pursuit (OP)+GMCA. The outliers are first esti-556

mated by applying the Outlier Pursuit algorithm [49] on XΦT
O, eq.17. Then the557

algorithm GMCA [5] is applied on the denoised observations
(
X− Õ

)
, eq.18:558

i)Õ, L̃← argmin
O,L:X=O+L

∥∥∥LΦT
O

∥∥∥
∗

+ λ
∥∥∥OΦT

O

∥∥∥
2,1

(17)559

ii)Ã, S̃← minimize
A,S

1
2

∥∥∥L̃−AS
∥∥∥2

2
+
∥∥∥Λ� SΦT

S

∥∥∥
1

(18)560
561

This strategy requires the term AS to be low-rank, and thus, it will only be used562
when m > n. Given that the value of λ proposed in [49] does not return satisfactory563
results, we choose to tune its value: we select the best Ã among the ones obtained564
from GMCA after the Outlier Pursuit for which we set the parameter λ between 1

5
√
t

565

and 10√
t

with a step-size of 1
5
√
t
.566

• The rNMF algorithm [21]. This method was initially proposed for robust unmixing
of terrestrial hyperspectral images. It assumes that the components are non-negative,
and that the sources samples lie in the simplex with almost pure pixels. This last
assumption is not valid in the following experiments, and we will instead assume that
the columns of A are normalized:

Ã, S̃, Õ← minimize
A≥0,S≥0,O≥0

1
2 ‖X−AS−O‖22 + β ‖O‖2,1 + χY:‖Y‖2≤1(A).

This method will be used in the experiments of Section 6, in which the components567
are all non-negative and the outliers sparse in the direct domain ΦO = I. All the568
conditions required for the rNMF to be efficient will not be valid.569
• ICA based on a β divergence minimization [32] 2. This ICA-based method

looks for an unmixing matrix B ∈ Rn×n such that the corresponding sources S̃ = BX
are mutually independent. The independence of the sources S̃ is measured with the
β-divergence Dβ between the product of their marginal

∏n
i=1 pS(S̃i) and their joint

distribution pS(S̃), which is null if and only if the sources are independent. The cost
function to be minimized is given by:

minimize
B:S̃=BX

Dβ(pS(S̃)‖
n∏
i=1

pS(S̃i))

We will only use this method when m = n since otherwise, a dimension reduction570
technique is needed (and is challenging in the presence of outliers). Besides, it only571
returns A, and thus, does not perform the separation between the outliers and the572
sources contribution.573
In contrast to the other methods, a strong morphological diversity makes the unmixing574
more challenging for this method. Indeed, it should be performed in a domain in which575
few samples are corrupted, and so in ΦO. However, if the morphological diversity is576

2python implementation from [23]
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strong, then the expansion coefficients of the sources in ΦO are highly non-sparse577
(see for example fig.3(c), the sources coefficients in ΦO almost follow a Gaussian578
distribution): this is difficult to handle for ICA-based methods. On the other hand,579
if ΦS and ΦO are not highly incoherent, then the outliers are likely to not corrupt all580
the samples in ΦS. It is then preferable to perform the minimization in ΦS since the581
sources are better represented and the outliers do not corrupt all samples.582
Last, setting the value of β is challenging in practice. We select the best A for the 20583
preselected values of β, starting from 10−4 to 0.85.584
• GMCA [5]. This a standard sparse BSS algorithm. It will be performed on XΦT

S . Its585
results illustrate the sensitivity of the standard (non-robust) methods to the outliers.586
• The combination MCA [20]+GMCA. Similarly to the combination OP+GMCA,587

the outliers are first discarded from the observations with MCA, Problem 19, and the588
unmixing is then performed on the cleaned data with GMCA 20:589

∀i = 1...m, Õi, L̃i ← minimize
Oi,Li

1
2 ‖Xi − Li −Oi‖22 + α

∥∥∥LiΦT
S

∥∥∥
0

+ ν
∥∥∥OiΦ

T
O

∥∥∥
0

(19)590

Ã, S̃← minimize
A,S

1
2

∥∥∥(X− Õ)−AS
∥∥∥2

2
+
∥∥∥Λ� SΦT

S

∥∥∥
1

+ χY:‖Y‖2≤1(A)(20)591
592

Instead of using the spectral diversity such as done by the OP algorithm, this combi-593
nation only exploits the morphological diversity to discard the outliers. It is indeed594
possible to separate AS from O, without regarding the ratio n

m , as long as AS is595
sparse in ΦS. We point out that this hypothesis can be valid only in the presence596
of a small number of sources. Besides, this approach does not take into account the597
clustered, structural aspect of the product AS.598

4.2. Performance criteria. In this section, we present the different criteria used to com-599
pare the algorithms. In the context of robust BSS, they should assess the unmixing of the600
sources (recovery of A), the separation between the outliers and the sources as well as the601
reliability of the separation (especially because the problem is not convex).602

603
Unmixing.604

• For each recovered Ã, the global quantity ∆A = −10 log 10
(
‖Ã†A−I‖1

n2

)
is computed605

[5]. A large value denotes a good estimation of A.606
• For each recovered Ã, the maximal angle between the estimated and actual columns607

of A is computed: maxj=1..n arccos〈Ãj ,Aj〉 (in degree).608
For every considered parameter, we sum the number of runs for which an algorithm609
has returned a mixing matrix whose maximal angle is smaller than 5 degrees. This610
quantity, normalized to 1, provides a good indicator of the reliability of the algorithms.611

612
Estimation of the sources and outliers.613
• In [48], the authors decompose each retrieved audio source s as the sum:

s = starget + sinterference + snoise + sartifacts.
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A similar decomposition can be employed for more general signals and images [38],614
where starget denotes the projection of the retrieved source on the sought-after one,615
sinterference the residue due to the interferences with the other sources, snoise accounts616
for the part due to the presence of noise (the outliers in our case), and last, sartifacts,617
represents the remaining artifacts (coming from the leakages from S towards the es-618
timated outliers, and the bias). This decomposition is used to derive the following619
indicators [48]:620

- Signal to Distortion Ratio SDR(s) = 20 log
(

‖starget‖2
‖sinterference+snoise+sartifacts‖2

)
.621

- Signal to Interference Ratio SIR(s) = 20 log
(

‖starget‖2
‖sinterference‖2

)
.622

- Signal to Noise Ratio SNR(s) = 20 log
(
‖starget+sinterference‖2

‖snoise‖2

)
.623

- Signal to Artifact Ratio SAR(s) = 20 log
(
‖starget+sinterference+snoise‖2

‖sartifacts‖2

)
.624

In Section 5, we will only display the median over the n sources of the SDR: it pro-625
vides a global criterion on the precision of the source estimation. In Section 6, the626
medians as well as the minima for the n sources of the SDR, SAR, SIR and SNR will627
be displayed, so as to describe more precisely the obtained estimations.628

629
• The sources can be erroneously estimated whereas the outliers and AS are correctly630

estimated (for the Frobenius norm). To measure the quality of the separation between631
AS and the outliers, the two components of interest for MCA and OP, we also com-632

pute the following metric for the outliers: OSE = −10 log ‖Õ−O‖2
‖O‖2

, where O denotes633

the initial outliers, Õ the estimated ones.634
635

5. 1D Simulations. We start by comparing the different strategies on 1D data allowing636
Monte-Carlo simulation, with varying parameters. For this purpose, we will generate two637
kinds of data sets which are described in the next part.638

5.1. Dataset.639
• Dataset 1: we consider n sources whose expansion coefficients are exactly sparse in640

DCT. They are drawn from a Bernoulli-Gaussian law, with an activation parameter641
of 5% and a standard deviation of 100. These sources are mixed into m observations,642
which are corrupted by outliers and an additive Gaussian noise. The outliers are643
sparse in the direct domain (ΦO = I). The support of the active columns of O follow644
a Bernoulli law, with varying activation rates fig.5. The amplitude of the active entries645
are drawn from a centered Gaussian distribution, with a standard deviation equal to646
100× 8

m (so that for the two considered numbers of observations m = 8 and m = 40, it647
will remain quite constant relatively to the amplitude of AS). The number of samples648
is fixed to 4096. For the two data-sets, the entries of the mixing matrix are drawn649
from a Gaussian distribution and the columns of A are then normalized for the `2650
norm. Besides, A is generated so as to have a condition number smaller than 100.651
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• Dataset 2: this is a more realistic setting, with a same number of samples t = 4096.652
The sources are first generated from a Bernoulli Gaussian law in the direct domain,653
with an activation rate of 2% and a standard deviation of 100. The sources are then654
convolved with a Laplacian kernel (FWHM equal to 20), fig.8. They can be sparsely655
represented using redundant 1D wavelets [42], fig.4c. The outliers are generated so656
as to correspond to a high frequency structured noise- approximately column sparse657
in the DCT domain. First, we generated a 1 × 4096 vector whose entries are drawn658
from a generalized Gaussian distribution, centered, with an unit variance and scale659
parameter 0.1. In order to obtain a high frequency texture, the amplitude of the DCT660
coefficients are scaled (from 10−4 for the lowest frequency to 1 for the highest one, with661
a logarithmic range), and the lowest 500 coefficients are manually set to 0. Last, this662
vector is multiplied (dot-wise) by a matrix generated from a Gaussian distribution,663
whose columns are normalized for the `2 norm, so that OΦT

O is approximately column664
sparse, fig.4d.665

The first dataset is almost ideal since the expansion coefficients are exactly sparse and the666
mutual coherence between the DCT and the direct domain is very low - see for instance fig.667
3 which based on this setting. On the other hand, the second one is more realistic: the ex-668
pansion coefficients are approximately sparse and the mutual coherence between the wavelets669
and the DCT is larger than the one between DCT and the direct domain, fig.4.670

671

5.2. 1D Monte-Carlo simulations - Optimization strategy. In this first set of experi-672
ments using the first data-setting for 8 sources and 8 observations, we consider an easy setting673
to compare different optimization strategies which can be used to minimize (7). The SNR for674
the additive Gaussian noise is set to 30dB.675

676
First, one can notice in Fig.5 that in the presence of very few outliers (percentage of cor-677

rupted columns equal to 1%), the different strategies perform similarly in term of precision678
and reliability. Moreover, their corresponding values of the SDR Fig.5 is also close to the one679
obtained by the oracle: the unmixing task does not hinder the estimation of the sources. How-680
ever, in the presence of numerous outliers, some disparities appear: the different strategies do681
not perform similarly and as well as the oracle. The PALM implementation (refinement step682
of tr-rGMCA) is more precise than the initialization step for the unmixing (∆A has larger683
values Fig.5), but it is not as robust: except when there are only very few outliers, it can-684
not recover A for all the runs, contrary to the initialization step (with a percentage smaller685
than 30%) Fig.5. However, adding the refinement step after the initialization step (the pro-686
posed strategy for tr-rGMCA) allows a significant gain in term of precision: all the values of687
the performance indicators are higher with tr-rGMCA than with the initialization step only.688
Moreover, the SDR and the error for the outliers Fig.5 obtained with tr-rGMCA are very689
closed to the ones of the oracle: the unmixing of tr-rGMCA is robust and does not deteriorate690
the estimation of the sources while the percentage of corrupted columns is smaller than 30%.691
On the overall, tr-rGMCA is almost not influenced by the percentage of corrupted columns692
while this one is smaller than 30%. However it quickly fails, similarly to the oracle, in the693
presence of a larger percentage. Even if the dictionary chosen for O is not the most adapted694
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Figure 4: Scatter plots of two expansion coefficients of the sources (left), and illustrations of
the expansion coefficients of the outliers (right). The top row corresponds to the first data-set,
with exactly sparse coefficients, and the second row, to the second data-set, with compressible
signals.

one (O does not have a very sparse representation), the separation between the outliers and695
the source contribution can be good as long as the components have sparser representation in696
their associated dictionary than in the other one.697
These results support the proposed strategy used for tr-rGMCA. In the following, only the698
results obtained by the oracle and tr-rGMCA will be displayed.699

700

5.3. 1D Monte-Carlo simulations - Comparison in the determined case. Only few meth-701
ods able to handle the presence of outliers in the determined case are present in the literature.702
We propose to compare these methods with tr-rGMCA in this challenging setting.703

704
Influence of the percentage of corrupted columns - 2 Sources. In this experiment, the data705

are generated with the first data-set with 2 sources and 2 observations. The SNR, for the706
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Figure 5: Performance indicators for a varying percentage of corrupted columns in the deter-
mined case for different optimization strategies.

Gaussian noise, is set to 60dB. In the determined setting, one can envisage using the minimiza-
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Figure 6: Performance indicators for a varying percentage of corrupted columns in the deter-
mined case for 2 sources.

707
tion of the β-divergence, and the combination MCA+GMCA (which can also be used in the708
over-determined setting). The results obtained by the minimization of the β-divergence, fig.6709
are better than the ones of GMCA but not as reliable or as precise as the ones of tr-rGMCA710
or MCA+GMCA. However, we explained in the presentation of the different methods used711
for the experiments, that this setting is challenging for the minimization of the β-divergence.712
Besides, the parameter β needs to be finely tuned, and we only tried 20 different values for713
this parameter.714
The second comment that can be made regarding fig.6, is on the impressive performances of715
the combination MCA+GMCA which performs very similarly to tr-rGMCA and the so called716
oracle. We will see in the next experiments that the combination MCA+GMCA is nonetheless717
not able to handle the presence of a larger number of sources.718

719
Influence of the amplitude of the outliers - 8 Sources . The data are generated from the720

second data-setting. We consider that 8 sources have been mixed into 8 observations. The721
SNR for the Gaussian noise is set to 50dB. In this experiment, we observe the influence of722
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the amplitude of the outliers. For this purpose, we define the SOR (signal to outlier ratio),723

similarly to the SNR: SOR = 20 log ‖AS‖2
‖O‖2

. The support of the outliers remains constant for724
a given run, and only their amplitude is modified, by setting the SOR according to the value725
of the x-axis of Fig.7.726

On the overall, the values of the different performance indicators are smaller than with
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Figure 7: Performance indicators for a varying amplitude of the outliers in the determined
case for 8 sources.

727
the first data-set: the second data-set, more realistic, is indeed more complicated. More728
specifically, one can note the significant gap for the SDR between the oracle and the other729
methods fig.7, whereas the outlier estimations have a similar precision fig.7: the additional730
unmixing clearly affects the results. The discrepancy between the minimization of the β-731
divergence and tr-rGMCA is reduced in this setting: the minimization of the β-divergence is732
performed in ΦS, which is favorable to the unmixing.733
With this data set and this number of sources, MCA fails to separate the outliers from the734
source contributions, and the consecutive GMCA returns erroneous solutions. It fails because735
the component AS is not sparse enough in ΦS (the number of sources is too large), and that736
it does not take into account the structure, the clustered aspect of the product AS. This is737
illustrated in Fig.8: the estimation of AS obtained by MCA+GMCA is fair, but the resulting738
sources are clearly not correctly estimated. On the other side, the proposed tr-rGMCA is739
robust to outliers having a large amplitude, at least, much more than the standard BSS740
method GMCA.741

5.4. 1D Monte-Carlo simulations - Comparison in the over-determined case. In Sec-742
tion 2, we underline the importance of the ratio m

n in robust BSS. To illustrate it, we vary743
the number of observations, for 6 sources, with the two data-settings. The SNR is fixed to744
50 dB and the SOR to −10dB for the first data set and 10dB for the second. Besides, the745
condition number of A, which plays a crucial role in robust BSS, is very likely to decrease746
with an increasing m. In order to limit the influence of this parameter, the condition number747
of A is limited to 5.748

749
First data-set. We start with the first data-set. The results obtained by the different meth-750

ods are improved if m� n, fig.9. Given that the outliers in ΦS are broadly distributed, they751
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Figure 8: Illustrations of the estimated signals for a SOR equal to −10dB. On the left,
restoration of the first observation, on the right, estimation of the first source. In blue, the
initial signals, in black, the ones recovered by tr-rGMCA and in green by the combination
MCA+GMCA.
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Figure 9: Performance indicators for a varying number of observations, m, for 6 sources for
the first data set

behave similarly to an additive Gaussian noise with a large variance. Most of the methods752
used for the comparison used GMCA which is robust to the presence of a large Gaussian noise753
thanks to the thresholding operator whose threshold value varies according to the current754
noise level. However, this large threshold value leads to the presence of artifacts and biased755
source coefficients. When the number of observations becomes large, the projection of outliers756
in the span of A has a smaller energy, and so, the corresponding apparent noise level becomes757
also smaller: the artifacts become also smaller, and both A and S are more accurate. That is758
why, most of the methods are able to estimate A, and S fairly when m� n.759
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It can also be noticed that even if m is close to n, the combination Outlier Pursuit (OP) +760
GMCA is able to retrieve A, while GMCA alone cannot. The sources and the outliers are not761
precisely retrieved, but the results are the second best after tr-rGMCA. With the strong mor-762
phological diversity, the outliers are very sparse in ΦO while the source contribution is very763
dense: sparsity is discriminative enough, and OP can discard a part of the outliers. Removing764
the largest outlier contribution is sufficient, since this data set is very favorable to GMCA.765

766
Second data-set. The different methods are on the whole less performing with the second767

data set, even if an improvement is also noticeable if m � n, especially for the combination768
OP+GMCA fig.10. The proposed tr-rGMCA is the only method able to estimate precisely
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Figure 10: Performance indicators for a varying number of observations, m, for 6 sources.

769
and reliably the three variables, including when the number of sources is close to the number770
of observations. The combination MCA+GMCA struggles to solve the problem because the771
number of sources is too large (AS is not sparse enough). The algorithm Outlier Pursuit (OP)772
cannot identify precisely the outliers and the term AS, but can discard efficiently the part of773
the outliers that are detrimental for the unmixing (the results obtained for A are fair).774

775

6. Application to simulated astrophysical data. In the field of astrophysics, BSS plays776
a central role to analyse the data from now widespread multi-wavelength instruments. More777
particularly, it made possible the estimation of high accuracy estimates of the Cosmologi-778
cal Microwave Background (CMB) from multi-wavelength microwave Planck data [7, 30]. In779
this context, each observation measures a linear combination of various components of our780
Universe. These emissions are essentially dominated by galactic components: the free-free781
emission, galactic synchrotron emission, spinning dust and thermal dust emissions – see [18]782
for more details about astrophysical microwave emissions.783
However, the presence of point-source emissions and spectral variabilities of some of the galac-784
tic foreground emissions are not precisely described by the standard linear mixture model.785
That is why most of the component separation methods only seek for a partial CMB map,786
in which the galactic center and the point source emissions of known locations are masked.787
Since each point source has a specific spectral signature, they cannot be modeled as indi-788
vidual components and are rather considered as outliers. We therefore propose applying the789
tr-rGMCA algorithm to robustly estimate the galactic emissions (once the CMB is estimated790
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and its contribution discarded from the observations) in the presence of unknown point source791
emissions.792

6.1. Simulated data. In the following, we simulate 20 realistic CMB-free observations793
X ∈ R20×16384 (each image of size 128 × 128 is vectorized) in the microwave range at the794
proximity of the galactic center, which have been produced using the Planck Sky Model [18].795
These observations correspond to the mixture of 4 galactic emissions, namely, synchrotron,796
spin dust, free-free, and thermal dust, so that S ∈ R4×16384. Since the rank of AS is 4 and the797
number of observations is fixed to 20, it will make sense to apply as well separation methods798
that assume the low-rankness of the sources’ contribution. The signal-to-noise ratio (for the799
Gaussian noise N) is set to 60 dB. Ten extra point source emissions with different emission800
laws are added, O ∈ R20×16384: O is composed of 10 different active columns {tk}k=1..10.801
These point sources, modeled as Diracs, are then convolved with a same Gaussian kernel802
h ∈ R1×16384 with varying width w, accounting for the point spread function (beam) of the803
instrument fig.11: Xi = AiS + h ∗ Oi + Ni. In the following, we will note H ~ O, this804
observation-wise convolution.805

(a) Synchrotron emission. (b) Spin dust emission. (c) Free-free emission. (d) Thermal dust emission.
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Figure 11: Top row: the 4 initial emissions. Second row: (left) normalized spectra of the
emissions (i.e. columns of A and active columns of O), and then illustrations of the first
observation and corresponding outliers, for a width of the kernel equal to 1.

806

6.2. Upgrades of tr-rGMCA. In contrast to the tr-rGMCA algorithm we used so far,807
additional properties can be accounted for in the separation:808
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• Non-negativity of the mixing matrix and the sources. In this application, all the809
variables are non-negative. Taking into account non-negativity of S and O is par-810
ticularly efficient to limit the leakages and artifacts between the two contributions.811
Non-negativity is constrained in the version of the tr-rGMCA algorithm that we used812
in the next experiments.813
• Convolutive model for the point sources. The outliers are sparse in the direct domain.814

However, each one is perfectly described as the convolution of the instrument PSF and815
a Dirac with unknown position and amplitude. Therefore, the tr-rGMCA algorithm is816
extended so as to account for this convolutive model. We underline that even if the817
outliers are sparse in the direct domain, the morphological diversity occurs between818
the Gaussian kernel and ΦS. In the following, by an abuse of notation, we designate by819
ΦO the set of all possible shifted Gaussian kernels: the observed point source emissions820
are sparsely represented in ΦO - once deconvolved with the Gaussian kernel.821

Consequently, we slightly modify the cost function of tr-rGMCA as follows:822

(21) minimize
A,S≥0,O≥0

1
2 ‖X−AS−H ~ O‖22 + ‖Υ �O‖2,1 +

∥∥∥Λ� SΦT
S

∥∥∥
1

+ χY:‖Yk‖2≤1,∀k (A) .823

The non-negativity constraints and the deconvolution are taken into account during the joint824
estimation of O and S of the warm-up procedure as well as the refinement step. This does not825
change the structure of the algorithm and the BSS method that is used to estimate jointly A826
and S (AMCA). Only the updates of O and S are changed during their joint estimation in827
the warm-up and the PALM algorithm.828
The cost function of the subproblem associated with the update of O is composed of one829
differentiable term, with a Lipschitz gradient, and a regularization term (non-negativity and830
`2,1 norm) whose proximal operator has a closed form: the update of O can be efficiently831
tackled using the FB algorithm.832
On the other hand, the minimization problem associated with the update of S is also composed833
of a differentiable term with Lipschitz gradient, and two regularization terms (non-negativity834
in the direct domain and sparsity in a transformed domain such as in [38]), having both835
explicit proximal operators. This subproblem is well handled by the Generalized Forward836
Backward Splitting algorithm [37].837

6.3. Experiments.838

6.3.1. A challenging setting. First, we underline that the proposed problem is particu-839
larly difficult to tackle:840

• It has first been noticed that the large scales of these astrophysical sources are par-841
tially correlated [4], which dramatically hampers the performances of standard BSS.842
This is precisely for this type of sources that the AMCA algorithm [4] has been de-843
signed. Therefore, the AMCA algorithm will be used in the warm-up stage to provide844
robustness with respect to these partially correlations.845

846
• Some features of the thermal dust emission 11d have morphologies that are close to847

the one of the outliers 1b. The dictionary ΦS should be chosen so that all the sources848
are well represented, and also so that ΦO and ΦS are incoherent. More precisely,849
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the astrophysical sources admit an approximately sparse representation in the wavelet850
domain. The spurious outliers are modeled as the convolution of Dirac functions with851
the point spread function of the instrument (PSF). More precisely, the convolution852

kernel is modeled as a Gaussian function exp−
((x−x0)2+(y−y0)2))

w , where (x, y) denotes853
the position of the pixel , and (x0, y0), the pixel in the center of the image (the854
kernels are then normalized). In the following, the amplitude of O is fixed from one855
experiment to another (and so their energy increases with w). Consequently, this856
setting makes the particular choice of wavelet functions critical since it will largely857
impact the coherence between the ΦS and ΦO. On the one hand, highly oscillating858
wavelet functions (i.e. with a large number of vanishing moments) will yield more859
incoherent dictionaries but at the cost of slightly less sparse representations for the860
sources. On the other hand, more localized wavelet functions are likely to provide861
better sparse representations but at the cost of lowering the morphological diversity862
between the dictionaries. Therefore, in this particular robust BSS problem, one needs863
to make a trade-off between the compressibility of the sparse representations, which864
is essential for source separation, and the morphological diversity between ΦS and865
ΦO, which is of paramount importance for the separation of the sources and the866
outliers. In the next experiments, ΦS will be chosen as undecimated Daubechies867
wavelet transforms with varying vanishing moments.868

6.3.2. Influence of the dictionary ΦS. To further highlight the role played by the mutual869
coherence in the proposed tr-rGMCA algorithm, we propose to investigate the influence of the870
vanishing moments of the Daubechies wavelet functions used for ΦS. We only compare the871
different methods that are influenced by the choice of ΦS: the so-called oracle, tr-rGMCA,872
AMCA performed on X and X−O (the combination MCA+AMCA performs so poorly that873
the influence of ΦS cannot be commented, and the influence of ΦS on OP+AMCA can be874
deduced by the performances of AMCA).875

876

Vanishing Moments: 4 8 12 16 20
‖SΦT

S‖1
‖SΦT

S‖2
143.36 142.18 142.48 143.06 143.64

‖HΦT
S‖1

‖HΦT
S‖2

21.97 31.48 38.42 45.13 52.19

Table 2: Influence of the number of vanishing moments on the representation of S and the
outliers.

First, the choice of ΦS does not significantly impact the AMCA algorithm that is per-877
formed by X−O fig.12: the representation coefficients of the sources are sufficiently sparse,878

for the different dictionaries, to perform the unmixing (the ratio ‖SΦ
T
S‖1

‖SΦT
S‖2

, which somehow879

measures the level of sparsity of the sources in ΦS, does not significantly change in table 2).880
However, one of the sources, the thermal dust emission is not very accurately recovered: it is881
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Figure 12: Performance indicators for a varying number of vanishing moments.

hampered by the correlations between sources and as well as their spectra, which are displayed882
in fig.11.883
The influence of ΦS for the oracle and tr-rGMCA are similar. The SIR and SAR decrease884
when the number of vanishing moments increases. Indeed, the largest scales of the astro-885
physical sources are partially correlated. Therefore, the most discriminative coefficients in the886
wavelet domain are located in the finest wavelet scales, which is however the most coherent887
with ΦO. This is especially true when the number of vanishing moments is low. On the other888
hand, the SNR values, especially the minimal SNR, increase: the outliers do not leak towards889
the estimated sources when the number of vanishing moment is large enough (the outliers are890
less sparsely represented in ΦS, table 2).891
In the following, we will make use of the Daubechies wavelets with 20 vanishing moments so892
as to recover all the sources fairly while providing an improved separation with respect to the893
outliers.894

6.3.3. Influence of the kernel width. In this experiment, ΦS is fixed and the width of895
the Gaussian kernel w, which also tends to alter the coherence between ΦS and ΦO and as896
well the morphological diversity between O and S, is varying. The kernel width w varies in897
Fig. 13.898
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Figure 13: Performance indicators for a varying variance of the Gaussian kernel.

Variance - parameter w: 0.1 0.5 1 1.5 2
‖SΦT

O‖1
‖SΦT

O‖2
* 105.7 104.5 96.9 79.6 76.9

Table 3: Influence of the width of the Gaussian kernel on the representation of S. * the
sources are artificially deconvolved with H.

As illustrated in fig.13, all the methods are impacted by the width of the kernel (i.e. the899
morphology of the outliers).900
First, we recall that the unmixing is very difficult when w is small: the outliers contaminate901
the high frequency content of the sources, which is discriminant for the unmixing (the large902
scales of the sources are correlated). That is why the results are on the overall improved when903
w increases but is small.904
On the other hand, we can notice that the methods are hindered by a large w. In that case,905
the “low-frequency ”(similar to the kernel) content of the sources, which contains most of906
their energy, become highly sparse in ΦO tab.3: they leak towards the estimated outliers.907
Consequently, the SAR fig.13 decreases as w increases. This is especially true for the thermal908
dust emission (associated with the minimal SAR), whose singularities have a morphology very909
similar to the one of the kernel. The leakages are also reinforced by the fact that the large910
scales of the sources are correlated: the `2,1 penalization in ΦO is less expensive than the `1 in911
ΦS for the correlations. Besides, the energy of the outliers on the coarse-scale of ΦS increases,912
but is not thresholded (because it is not sparse): this is clearly hampering the SNR when w913
is large.914
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Figure 14: Estimated sources with tr-rGMCA (top row), OP+AMCA (second row) and rNMF
(third row) with w = 1 and 20 vanishing moments for the wavelets.

Only the combination OP+AMCA is able to outperform tr-rGMCA in term of highest SDR,915
while the kernel is not too large. However, only tr-rGMCA is able to fairly recover the thermal916
dust emission, as well as AMCA performed on X−O. We underline that the parameter of OP917
was manually tuned knowing the ground truth, and there is no doubt that if the parameters918
involved in tr-rGMCA were similarly tuned, its performances would be, at least, similar to919
the ones of OP+AMCA. The rNMF method, even if it is initialized from the ground truth920
A, was not able to correctly unmix the sources and separate the outliers from the source921
contribution: the fact that the sources samples do not lie in the simplex makes this method922
inefficient in this experiment since O cannot be separated from the AS.923
Illustrative results are provided in fig.14 and 15. Outlier residuals are present in the sources924
estimated by rNMF and OP+AMCA, fig.14. On the other hand, the highest frequency contri-925
butions of the sources is not correctly recovered by tr-rGMCA (the SAR are quite low fig.14),926
and have leaked towards the estimated outliers. The spectra recovered by tr-rGMCA are the927
most precise, in particular the other methods have fail to recover the thermal dust spectrum928
precisely fig.15.929
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Figure 15: Estimated spectra, with w = 1 and 20 vanishing moments for the wavelets. Red
lines: estimated spectra, black dashed lines: ground truth.

Code. Following the philosophy of reproducible research [10], a python implementation of930
the algorithms introduced in this article will be available at931
https://www.cosmostat.org/software/gmcalab.932

7. Conclusion. In this article, we introduced a new solution for the BSS problem in the933
presence of outliers that allows a robust estimation of the mixing matrix and an accurate934
separation of the sources and the outliers. The proposed tr-rGMCA algorithm estimates935
jointly the mixing matrix, the sources and the outliers so as to simultaneously unmix the936
sources and separate the outliers from the source contribution. Building upon sparse modeling,937
it first exploits the morpho-spectral diversity between the outliers and source contribution to938
distinguish between them, including in the challenging determined setting. The tr-rGMCA939
algorithm builds upon a two-stage optimization procedure: i) a warm-up stage based on940
heuristics that yield a reliable algorithm with enhanced robustness and ii) a refinement step941
based on the PALM algorithm that provably converges to a stationary point to the problem.942
Numerical experiments have been carried out on Monte-Carlo simulations which show the943
robustness of the proposed approach which provides state-of-the-art results. Future work944
will focus on extending the proposed approach to detect and estimate spectral variabilities in945
hyperspectral imaging.946

Acknowledgments. This work is supported by the European Community through the947
grants PHySIS (contract no. 640174) and LENA (ERC StG no. 678282) within the H2020948
Framework Program.949

Appendix A. Proximal Operators. Let f : Rp×q → ]−∞,+∞], where p, q ∈ N, be950
a proper, lower semi-continuous and convex function. Its proximal operator is given by951
proxf : Rp×q → Rp×q, x 7→ argminy 1

2 ‖x− y‖
2
2 + f (y) [16].952

In the following table, we present the different functions that are used in this article and their953
associated proximal operators.954

955
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Function Proximal operator
χY:‖Y‖2≤1 (X) X′ : (X′)i = Xi

max(1,‖Xi‖2)∀i [16]
‖Λ�X‖1 SΛ(X) [16]∥∥Λ�XΦT

S
∥∥

1 SΛ
(
XΦT

S
)
ΦS [43] (exact if ΦS is orthonormal and good approximation

if transformation with diagonally dominant Gram matrix)
‖Υ �X‖2,1 X′ : (X′)i = Xi ×

(
1− Υ i

‖(X)i‖2

)
+
,∀i, [28].∥∥Υ �XΦT

O
∥∥

2,1 X′ΦO : (X′)i = (XΦT
O)i ×

(
1− Υ i

‖(XΦT
O)i‖2

)
+
,∀i (exact if ΦO is or-

thonormal and good approximation if transformation with diagonally
dominant Gram matrix)

‖Υ �X‖2,1+χY:Y≥0 (X) X′ : (X′)i = Xi
+ ×

(
1− Υ i

‖(X)i
+‖2

)
+
,∀i , [51, Theorem 1].

956

Similarly to
∥∥∥Λ.ΦT

S

∥∥∥
1
, we do not find a closed form formulation for

∥∥∥Υ.ΦT
O

∥∥∥
2,1

when ΦO957

is not orthonormal. In the spirit of the approximation made for the `1 norm, we propose958
to threshold the columns of the expansion coefficients, and then come back to the domain959
of observations. In practice, these approximations made to handle sparsity in a transformed960
domain give better results than the synthesis formulation and supports the use of these ap-961
proximations.962

963

REFERENCES964

[1] Y. Altmann, S. McLaughlin, and A. Hero, Robust Linear Spectral Unmixing Using965
Anomaly Detection, IEEE Transactions on Computational Imaging, 1 (2015), pp. 74–85,966
doi:10.1109/TCI.2015.2455411.967

[2] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems,968
SIAM Journal on Imaging Sciences, 2 (2009), pp. 183–202.969

[3] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot,970
Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches,971
Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 5 (2012),972
pp. 354–379.973

[4] J. Bobin, J. Rapin, A. Larue, and J.-L. Starck, Sparsity and Adaptivity for the Blind Separation974
of Partially Correlated Sources, Signal Processing, IEEE Transactions on, 63 (2015), pp. 1199–1213,975
doi:10.1109/TSP.2015.2391071.976

[5] J. Bobin, J.-L. Starck, J. Fadili, and Y. Moudden, Sparsity and morphological diversity in blind977
source separation, Image Processing, IEEE Transactions on, 16 (2007), pp. 2662–2674.978

[6] J. Bobin, J.-L. Starck, J. Fadili, Y. Moudden, and D. Donoho, Morphological component analysis:979
An adaptive thresholding strategy, IEEE Trans. On Image Processing, 16 (2007), pp. 2675 – 2681.980

[7] J. Bobin, F. Sureau, J.-L. Starck, A. Rassat, and P. Paykari, Joint Planck and WMAP CMB981
map reconstruction, A&A, 563 (2014).982

[8] J. Bolte, S. Sabach, and M. Teboulle, Proximal alternating linearized minimization for nonconvex983
and nonsmooth problems, Mathematical Programming, 146 (2014), pp. 459–494.984

[9] A. M. Bruckstein, D. L. Donoho, and M. Elad, From Sparse Solutions of Systems of Equations to985
Sparse Modeling of Signals and Images, SIAM Review, 51 (2009), pp. 34–81.986

[10] J. B. Buckheit and D. L. Donoho, Wavelets and Statistics, Springer New York, 1995, ch. WaveLab987
and Reproducible Research, pp. 55–81.988

[11] E. J. Candès, X. Li, Y. Ma, and J. Wright, Robust principal component analysis?, Journal of the989
ACM (JACM), 58 (2011), p. 11.990

This manuscript is for review purposes only.

http://dx.doi.org/10.1109/TCI.2015.2455411
http://dx.doi.org/10.1109/TSP.2015.2391071


36 C. CHENOT, AND J. BOBIN

[12] E. J. Candes, M. B. Wakin, and S. P. Boyd, Enhancing sparsity by reweighted `1 minimization,991
Journal of Fourier analysis and applications, 14 (2008), pp. 877–905.992

[13] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky, Rank-sparsity in-993
coherence for matrix decomposition, SIAM Journal on Optimization, 21 (2011), pp. 572–596,994
doi:10.1137/090761793.995

[14] C. Chenot and J. Bobin, Blind separation of sparse sources in the presence of outliers, Signal Processing,996
138 (2017), pp. 233 – 243.997

[15] C. Chenot and J. Bobin, Bss with corrupted data in transformed domains, in Latent Variable Analysis998
and Signal Separation: 13th International Conference, LVA/ICA 2017, Grenoble, France, February999
21-23, 2017, Proceedings, 2017, pp. 542–552.1000

[16] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale1001
Modeling & Simulation, 4 (2005), pp. 1168–1200.1002

[17] P. Comon and C. Jutten, Handbook of Blind Source Separation: Independent component analysis and1003
applications, Academic press, 2010.1004

[18] J. Delabrouille and et al., The pre-launch Planck Sky Model: a model of sky emission at submillimetre1005
to centimetre wavelengths, Astronomy & Astrophysics, 553 (2013), A96, p. A96, doi:10.1051/0004-1006
6361/201220019, arXiv:1207.3675.1007

[19] D. L. Donoho, M. Elad, and V. N. Temlyakov, Stable recovery of sparse overcomplete representations1008
in the presence of noise, IEEE Transactions on information theory, 52 (2006), pp. 6–18.1009

[20] M. Elad, J.-L. Starck, P. Querre, and D. L. Donoho, Simultaneous cartoon and texture image1010
inpainting using morphological component analysis (mca), Applied and Computational Harmonic1011
Analysis, 19 (2005), pp. 340–358.1012

[21] C. Fevotte and N. Dobigeon, Nonlinear Hyperspectral Unmixing With Robust Nonnegative1013
Matrix Factorization, Image Processing, IEEE Transactions on, 24 (2015), pp. 4810–4819,1014
doi:10.1109/TIP.2015.2468177.1015

[22] N. Gadhok and W. Kinsner, Rotation sensitivity of independent component analysis to outliers, in1016
Electrical and Computer Engineering, 2005. Canadian Conference on, IEEE, 2005, pp. 1437–1442.1017

[23] N. Gadhok and W. Kinsner, An Implementation of β-Divergence for Blind Source Separation, in Elec-1018
trical and Computer Engineering, 2006. CCECE’06. Canadian Conference on, IEEE, 2006, pp. 1446–1019
1449.1020

[24] N. Gillis and A. Kumar, Exact and heuristic algorithms for semi-nonnegative matrix factorization,1021
SIAM Journal on Matrix Analysis and Applications, 36 (2015), pp. 1404–1424.1022

[25] Q. Ke and T. Kanade, Robust `1 norm factorization in the presence of outliers and missing data by1023
alternative convex programming, in Computer Vision and Pattern Recognition, 2005. CVPR 2005.1024
IEEE Computer Society Conference on, vol. 1, IEEE, 2005, pp. 739–746.1025

[26] N. Keshava and J. F. Mustard, Spectral unmixing, IEEE signal processing magazine, 19 (2002), pp. 44–1026
57.1027

[27] D. Kong, C. Ding, and H. Huang, Robust nonnegative matrix factorization using `2,1-norm, in Pro-1028
ceedings of the 20th ACM international conference on Information and knowledge management, ACM,1029
2011, pp. 673–682.1030

[28] M. Kowalski, Sparse regression using mixed norms, Applied and Computational Harmonic Analysis, 271031
(2009), pp. 303–324.1032

[29] P. Kuppinger, G. Durisi, and H. Bolcskei, Uncertainty relations and sparse signal recovery for pairs1033
of general signal sets, IEEE Transactions on Information Theory, 58 (2012), pp. 263–277.1034

[30] S. M. Leach, J.-F. Cardoso, C. Baccigalupi, R. Barreiro, M. Betoule, J. Bobin, A. Bonaldi,1035
J. Delabrouille, G. De Zotti, C. Dickinson, et al., Component separation methods for the1036
planck mission, Astronomy &amp; Astrophysics, 491 (2008), pp. 597–615.1037

[31] Q. Li, H. Li, Z. Lu, Q. Lu, and W. Li, Denoising of Hyperspectral Images Employing Two-Phase Matrix1038
Decomposition, Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal1039
of, 7 (2014), pp. 3742–3754, doi:10.1109/JSTARS.2014.2360409.1040

[32] M. Mihoko and S. Eguchi, Robust blind source separation by beta divergence, Neural computation, 141041
(2002), pp. 1859–1886.1042

[33] S. Nakhostin, H. Clenet, T. Corpetti, and N. Courty, Joint anomaly detection and spectral un-1043
mixing for planetary hyperspectral images, IEEE Transactions on Geoscience and Remote Sensing, 541044

This manuscript is for review purposes only.

http://dx.doi.org/10.1137/090761793
http://dx.doi.org/10.1051/0004-6361/201220019
http://dx.doi.org/10.1051/0004-6361/201220019
http://dx.doi.org/10.1051/0004-6361/201220019
http://arxiv.org/abs/1207.3675
http://dx.doi.org/10.1109/TIP.2015.2468177
http://dx.doi.org/10.1109/JSTARS.2014.2360409


BLIND SOURCE SEPARATION WITH OUTLIERS IN TRANSFORMED DOMAINS 37

(2016), pp. 6879–6894.1045
[34] T.-H. Oh, Y.-W. Tai, J.-C. Bazin, H. Kim, and I. S. Kweon, Partial sum minimization of singular1046

values in robust pca: Algorithm and applications, IEEE transactions on pattern analysis and machine1047
intelligence, 38 (2016), pp. 744–758.1048

[35] P. Paatero and U. Tapper, Positive matrix factorization: A non-negative factor model with optimal1049
utilization of error estimates of data values, Environmetrics, 5 (1994), pp. 111–126.1050

[36] N. Parikh, S. P. Boyd, et al., Proximal algorithms., Foundations and Trends in optimization, 1 (2014),1051
pp. 127–239.1052
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