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Introduction

Among the many problems arising in linear dynamics, that of finding a common hypercyclic vector for an uncountable family of hypercyclic operators is one of the most prominent. Let us introduce the relevant definitions. Let X be an infinite-dimensional and separable F -space and let T ∈ L(X). A vector x ∈ X is said to be hypercyclic for T if its orbit under T , {T n x : n ≥ 0} is dense in X. The set of hypercyclic vectors for T will be denoted by HC(T ). We refer to the two books [START_REF] Bayart | Dynamics of linear operators[END_REF] and [START_REF] Grosse-Erdmann | Linear chaos[END_REF] for the standard theory of hypercyclic operators. Given (T λ ) λ∈Λ a family of hypercyclic operators acting on the same F -space, it is natural to ask whether λ∈Λ HC(T λ ) is nonempty. The first result in that direction is due to Abakumov and Gordon who showed in [START_REF] Abakumov | Common hypercyclic vectors for multiples of backward shift[END_REF] that a>0 HC(e a B) is nonempty, where B is the unweighted backward shift acting on ℓ p , p ∈ [1, +∞) or on c 0 . Soon after, Costakis and Sambarino in [START_REF] Costakis | Genericity of wild holomorphic functions and common hypercyclic vectors[END_REF] came with a criterion for proving the common hypercyclicity of some families, which allow them to extend the results of [START_REF] Abakumov | Common hypercyclic vectors for multiples of backward shift[END_REF] to other families of shifts or to translation operators. The paper [START_REF] Abakumov | Common hypercyclic vectors for multiples of backward shift[END_REF] also contains an important negative result, granted to Borichev: the twodimensional family (e a B × e b B) (a,b)∈(0,+∞) 2 acting on ℓ 2 × ℓ 2 , does not admit a common hypercyclic vector. It turns out that most of the examples of families admitting a common hypercyclic vector are one-dimensional families, with two notable exceptions: the Leon-Müller theorem [START_REF] León-Saavedra | Rotations of hypercyclic and supercyclic operators[END_REF] which allows to introduce an extra parameter of rotations, and translation operators which have some redundant properties (see for instance [START_REF] Bayart | Common hypercyclic vectors for high dimensional families of operators[END_REF]). Even for one-dimensional families, several intriguing problems remain. For instance, if Λ ⊂ (0, +∞) 2 is a monotonic Lipschitz curve, then (e a B × e b B) (a,b)∈Λ possesses a common hypercyclic vector, whereas this is unknown for (e t B × e 3-t B) t∈ [START_REF] Abakumov | Common hypercyclic vectors for multiples of backward shift[END_REF][START_REF] Bayart | How to get common universal vectors[END_REF] (see [START_REF] Bayart | How to get common universal vectors[END_REF]).

Our ambition, in this paper, is to revisit this problem and to shed new light on common hypercyclic vectors. We begin with a review of the results we intend to prove. In what follows, the parameter set Λ will always be a subset of R d for some d ≥ 1 and R d will be endowed with the sup-norm.

1.1. Products of multiples of the backward shift. Our first result is an answer to the problem of [START_REF] Bayart | How to get common universal vectors[END_REF] we just recalled. More precisely, we will prove the following.

Theorem 1.1. Let X = ℓ p (N), p ∈ [1, +∞), or X = c 0 (N), and let Λ ⊂ (0, +∞) d be a Lipschitz curve. Then (e λ (1) B × • • • × e λ(d) B) λ∈Λ possesses a dense G δ set of common hypercyclic vectors.

The way to delete the assumption "Λ is monotonic" in Theorem 1.1 will be to obtain a characterization for the common hypercyclicity of a family of products of weighted shifts acting on a Fréchet sequence space, when these shifts satisfy some natural conditions. This condition, which is rather technical, takes a much more pleasant form when we apply it to multiples of the backward shifts. We will apply it in order to get Theorem 1.1.

1.2. Borichev result revisited. Borichev's result can be rephrased in the following more precise way:

Let Λ ⊂ (0, +∞) 2 be such that (a,b)∈Λ HC(e a B ×e b B) is not empty. Then Λ has measure zero.

If we analyze the proof of this result, it turns out that a key point is given by the fact that if (e a B) n u and (e a ′ B) n u are both close to the same nonzero vector (e.g. e 0 ), then |a -a ′ | has to be small, precisely |a -a ′ | ≤ C/n for some constant C. We will show that this can be put in a more general framework, replacing sets of zero Lebesgue measure by sets of small Hausdorff dimension.

Theorem 1.2. Let Λ ⊂ R d , let (T λ ) λ∈Λ be a family of operators acting on the Banach space X. Assume that there exist α > 0, v ∈ X, δ > 0 and C > 0 such that, for all λ, µ ∈ Λ, for all n ∈ N and all u ∈ X satisfying

T n λ u -v < δ and T n µ u -v < δ, then T n λ u -T n µ u ≥ Cn α λ -µ . If λ∈Λ HC(T λ ) = ∅, then dim H (Λ) ≤ 1 α .
In particular, this can be applied to the family (B w(λ(1)) × • • • × B w(λ(d)) ) λ∈(0,+∞) d where (w(a)) a>0 is defined by w 1 (a) • • • w n (a) = exp(an α ) for some α > 0 and for all n ∈ N.

Corollary 1.3. Let X = ℓ p (N), p ∈ [1, +∞) or X = c 0 (N). Let α ∈ (0, 1], let (w(a)) a>0 be defined by w 1 (a) • • • w n (a) = exp(an α ) for all n ∈ N and let Λ ⊂ (0, +∞) d . If (B w(λ(1)) × • • • × B w(λ(d)) ) λ∈Λ admits a common hypercyclic vector, then dim H (Λ) ≤ 1/α.

In view of the previous corollary, one may ask if the converse holds true, namely if the condition dim H (Λ) ≤ 1/α, or dim H (Λ) < 1/α, implies that λ∈Λ HC(B w(λ(1)

) × • • • × B w(λ(d)) ) = ∅. More specifically, we may ask if α ≤ 1/d implies λ∈(0,+∞) d HC(B w(λ(1)) × • • • × B w(λ(d)) ) = ∅.
The study of these questions motivates the remaining part of the paper.

1.3.

A common hypercyclicity criterion in dimension greater than 1. In the remaining of this introduction, we will always assume that X is a separable Banach space. We discuss now common hypercyclicity criteria for a family (T λ ) λ∈Λ of operators acting on the same Banach space X. We will always assume that the following assumptions are true:

• the map (λ, u) → T λ u is continuous from Λ × X into X;
• there exists a dense set D ⊂ X such that each operator T λ has a partial rightinverse S λ : D → D, that is T λ S λ (u) = u for all u ∈ D and all λ ∈ Λ.

These assumptions are for instance satisfied if T λ is defined as the product of weighted shifts ), and, for each i = 1, . . . , d and each n ∈ N, a → w

B w (1) (λ(1)) × • • • × B w (d) (λ(d)) , X = c d 0 (N) or X = ℓ d p (N), p ∈ [1, +∞
(i)
n (a) is continuous (we will call this a continuous family of weights). When Λ is an interval of the real line, one of the most useful result to get common hypercyclic vectors is the Costakis-Sambarino criterion:

Costakis-Sambarino Theorem. Let Λ be an interval of the real line. Assume that for every compact interval K ⊂ Λ, every u ∈ D, (CS1) there exist m ≥ 1 and (c k ) k≥m a summable sequence of positive real numbers such that (a)

T n+k λ S n µ u|| ≤ c k for every n ∈ N, k ≥ m, µ ≤ λ, µ, λ ∈ K (b) T n λ S n+k µ u|| ≤ c k for every n ∈ N, k ≥ m, µ ≥ λ, µ, λ ∈ K; (CS2) for all ε > 0, there exists τ > 0 such that, for all n ≥ 1, 0 ≤ µ -λ ≤ τ n ⇒ T n λ S n µ (u) -u < ε.
Then λ∈Λ HC(T λ ) is a dense G δ subset of X.

We look for a substitute for this theorem when Λ is not an interval of the real line and in particular if the "dimension" of Λ is greater than 1. The continuity condition (CS2) is naturally implied by the following Lipschitz estimate: for all u ∈ D, there exists C > 0 such that, for all n ≥ 1, for all λ, µ ∈ Λ,

T n λ S n µ u -T n µ S n µ u ≤ Cn λ -µ .

Nevertheless, if we have the opposite inequality

T n λ S n µ u -T n µ S n µ u ≥ Cn λ -µ , then Theorem 1.
2 essentially says that the Hausdorff dimension of the set of common hypercyclic vectors cannot exceed 1. Hence, to get common hypercyclic vectors for subsets of R d of bigger dimension, we will need a stronger condition, at least something like

λ -µ ≤ τ n α ⇒ T n λ S n µ (u) -u < ε
for some α ∈ (0, 1). Under this last condition and an appropriate substitute for (CS1), we will be able to prove a common hypercyclic criterion when Λ ⊂ R d possesses some regularity and has "dimension" less than 1/α. The notion of dimension we need is a kind of homogeneous box dimension. For r ≥ 1, we define I r = {1, . . . , r}.

Definition 1.4. Let Λ ⊂ R d be compact. We say that Λ has homogeneous box dimension at most γ ∈ (0, d] if there exist r ≥ 2, C(Λ) > 0 and, for all m ≥ 1, a family (Λ k ) k∈I m r of compact subsets of Λ such that for all m ≥ 1,

• for all k ∈ I m r , diam(Λ k ) ≤ C(Λ) 1 r 1/γ m ; • Λ ⊂ k∈I m r Λ k ; • for all k ∈ I m r , Λ k 1 ,...,km ⊂ Λ k 1 ,...,k m-1 .
The homogeneous box dimension of Λ is defined as the infimum of the γ ∈ (0, d] such that Λ has homogeneous box dimension at most γ and will be denoted dim HB (Λ).

We will discuss later the link between this notion of dimension and more classical ones; we just observe for the moment that any compact subset of R d has homogeneous box dimension at most d. Having this notion of dimension at hand, we can prove the following result.

Theorem 1.5. Let γ > 0 and let Λ be a compact subset of R d having homogeneous box dimension at most γ. Assume moreover that there exist α ∈ (0, 1/γ), β > αγ and D > 0 such that, for all u ∈ D, (a) there exist C > 0, N > 0 such that, for all λ, µ ∈ Λ, for all n ≥ 0 and k

≥ N such that λ -µ ≤ D k α (n+k) α , then T n+k λ S n µ u ≤ C k β , T n λ S n+k µ u ≤ C k β . (b)
for all ε > 0, there exists τ > 0 such that, for all n ≥ 1, for all λ, µ ∈ Λ,

λ -µ ≤ τ n α =⇒ T n λ S n µ u -u < ε.
Then λ∈Λ HC(T λ ) is a dense G δ subset of X.

In particular we get the following corollary, which can be seen as the desired converse of Corollary 1.3.

Corollary 1.6. Let X = ℓ p (N), p ∈ [1, +∞) or X = c 0 (N), α ∈ (0, 1], let (w(a)) a>0 be defined by w 1 (a) • • • w n (a) = exp(an α ) for all n ∈ N and let Λ ⊂ (0, +∞) d . Assume that dim HB (Λ) < 1/α. Then (B w(λ(1)) ו • •×B w(λ(d))
) λ∈Λ admits a common hypercyclic vector.

Example 1.7. Let X = ℓ p (N), p ∈ [1, +∞) or X = c 0 (N), α ∈ (0, 1/d
) and let (w(a)) a>0 be the family of weights defined by w 1 (a)

• • • w n (a) = exp(an α ) (resp. w n (a) = 1 + a n 1-α ) for all n ≥ 1. Then (B w(λ(1)) × • • • × B w(λ(d))
) λ∈(0,+∞) d admits a common hypercyclic vector.

Theorem 1.5 can also be applied to Hölder curves leading to a nice complement to Theorem 1.1. Indeed, let α ∈ (0

, 1]. A compact set Λ ⊂ R d is called an α-Hölder curve if Λ = f (I) for some function f : [0, 1] → R d satisfying ∃C > 0, ∀(s, t) ∈ [0, 1] 2 , f (s) -f (t) ≤ C|s -t| α .
It turns out that any α-Hölder curve has homogeneous box dimension at most 1/α. Therefore, we will also obtain the following example.

Example 1.8. Let X = ℓ p (N), p ∈ [1, +∞) or X = c 0 (N). Let Λ ⊂ (0, +∞) d be a β-Hölder curve for some β ∈ (0, 1]. Let α ∈ (0, β) and let (w(a)) a>0 be the family of weights defined by w 1 (a)

• • • w n (a) = exp(an α ) (resp. w n (a) = 1 + a n 1-α ) for all n ≥ 1. Then (B w(λ(1)) × • • • × B w(λ(d))
) λ∈Λ admits a common hypercyclic vector.

1.4. The Basic Criterion. Almost all results of common hypercyclicity rely on the construction of a suitable covering of the parameter space Λ and on an associated sequence (n k ). What we need is contained in the following basic criterion (see [START_REF] Bayart | Dynamics of linear operators[END_REF]Lemma 7.12]).

Theorem 1.9 (Basic Criterion). Let Λ ′ be a topological space. Let (T λ ) λ∈Λ ′ be a family of operators on X such that

• the map (λ, x) → T λ (x) is continuous from Λ ′ × X → X;
• there exist a dense set D ⊂ X and maps S λ : D → D satisfying T λ S λ x = x for every x ∈ D and every λ ∈ Λ ′ .

If Λ ⊂ Λ ′ is σ-compact and if for every compact set K ⊂ Λ, every pair (u, v) ∈ D×D, every ε > 0, there exist λ 1 , . . . , λ q ∈ Λ ′ , sets Λ 1 , . . . , Λ q ⊂ Λ and positive integers n 1 , . . . , n q such that

(BC1) k Λ k ⊃ K, (BC2) k S n k λ k v < ε, (BC3) for all k = 1, . . . , q and all λ ∈ Λ k , j =k T n k λ S n j λ j v < ε, (BC4) for all k = 1, . . . , q and all λ ∈ Λ k , T n k λ u < ε, (BC5) for all k = 1, . . . , q and all λ ∈ Λ k , T n k λ S n k λ k v -v < ε, then λ∈Λ HC(T λ ) is a dense G δ subset of X.

Characterization of families of products of weighted shifts admitting a common hypercyclic vector

In this section, we work in the context of a Fréchet sequence space X, namely X is a Fréchet space endowed with a family of seminorms ( • p ), contained in the space C N of all complex sequences and such that each coordinate functional (x n ) n → x m is continuous. Such a space can be endowed with an F -norm • defining the topology of X (see [START_REF] Grosse-Erdmann | Linear chaos[END_REF]Section 2.1]). Such an F -norm can be defined by the formula

x = +∞ p=1 1 2 p min(1, x p ).
In particular, an F -norm satisfies the triangle inequality and the inequality

(1) ∀λ ∈ C, ∀x ∈ X, λx ≤ (|λ| + 1) x ,
a property which replaces the positive homogeneity of the norm. We will also need the following property of a Fréchet sequence space in which (e n ) is an unconditional basis (see [START_REF] Kamthan | Sequence spaces and series[END_REF]Theorem 3.9]).

(UNC) If (x n ) ∈ X and (α n ) ∈ ℓ ∞ , then (α n x n ) ∈ X.
Moreover, for all ε > 0, for all M > 0, there exists δ > 0 such that, for all (

x n ) ∈ X with (x n ) ≤ δ, for all sequence (α n ) ∈ ℓ ∞ with (α n ) ∞ ≤ M , then (α n x n ) ∈ X and (α n x n ) < ε.
Theorem 2.1. Let X be a Fréchet sequence space in which (e n ) is an unconditional basis.

Let I ⊂ R be a nonempty interval and let Λ ⊂ I d be σ-compact. Let (B w(a) ) a∈I be a continuous family of weighted shifts on X and assume that a ∈ I → w n (a) is nondecreasing. Assume also that there exist a nondecreasing map F : N → N and c, C > 0 such that, for all n ≥ 1, denoting by

f n (a) = n k=1 log(w k (a)), ∀(a, b) ∈ I 2 , cF (n)|a -b| ≤ |f n (a) -f n (b)| ≤ CF (n)|a -b| ∀(a, b) ∈ I 2 , w n (a) w n (b) ≥ c.
Then the following assertions are equivalent:

(a) (B w(λ(1)) × • • • × B w(λ(d)) ) λ∈Λ possesses a dense G δ set of common hypercyclic vectors in X d . (b) (B w(λ(1)) × • • • × B w(λ(d))
) λ∈Λ admits a common hypercyclic vector in X d . (c) For all τ > 0, for all N ≥ 1, for all ε > 0, for all K ⊂ Λ compact, there exist

N ≤ n 1 < n 1 + N ≤ n 2 < • • • < n q-1 + N ≤ n q and (λ k ) k=1,...,q ∈ I d such that (i) K ⊂ q k=1 d i=1 λ k (i) -τ F (n k ) , λ k (i) (ii) For all i = 1, . . . , d, q k=1 1 w 1 (λ k (i)) • • • w n k (λ k (i))
e n k < ε.

(iii) For all k = 1, . . . , q -1, for all i = 1, . . . , d, for all l = 0, . . . , N ,

q j=k+1 w n j -n k +l+1 (λ k (i)) • • • w n j +l (λ k (i)) w l+1 (λ j (i)) • • • w n j +l (λ j (i)) e n j -n k +l < ε.
To simplify the notations, we will do the proof only for d = 2 and we shall denote by λ = (a, b) any element of R 2 . For λ = (a, b) ∈ I 2 , we shall denote by T λ the operator B w(a) × B w(b) acting on X × X and by S λ the operator

F w -1 (a) × F w -1 (b) , where F w -1 (a)
denotes the forward shift associated to the sequence (w -1 n (a)) n . Proof. We first assume that (T λ ) λ∈Λ admits a common hypercyclic vector. Let τ > 0, N ≥ 1, ε > 0 and K ⊂ Λ compact. We set K 1 the projection of K onto the first coordinate; K 1 is a compact subset of I. We consider 0 < η < min 1 2 , cτ 4 satisfying also the following two technical conditions:

(2) η < 1 4 × 1 N k=1 max 1, sup a∈K 1 w k (a) (3) c inf a,a ′ ∈K 1 l,l ′ ∈{1,...,N +1} w l (a) w l ′ (a ′ ) × 1 -η 1 + η > η 1 -η .
By continuity of the first N + 2 coordinate functionals and by (UNC), we may find δ > 0 such that, for all z = (z n ) ∈ X and all α

= (α n ) ∈ ℓ ∞ , (z n ) ≤ δ =⇒ ∀l ∈ {0, . . . , N + 1}, |z l | < η (z n ) ≤ δ and (α n ) ≤ 2 =⇒ (α n z n ) < ε.
Let u = (x, y) be a common hypercyclic vector for (T λ ) λ∈Λ . We may always assume that max{ x , y } ≤ δ and we set

v =   N j=0 e j , N j=0 e j   .
Let (n k ) be an increasing enumeration of

{n ≥ 1 : T n λ u -v < δ for some λ ∈ K} . Let Λ k = λ ∈ K : T n k λ u -v < δ .
Since u is a common hypercyclic vector for the family (T λ ) λ∈K , since K is compact and each Λ k is open, there exists q ≥ 1 such that

K ⊂ q k=1 Λ k .
For each k = 1, . . . , q, we define a k and b k by

a k := sup {a : ∃b, (a, b) ∈ Λ k } b k := sup {b : ∃a, (a, b) ∈ Λ k } and we set λ k = (a k , b k ). We first observe that n 1 ≥ N . Indeed, since B n 1 w(a 1 ) x - N j=0 e j ≤ δ, we know that w 1 (a 1 ) • • • w n 1 (a 1 )|x n 1 | ≥ 1 -η > 1/2.
Assume that n 1 < N . Then

w 1 (a 1 ) • • • w n 1 (a 1 ) ≤ N k=1 max 1, sup a∈K 1 w k (a)
whereas

w 1 (a 1 ) • • • w n 1 (a 1 ) ≥ w 1 (a 1 ) • • • w n 1 (a 1 ) |x n 1 | η > 1 2η ,
which contradicts [START_REF] Bayart | How to get common universal vectors[END_REF]. We now show that we also have n k+1 -n k ≥ N for all k = 1, . . . , q-1.

On the contrary, assume that there exists some k such that n k+1 -n k < N . We set

p = n k + N -n k+1 ∈ {1, . . . , N -1}. Then using that B n k+1 w(a k+1 ) x -N j=0 e j ≤ δ, we get |w p+1 (a k+1 ) • • • w n k +N (a k+1 )x n k +N -1| < η |w p+2 (a k+1 ) • • • w n k +N +1 (a k+1 )x n k +N +1 -1| < η.
Since we also know that B n k w(a k ) x -N j=0 e j ≤ δ, we also get

|w N +1 (a k ) • • • w n k +N (a k )x n k +N -1| < η |w N +2 (a k ) • • • w n k +N +1 (a k )x n k +N +1 | < η.
Taking respective quotients, these inequalities lead to

w N +2 (a k ) • • • w n k +N +1 (a k ) w p+2 (a k+1 ) • • • w n k +N +1 (a k+1 ) ≤ η 1 -η w N +1 (a k ) • • • w n k +N (a k ) w p+1 (a k+1 ) • • • w n k +N (a k+1 ) ≥ 1 -η 1 + η .
Consequently we obtain

1 -η 1 + η × w n k +N +1 (a k ) w n k +N +1 (a k+1 ) × w p+1 (a k+1 ) w N +1 (a k ) ≤ η 1 -η .
This again leads to a contradiction, with (3). Let us now prove (i). We consider λ = (a, b) ∈ Λ k for some k = 1, . . . , q. The choice of δ ensures that for any 0

≤ l ≤ N , |w l+1 (a k ) • • • w n k +l (a k )x n k +l -1| < η |w l+1 (a) • • • w n k +l (a)x n k +l -1| < η. Hence, |w 1 (a k ) • • • w n k (a k ) -w 1 (a) • • • w n k (a)| • |x n k | < 2η.
On the other hand,

w 1 (a k ) • • • w n k (a k ) -w 1 (a) • • • w n k (a) = w 1 (a) • • • w n k (a)   exp   n k j=1 log(w j (a k )) - n k j=1 log(w j (a))   -1   ≥ w 1 (a) • • • w n k (a) (exp (cF (n k )(a k -a)) -1) ≥ cw 1 (a) • • • w n k (a)(a k -a)F (n k ).
Since we also know that w 1 (a)

• • • w n k (a)|x n k | ≥ 1/2, we finally get 0 ≤ a k -a < 4η cF (n k ) < τ F (n k ) .
The same is true for the second coordinate and we get (i). In order to prove (ii), we define (α n ) by

α n = 1 w 1 (a k )•••wn k (a k )xn k if n = n k for some k = 1, . . . , q 0 otherwise. Observe that α ∞ ≤ 2, hence q k=1 1 w 1 (a k ) • • • w n k (a k ) e n k = +∞ n=0 α n x n e n < ε.
It remains to prove (iii). We fix k = 1, . . . , q -1 and l = 0, . . . , N , and we now set

β n = 1 w l+1 (a j )•••w n j +l (a j )x n j +l if n = n j -n k + l for some j ≥ k + 1, 0 otherwise. Again β ∞ ≤ 2 and writing B n k w(a k ) (x) -N j=0 e j as (z n ) n , one gets n β n z n e n = q j=k+1 w n j -n k +l+1 (a k ) • • • w n j +l (a k ) w l+1 (a j ) • • • w n j +l (a j ) e n j -n k +l since n j -n k > N for all j ≥ k + 1.
The result follows again from the choice of δ.

It remains to show that (c) implies (a) since (a) ⇒ (b) is obvious. To this end, we shall apply the Basic Criterion. Let K ⊂ Λ be compact, let D ⊂ X 2 be the set of couples of vectors with finite support and let (u, v) ∈ D × D. We shall write

u(1) = N l=0
u l e l and v(1)

= N l=0
v l e l for some N ≥ 0. We fix ε > 0 and τ > 0 (conditions on ε and τ will be imposed later) and we consider the two sequences (n k ) k=1,...,q and (λ k ) k=1,...,q given by (c) with

λ k := (a k , b k ). We set Λ k = K ∩ ([a k -τ /F (n k ), a k ] × [b k -τ /F (n k ), b k ]
) so that k Λ k ⊃ K and we show that the assumptions of the Basic Criterion are satisfied for the sequence m k = n k -N . First, we observe that

q k=1 F m k w -1 (a k ) (v(1)) ≤ N l=0 (|v l | + 1) q k=1 1 w l+1 (a k ) • • • w n k -(N -l) (a k ) e n k -(N -l) .
We fix ã ∈ I and we claim that for all l = 0, . . . , N ,

q k=1 1 w l+1 (a k ) • • • w n k -(N -l) (a k ) e n k -(N -l) = B N -l w(ã) q k=1 x k,l w 1 (a k ) • • • w n k (a k ) e n k for some sequence (x k,l ) k ∈ ℓ ∞ with (x k,l ) k ∞ ≤ M c N ,
where M = max{1, |w j (a)| : 0 ≤ j ≤ N, (a, b) ∈ K for some b}. Provided this has been shown, it is easy to adjust ε so that (BC2) is satisfied, using the continuity of B w(ã) and the unconditionality of (e n ). The proof of the claim follows from a rather straightforward computation:

q k=1 1 w l+1 (a k ) • • • w n k -(N -l) (a k ) e n k -(N -l) = q k=1 w 1 • • • w l (a k ) w n k -(N -l)+1 (a k ) • • • w n k (a k ) w n k -(N -l)+1 (ã) • • • w n k (ã) B N -l w(ã) 1 w 1 (a k ) • • • w n k (a k ) e n k .
The proof that the other conditions of the Basic Criterion are satisfied is rather similar. Indeed, for k = 1, . . . , q and (a, b)

∈ Λ k , j =k B m k w(a) F m j w -1 (a j ) (v(1)) = q j=k+1 B m k w(a) F m j w -1 (a j ) (v(1)) = q j=k+1 N l=0 v l w n j -n k +l+1 (a) • • • w n j +l-N (a) w l+1 (a j ) • • • w n j +l-N (a j ) e n j -n k +l .
For each 0 ≤ l ≤ N , we now set

α (l) n =    w n j -n k +l+1 (a)•••w n j +l (a) w n j -n k +l+1 (a k )•••w n j +l (a k ) w n j +l-N+1 (a j )•••w n j +l (a j ) w n j +l-N+1 (a)•••w n j +l (a) if n = n j -n k + l
for some j≥k+1 , 0 otherwise.

Therefore, since α (l) ∞ ≤ 1 c N (because a ≤ a k ) and since

j =k B m k w(a) F m j w -1 (a j ) (v(1)) ≤ N l=0 (|v l | + 1) ∞ n=0 α (l) n w n j -n k +l+1 (a k ) • • • w n j +l (a k ) w l+1 (a j ) • • • w n j +l (a j ) e n ,
(BC3) follows from the unconditionality of (e n ) if ε is sufficiently small. We observe that (BC4) is empty and finish the proof by showing (BC5). Let k = 1, . . . , q and (a, b) ∈ Λ k . Then

B m k w(a) F m k w -1 (a k ) (v(1)) -v(1) ≤ N l=0 (|v l | + 1) w l+1 (a) • • • w n k -(N -l) (a) w l+1 (a k ) • • • w n k -(N -l) (a k ) -1 e l
and it is easy to show that this becomes small provided τ > 0 becomes small enough, using that |a -

a k | ≤ τ F (n k ) , that F is nondecreasing, that w l+1 (a) • • • w n k -(N -l) (a) w l+1 (a k ) • • • w n k -(N -l) (a k ) = exp(f n k -(N -l) (a) -f n k -(N -l) (a k )) exp(f l (a) -f l (a k ))
and that for every a, b ∈ I

|f n (a) -f n (b)| ≤ CF (n)|a -b|.
The previous statement shows clearly that if (F (n)) n grows slowly, there is more hope to get a large set Λ ⊂ R d such that (T λ ) λ∈Λ possesses a common hypercyclic vector. Of course, the simplest examples of weights satisfying the assumptions of Theorem 2.1 (when I is a bounded interval) are given by w 1 (a) • • • w n (a) = exp(aF (n)) where F (n) is nondecreasing and F (n + 1) -F (n) is bounded, which includes the case of the multiples of the backward shift. For this last example, Theorem 2.1 takes the following easier form.

Theorem 2.2. Let Λ ⊂ (0, +∞) d be σ-compact, X = ℓ p (N), p ∈ [1, +∞) or X = c 0 (N).
The following assertions are equivalent:

(a) (e λ(1) B × • • • × e λ(d) B) λ∈Λ admits a common hypercyclic vector. (b) For all τ > 0, for all N ≥ 1, for all K ⊂ Λ compact, there exist N ≤ n 1 < n 1 + N ≤ n 2 < • • • < n q-1 + N ≤ n q and (λ k ) k=1,...,q ∈ (0, +∞) d such that (i) K ⊂ ∪ q k=1 d i=1 λ k (i) -τ n k , λ k (i) (ii) for all k = 1, . . . , q -1, for all i = 1, . . . , d, λ k+1 (i)n k+1 -λ k (i)n k ≥ N.
Proof. Without loss of generality, we can assume that Λ ⊂ I d for some bounded interval I ⊂ (0, ∞). That (a) =⇒ (b) then follows directly from Theorem 2.1. Indeed, let us apply it for K ⊂ Λ compact, N ≥ 1 and ε = e -N to get (n k ) k=1,...,q and (λ k ) k=1,...,q .

We need only to verify (ii). From (c) (iii) of Theorem 2.1 with l = 0, we know that, for k = 1, . . . , q -1, for i = 1, . . . , d,

exp(n k λ k (i)) exp(n k+1 λ k+1 (i)) = w n k+1 -n k +1 (λ k (i)) • • • w n k+1 (λ k (i)) w 1 (λ k+1 (i)) • • • w n k+1 (λ k+1 (i)) ≤ ε = e -N
and we conclude by taking the logarithm. The converse direction is slightly more difficult. We fix K ⊂ Λ compact, τ > 0, N ≥ 1 and ε > 0 and we apply (b) for K, τ and N 0 ≥ N whose value will be precised later. Let a > 0 be such that λ(i) ≥ a for all λ ∈ K and all i = 1, . . . , d. Then, for all i = 1, . . . , d,

q k=1 1 w 1 (λ k (i)) • • • w n k (λ k (i)) e n k ≤ q k=1 1 exp(an k ) ≤ +∞ j=N 0 1 exp(aj) < ε
provided N 0 is large enough. Regarding (iii), for all k = 1, . . . , q -1, all i = 1, . . . , d and all l = 0, . . . , N ,

q j=k+1 w n j -n k +l+1 (λ k (i)) • • • w n j +l (λ k (i)) w l+1 (λ j (i)) • • • w n j +l (λ j (i)) e n j -n k +l ≤ +∞ j=k+1 exp -(λ j (i)n j -λ k (i)n k ) . Now, λ j (i)n j -λ k (i)n k = j-1 s=k λ s+1 (i)n s+1 -λ s (i)n s ≥ (j -k)N 0 .
Again, provided N 0 is large enough, we get that condition (c) (iii) of Theorem 2.1 is satisfied.

Remark 2.3. If we work with the family of weight (w n (a)) a>0 , with w 1 (a) • • • w n (a) = exp(an α ), α ∈ (0, 1), we still have a necessary condition for common hypercyclicity if we replace (b) (ii) by: for all k = 1, . . . , q -1, for all j = k + 1, . . . , q, for all i = 1, . . . , d,

(λ j (i) -λ k (i))n α j + λ k (i)(n j -n k ) α >
N and this condition is even sufficient on c 0 . The lack of linearity when α = 1 prevents us to go further.

We are now ready for the proof of Theorem 1.1.

Proof of Theorem 1.1. We may assume that Λ = f ([0, 1]) with f satisfying

∃C > 0, ∀(s, t) ∈ [0, 1] 2 , f (s) -f (t) ≤ C|s -t|.
Let τ > 0, N ≥ 1 and let M > 0 be very large (at least M ≥ N ). We set n k = kM for k ≥ 1. We also define the sequence (t k ) k≥1 by t 1 = 0 and t k+1 = t k + τ Cn k . Let q ≥ 1 be the greatest integer such that t q ≤ 1 and define, for k = 1, . . . , q -1, I k = [t k , t k+1 ] and I q = [t q , 1]. For all k = 1, . . . , q, we set Λ k = f (I k ) and for i = 1, . . . , d, we define λ k (i) as the maximum of the i-th coordinate of the elements of Λ k . The Lipschitz condition on f implies that

∀k = 1, . . . , q, Λ k ⊂ d i=1 λ k (i) - τ n k , λ k (i) ∀k = 1, . . . , q -1, ∀i = 1, . . . , d, |λ k+1 (i) -λ k (i)| ≤ C|t k+2 -t k | ≤ 2τ kM .
Therefore,

λ k+1 (i)n k+1 -λ k (i)n k ≥ λ k (i)n k+1 - 2τ kM n k+1 -λ k (i)n k ≥ λ k (i)M - 2τ kM × (k + 1)M ≥ λ k (i)M -4τ.
Provided M is large enough, we can ensure that (c)(ii) of Theorem 2.2 is satisfied.

3. On the size of the parameter sets for common hypercyclicity

We will prove a slightly more precise result than Theorem 1.2. Let us recall the relevant definitions (we refer to [START_REF] Falconer | Fractal geometry: Mathematical foundations and applications[END_REF] and [START_REF] Mattila | Geometry of Sets and Measures in Euclidian Spaces[END_REF] for more on this subject). If φ : (0, +∞) → (0, +∞) is a nondecreasing continuous function satisfying lim 0 + φ = 0 (φ is called a dimension function or a gauge function), the φ-Hausdorff outer measure of a set E ⊂ R d is

H φ (E) = lim ε→0 inf r∈Rε(E) B∈r φ(diam(B)),
where R ε (E) is the set of (countable) coverings of E with balls B of diameter diam(B) ≤ ε.

When φ(x) = φ s (x) = x s , we write for short H s instead of H φs . The Hausdorff dimension of a set E is defined by

dim H (E) := sup{s > 0 : H s (E) > 0} = inf{s > 0 : H s (E) = 0}. Theorem 3.1. Let Λ ⊂ R d , let (T λ
) λ∈Λ be a family of operators acting on the Banach space X. Assume that there exist a function ψ : N → (0, +∞), v ∈ X, δ > 0 such that, for all λ, µ ∈ Λ, for all n ∈ N and all u ∈ X satisfying

T n λ u -v < δ and T n µ u -v < δ, one has T n λ u -T n µ u ≥ ψ(n) λ -µ .
If λ∈Λ HC(T λ ) = ∅, then H φ (Λ) = 0 for any gauge function φ such that n φ 2δ ψ(n) < +∞.

Proof. Let ψ, v, δ be given by the assumptions and let u ∈ λ∈Λ HC(T λ ). Define Λ n = {λ ∈ Λ :

T n λ u -v < δ} . Then diam(Λ n ) ≤ 2δ/ψ(n). Indeed, pick λ, µ ∈ Λ n and observe that ψ(n) λ -µ ≤ T n λ u -T n µ u ≤ T n λ u -v + T n µ u -v ≤ 2δ.
In particular, since the condition n φ 2δ ψ(n)

< +∞ implies that ψ(n) → +∞, the theorem follows from the fact that, for any N ≥ 1, Λ ⊂ n≥N Λ n . Theorem 1.2 follows directly from the above theorem by considering ψ(n) = Cn α and φ(x) = x s for any s > 1/α. Moreover, we can easily apply this to families of weighted shifts. Then, for any

Corollary 3.2. Let X = ℓ p (N), p ∈ [1, +∞[ or X = c 0 (N). Let I ⊂ R,
Λ ⊂ I d , λ∈Λ HC(B w(λ(1)) × • • • × B w(λ(d)) ) = ∅ =⇒ dim H (Λ) ≤ 1 α . Proof. Let v = (e 0 , • • • , e 0 ). Let λ, µ ∈ Λ, n ∈ N, u ∈ X × • • • × X be such that B w(λ(1)) × • • • × B w(λ(d)) n u -v < 1 2 and B w(µ(1)) × • • • × B w(µ(d)) n u -v < 1 2 .
Let 1 ≤ k ≤ d. Looking at the k-th coordinate, we get

|w 1 (λ(k)) . . . w n (λ(k))u n (k) -1| < 1/2 and |w 1 (µ(k)) . . . w n (µ(k))u n (k) -1| < 1/2. Now, setting ε n = B w(λ(1)) × • • • × B w(λ(d)) n u -B w(µ(1)) × • • • × B w(µ(d))
n u , we get

ε n ≥ |w 1 (λ(k)) • • • w n (λ(k)) -w 1 (µ(k)) • • • w n (µ(k))| • |u n (k)|. Assume for instance that w 1 (µ(k)) • • • w n (µ(k)) ≥ w 1 (λ(k)) • • • w n (λ(k)). Then ε n ≥ w 1 (µ(k)) • • • w n (µ(k)) w 1 (λ(k)) • • • w n (λ(k)) -1 • w 1 (λ(k)) • • • w n (λ(k)) • |u n (k)| ≥ 1 2 w 1 (µ(k)) • • • w n (µ(k)) w 1 (λ(k)) • • • w n (λ(k)) -1 . Now, w 1 (µ(k)) • • • w n (µ(k)) w 1 (λ(k)) • • • w n (λ(k)) -1 = exp   n j=1 log w j (µ(k)) - n j=1 log w j (λ(k))   -1 ≥ exp (Cn α |λ(k) -µ(k)|) -1 ≥ Cn α |λ(k) -µ(k)|.
We conclude by applying Theorem 1.2

In the case of the multiples of the backward shift, we get the following result:

Corollary 3.3. Let d ≥ 1, Λ ⊂ (0, +∞) d and X = ℓ p (N), p ∈ [1, +∞) or X = c 0 (N). If λ∈Λ HC(e λ(1) B × • • • × e λ(d) B) = ∅ then dim H (Λ) ≤ 1.
Fixing α ∈ (0, 1], we can also apply Corollary 3.2 to the more general case of weights defined by w 1 (a) • • • w n (a) = exp(an α ) or by w n (a) = 1 + a n 1-α for all n ≥ 1 in order to get Corollary 1.3. We point out the following example which will be useful later.

Example 3.4. Let α ∈ (0, 1], and X = ℓ p (N), p ∈ [1, +∞) or X = c 0 (N). Let (w(a)) a>0 be the family of weights defined by w 1 (a)

• • • w n (a) = exp(an α ) (resp. by w n (a) = 1+ a n 1-α ) for all n ≥ 1. If λ∈(0,+∞) d HC(B w(λ(1)) × • • • × B w(λ(d)) ) = ∅, then α ≤ 1/d.

A common hypercyclicity criterion in several dimensions

4.1. Why this statement? Why this proof ? This section is purely expository. We intend to explain the assumptions of Theorem 1.5 and to talk a few words to introduce its proof. Let α ∈ (0, 1/2) and let w be the weight defined by w 1 (a) • • • w n (a) = exp(an α ). In view of Corollary 3.4, a plausible statement is that (B w(a) × B w(b) ) (a,b)∈[1,2] 2 admits a common hypercyclic vector. To prove it and apply either the Basic Criterion or Theorem 2.1, we need a covering of Λ = [1, 2] 2 . A natural covering is given by the set Γ m of the closed dyadic cubes of width 2 -m . We have to order these cubes, Γ m = (Λ k ) k=1,...,4 m , to fix λ k = (a k , b k ) ∈ Λ k and to associate an increasing sequence (n k ) k=1,...,4 m to this covering. Because we are working on R 2 , it is not clear how we have to order the dyadic cubes. Figure 1 shows three natural candidates. 

Λ 1 Λ 2 Λ 3 Λ 4 Λ 5 Λ 6 Λ 7 Λ 8 Λ 9 Λ 10 Λ 11 Λ 12 Λ 13 Λ 14 Λ 15 Λ 16 (a) First ordering Λ 1 Λ 2 Λ 3 Λ 4 Λ 8 Λ 7 Λ 6 Λ 5 Λ 9 Λ 10 Λ 11 Λ 12 Λ 16 Λ 15 Λ 14 Λ 13 (b) Second ordering Λ 1 Λ 2 Λ 5 Λ 6 Λ 4 Λ 3 Λ 8 Λ 7 Λ 13 Λ 14 Λ 9 Λ 10 Λ 16 Λ 15 Λ 12 Λ 11 (c) Third ordering
This order and the associated sequence (n k ) are very important and we know that they at least have to satisfy the following conditions:

• n α 4 m cannot be greater than 2 m , so that Λ k ⊂ B(λ k , C/n α k ) for some C > 0 and for all k = 1, . . . , 4 m (see Theorem 2.1 (c) (i)); • for all k = 1, . . . , 4 m -1 and all j = k + 1, . . . , 4 m ,

(a j -a k )n α j + a k (n j -n k ) α > 0 (b j -b k )n α j + b k (n j -n k ) α > 0 (see Remark 2.3).
The last conditions are always satisfied if a j > a k and b j > b k but are relevant if there is a backward jump between Λ k and Λ j , namely if either a j < a k or b j < b k . Suppose for instance that a j < a k . In that case a small computation shows that we must have ( 4)

n j ≥    1 1 - (a k -a j ) 1/α a 1/α k    n k ≥   1 1 - (a k -a j ) 1/α 2 1/α   n k .
Let us now discuss what this implies on each of the three orderings.

1. for the first ordering, there are 2 m -1 backward jumps of size around 1, say at least 1/2, between two consecutive dyadic cubes, namely we must have

n l•2 m +1 ≥ 1 1 -1 2 2/α n l•2 m
for l = 1, . . . , 2 m -1. Hence we will have at least

n 4 m ≥ 1 1 -1 2 2/α 2 m -1 n 1
which is much bigger than 2 m/α . 2. for the second ordering, we have 2 m-1 backward jumps of size around 1, say again at least 1/2, now between the cubes Λ (2l+1)•2 m +1 and Λ (2l+2)•2 m , for l = 0, . . . , 2 m-1 -1. Therefore we must have

n (2l+2)•2 m ≥ 1 1 -1 2 2/α
n (2l+1)•2 m +1 , l = 0, . . . , 2 m-1 -1, which again implies that n 4 m will be much bigger than expected since

n 4 m ≥ 1 1 -1 2 2/α 2 m-1 n 2 m +1 .
3. An important part of the proof of Theorem 1.5 will be to show that the third way to order the covering is much more economical from this point of view (heuristically speaking, because the big backward jumps are not consecutive, see Λ 10 , Λ 13 , Λ 11 and Λ 16 ). More specifically, we will be able to exhibit an increasing sequence (n k ) such that there exists some D > 0 satisfying

(5) ∀1 ≤ k < j ≤ 4 m , ∀λ ∈ Λ k , ∀µ ∈ Λ j , λ -µ ≤ D n j -n k n k α
and such that n α 4 m is smaller than 2 m . Thus the third way to order the covering is very well adapted to the problem of finding a common hypercyclic vector for the family (B w(a

) × B w(b) ) (a,b)∈[1,2] 2 .
That is why we will use this ordering in the general case, so the assumption (a) in Theorem 1.5 becomes very natural.

About the homogeneous box dimension.

In this subsection, we discuss the property of having homogeneous box dimension at most γ. We first recall the classical notion of the upper box dimension. Let Λ ⊂ R d be compact. Its upper box dimension is defined by

dim B (Λ) = lim sup ε→0 log N (ε) log(1/ε) ,
where N (ε) denotes the smallest number of cubes of size ε > 0 which are needed to cover Λ. We do not change the definition if we only allow ε to be equal to cρ m for some c > 0, some ρ ∈ (0, 1) and all m ∈ N. Namely, for all ρ ∈ (0, 1),

dim B (Λ) = lim sup m→+∞ log N (cρ m ) -m log ρ .
Let us now have a look on the property of having homogeneous box dimension at most γ. The first two conditions could be easily rephrased by saying that Λ has upper box dimension at most γ: setting ρ = 1/r 

(Λ) ≤ dim B (Λ) ≤ dim HB (Λ).
It turns out that, in many cases, one has equality or at least we can prove that Λ has homogeneous box dimension at most γ. Also, any compact subset of R d has homogeneous box dimension at most d: we may assume that Λ ⊂ [0, 1] d and we define r = 2 d and Λ k as the intersections of Λ with the dyadic subcubes of [0, 1] d with width 2 -m . We can also provide positive results for compact selfsimilar sets. A compact set Λ ⊂ R d is called selfsimilar provided there exists r similarities s 1 , . . . , s r with respective ratio ρ 1 , . . . , ρ r ∈ (0, 1) such that Λ = r i=1 s i (Λ). For k ∈ I m r , define

s k = s k 1 • • • • • s kr . Let γ be defined by γ = max -log r log(ρ i ) : i = 1, . . . , r .
Then setting Λ k = s k (Λ), one can show that Λ has homogeneous box dimension at most γ. If all the ratios are equal to the same ρ, then Λ has homogeneous box dimension at most -log r/ log ρ, and when Λ satisfies the open set condition (namely there exists

V ⊂ R d open such that r i=1 s i (V ) ⊂ V and s i (V ) ∩ s j (V ) = ∅ for i = j), it is well-known that the Hausdorff dimension of Λ equals this value. Hence, in that case dim H (Λ) = dim B (Λ) = dim HB (Λ) = -log r log ρ .
Another interesting example is that of Hölder curves. Assume that Λ = f ([0, 1]) where

f : [0, 1] → R d satisfies f (s) -f (t) ≤ C|s -t| α ,
C > 0, α ∈ (0, 1). We set r = 2 and for k ∈ I m r , we define I k as the dyadic interval

I k = m i=1 k i -1 2 i , m i=1 k i -1 2 i + 1 2 m . Then define Λ k = f (I k ). We get immediately that diam(Λ k ) ≤ C diam(I k ) α = C 1 2 α m .
Therefore, Λ has homogeneous box dimension at most 1/α and there are well-known examples where the box dimension of such a curve (hence, its homogeneous box dimension) is exactly equal to 1/α.

4.3.

Examples. Before proceeding with the proof of Theorem 1.5, let us show how this theorem can be applied to a direct sum of weighted shifts. Let X = ℓ p (N) or c 0 (N), p ∈ [1, +∞), I ⊂ R compact and (w(a)) a∈I be a continuous family of positive weights. We keep the notations of Section 2, namely for λ ∈ I d , we denote by

T λ = B w(λ(1)) × • • • × B w(λ(d))
and by

S λ = F w -1 (λ(1)) × • • • × F w -1 (λ(d))
. We also set D = c d 00 and we endow X d with u = max( u(1) , . . . , u(d) ).

We first point out that (b) of Theorem 1.5 is implied by a Lipschitz inequality on f n where f n (a) = n k=1 log(w k (a)) as in Theorem 2.1. Indeed, suppose that there exist α > 0 and C > 0 such that, for all a, b ∈ I,

(6) |f n (a) -f n (b)| = n j=1 log w j (a) -log w j (b) ≤ Cn α |a -b|.
Then observe first that (6) implies that, for all L > 0, there exists C ′ > 0 such that, for all a, b ∈ I, for all l ∈ [0, L], 

(i) is contained in [0, L]. For all λ, µ ∈ I d , T n λ S n µ u -u ≤ u max i=1,...,d max l=0,...,L w l+1 (λ(i)) • • • w l+n (λ(i)) w l+1 (µ(i)) • • • w l+n (µ(i)) -1 ≤ u max i=1,...,d max l=0,...,L exp   n+l j=l+1 log w j (λ(i)) -log w j (µ(i))   -1 ≤ u exp(C ′ n α λ -µ ) -1 .
Clearly, for all ε > 0, we can choose a sufficiently small τ > 0 (depending on ε, u

, C ′ ) for all n ≥ 1, if λ -µ ≤ τ /n α , then T n λ S n µ u -u < ε.
Hence, it is enough to assume (6) to get (b) of Theorem 1.5. Let us now turn to (a), under the assumption [START_REF] Falconer | Fractal geometry: Mathematical foundations and applications[END_REF]. What we need is the product w 1 (a) • • • w n (a) not to be too small. Lemma 4.1. Let α ∈ (0, 1] and assume that there exist C 1 , C 2 and

C 3 > 0 such that • a ∈ I → n j=1 log(w j (a)) is C 1 n α -Lipschitz; • inf a∈I w 1 (a) • • • w n (a) ≥ C 2 exp(C 3 n α ).
There exists D > 0 such that, for all u ∈ D, there exist M > 0 and N > 0 such that, for all λ, µ ∈ I d , for all n ≥ 0 and k ≥ N such that λ -µ ≤ D k α (n+k) α , then

T n+k λ S n µ u ≤ M k and T n λ S n+k µ u ≤ M k .
Proof. Again we fix L > 0 such that the support of each u(i) is contained in [0, L].

Choosing N > L, we will have T n+k λ S n µ u = 0 provided k ≥ N . On the other hand,

T n λ S n+k µ u ≤ u max i=1,...,d max l=0,...,L w l+1 (λ(i)) • • • w l+n+k (λ(i)) w l+1 (µ(i)) • • • w l+n+k (µ(i)) F 1 × 1 w l+1 (λ(i)) • • • w l+k (λ(i)) F 2
We write

F 1 ≤ w 1 (λ(i)) • • • w l+n+k (λ(i)) w 1 (µ(i)) • • • w l+n+k (µ(i)) × w 1 (µ(i)) • • • w l (µ(i)) w 1 (λ(i)) • • • w l (λ(i)) ≤ exp C 1 ((l + n + k) α + l α ) λ -µ ≤ exp 2C 1 (n + k) α λ -µ provided N , hence k, is large enough. If we add the assumption λ -µ ≤ Dk α (n+k) α , we get F 1 ≤ exp(2DC 1 k α ).
On the other hand

F 2 ≤ sup a∈I sup l∈[1,L] max(1, w l (a)) L 1 C 2 exp(-C 3 k α ). Hence T n λ S n+k µ u ≤ M exp((2DC 1 -C 3 )k α )
for some constant M depending only on u and on the weight, but not on k and n. Thus, we get the result by picking D sufficiently small.

Summarizing we have obtained the following readable corollary.

Corollary 4.2. Let γ ∈ (0, d] and let Λ ⊂ I d be a compact set with homogeneous box dimension at most γ. Let α ∈ (0, 1/γ) and let (w(a)) a∈I be a continuous family of positive weights. Assume that there exist C 1 , C 2 , C 3 > 0 and N ≥ 0 such that, for all n ≥ N , 

• a ∈ I → n j=1 log(w j (a)) is C 1 n α -Lipschitz; • inf a∈I w 1 (a) • • • w n (a) ≥ C 2 exp(C 3 n α ). Then λ∈Λ HC(B w(λ(1)) × • • • × B w(λ(d)) ) is a dense G δ subset of X d .
(N), p ∈ [1, +∞), or on X = c 0 (N) such that (T λ(1) ⊕ • • • ⊕ T λ(d) ) λ∈(0,+∞) d admits a common hypercyclic vector but (T λ(1) ⊕ • • • ⊕ T λ(d+1) ) λ∈(0,+∞) d+1 does not. Proof. Choose T a = B w(a) with w 1 (a) • • • w n (a) = exp(an α ) and 1 d + 1 < α < 1 d .
Observe that Example 1. Note that it is also possible to have a family of operators (T a ) a∈(0,+∞) such that for every

d ≥ 1, (T λ(1) ⊕ • • • ⊕ T λ(d)
) λ∈(0,+∞) d admits a common hypercyclic vector.

Example 4.5. Let d ≥ 1, X = ℓ p (N), p ∈ [1, +∞)
, or on X = c 0 (N) and (w(a)) a>0 be the family of weights defined by w 1 (a)

• • • w n (a) = 2 n n a . Then λ∈(0,+∞) d HC(B w(λ(1)) × • • • × B w(λ(d)) ) = ∅.
Proof. Let α ∈ (0, 1). By definition, a ∈ (0, +∞)

→ n i=1 log(w i (a)) is log(n)-Lipschitz for all n ≥ 1. In particular it is C 1 n α -Lipschitz if C 1 is big enough. We then observe that w 1 (a) • • • w n (a) = 2 n n a ≥ exp(C 2 n α )
for some sufficiently small C 2 > 0. Hence the result follows from Corollary 4.2.

Following the same lines we can generalize the previous example by taking ρ > 1, α > 0 and defining w 1 (a)

• • • w n (a) := ρ n α n a .
Corollary 4.2 can also be applied to products of weighted shifts, in exactly the same way, when Λ ⊂ R d is a β-Hölder curve, leading to Example 1.8 since a β-Hölder curve has homogeneous box dimension at most 1/β. When β = 1, this last result is slightly weaker than Theorem 1.1, leading to the following question. 

• a ∈ I → n j=1 log(w j (a)) is C 1 log(n)-Lipschitz; • inf a∈I w 1 (a) • • • w n (a) ≥ C 2 n κ . Then λ∈I d HC(B w(λ(1)) × • • • × B w(λ(d)) ) = ∅.
Proof. We follow the proof of Corollary 4.2. Let C 1 , C 2 , κ, N be given by the assumptions. Let α ∈ (0, 1/d) be such that κ/α > d and let β ∈ (0, κ) be such that β/α > d. Condition (b) of Theorem 1.5 is clearly satisfied. To prove (a), we keep the same notations. Provided λ -µ ≤ Dk α (n+k) α , we may write

F 1 ≤ exp 2C 1 log(n + k) λ -µ ≤ exp 2DC 1 log(n + k) k α (n + k) α .
Now, provided k is large enough (we require α log k > 1), the function n → log(n+k) (n+k) α is decreasing on [0, +∞), so that

F 1 ≤ exp(2DC 1 log k) = k 2DC 1 .

This implies that

F 1 F 2 ≤ C ′ k 2DC 1 -κ ≤ C ′ k -β
provided D has been chosen so small that β + 2DC 1 < κ. Hence, condition (a) of Theorem 1.5 is also satisfied. At least, we can show that the condition dim H (Λ) ≤ 1 is not sufficient to obtain a common hypercyclic vector.

Proposition 4.12. There exists a set Λ ⊂ (0, +∞) 2 such that dim H (Λ) = 1 and nevertheless For this last example, it is easy to show that one also has dim HB (Λ) = 1.

4.4.

A lemma on sequences of integers. We now proceed with the proof of Theorem and observe that, for p = 1, . . . , m -1 and k p = 1,

m k 1 ,...,kp,1,...,1 (i) = n i,k 1 ,...,kp,1,...,1 = 1 1 -B 1/α ρ (p+1)/α n i,k 1 ,...,kp-1,r,...,r + A = 1 1 -(Bρ) 1/α ρ p/α m k 1 ,...,kp-1,r,...,r (i) + A.
Therefore, the induction hypothesis yields, for each i = 2, . . . , r,

n i,r,...,r ≤ C(m -1, Bρ)n i,1,...,1 + D(m -1, Bρ)A ≤ q B C(m -1, Bρ)n i-1,r,...,r + C(m -1, Bρ) + D(m -1, Bρ) A.
Hence, proceeding as in the initial step and using a last time the induction hypothesis for i = 1, we find n r,...,r ≤ q B C(m -1, Bρ)

r-1 n 1,r,...,r

+ (r -1)q r-1 B C(m -1, Bρ) + D(m -1, Bρ) A ≤ q r-1 B C(m -1, Bρ) r n 1 + rq r-1 B C(m -1, Bρ) r-1 1 + D(m -1, Bρ) A.
Proof that Lemma 4.14 ⇒ Lemma 4.13. A simple induction yields

C(m, 1) ≤ m j=1 1 1 -ρ j/α (r-1)•r j-1 ≤ ∞ j=1 1 1 -ρ j/α (r-1)•r j-1 =: c 1 ,
the last infinite product being convergent by the assumption ρ 1/α r < 1. More precisely, we have

log C(m, B) ≤ -(r -1) m j=1 log(1 -B 1/α ρ j/α )r j-1 ≤ (r -1) • C m j=1 B 1/α ρ j/α r j-1 ≤ C ′ B 1/α
for some constants C, C ′ > 0 which only depend on ρ, α and r (recall that B ∈ (0, 1]). We use this bound to estimate D(m, B):

D(m, B) ≤ rC(m, B)(1 + D(m -1, Bρ)) ≤ r exp(C ′ B 1/α )D(m -1, Bρ) + r exp(C ′ B 1/α ).
By another induction, we get

D(m, B) ≤ r m-1 exp C ′ B 1/α m-2 j=0 ρ j/α D(1, Bρ m-1 ) + r m-2 j=0 r j exp C ′ B 1/α j i=0 ρ i/α .
The convergence of j ρ j/α yields the existence of c 2 , depending only on α, ρ and r, such that D(m, 1) ≤ c 2 r m . 4.5. A covering lemma. We now produce the desired covering together with the sequence of integers. We thus fix Λ a compact subset of R d with homogeneous box dimension at most γ ∈ (0, d]. Let r ≥ 2 and C(Λ) > 0 be such that, for all m ≥ 1, one can construct the compact sets (Λ k ) k∈I m r as in Definition 1.4. We also fix ρ = 1 r 1/γ , D > 0, α ∈ (0, 1/γ) and β > αγ. Let c 1 , c 2 be the constants given by Lemma 4.13. We will assume in this subsection that ( 7)

C(Λ) ≤ D (2c 1 ) α r 1/γ .
Lemma 4.15. For all τ > 0, for all δ > 0, for all N ≥ 1, there exist q ≥ 1, an increasing sequence of integers (n k ) k=1,...,q , a sequence of parameters (λ k ) k=1,...,q ⊂ Λ, a sequence (Λ k ) k=1,...,q of compact subsets of Λ such that (a) n 1 ≥ N , n j+1 -n j ≥ N ; (b) Λ = q k=1 Λ k and, for all k = 1, . . . , q, Λ k ⊂ B(λ k , τ /n α k ); (c) for all 1 ≤ k < j ≤ q, for all λ ∈ Λ k , for all µ ∈ Λ j ,

λ -µ ≤ D(n j -n k ) α n α j ; (d) for all k ∈ {1, . . . , q}, j =k 1 |n j -n k | β ≤ δ; (e) q j=1 1 n β j ≤ δ.
Proof. The inequality αγ < β implies that ρ β/α r < 1. We consider κ > 0, s > 0, A ≥ N and m ≥ 1 satisfying the following constraints:

κ := τ 1/α 4c 1 (C(Λ)) 1/α , rκ -β +∞ p=s (rρ β/α ) p < δ 3 , r s+1 l=1 1 l β A β < δ 3 , 1 2c 1 τ ρ m C(Λ) 1/α ≥ max 3 δ 1/β , 2 + c 2 c 1 Ar m , N .
Observe that the conditions imposed on ρ, α, β and r allow us to define successively s, A and m. We set

n 1 := 1 2c 1 τ ρ m C(Λ)
1/α and we consider the sequence (n k ) k∈I m r defined by Lemma 4.13. We first remark that (a) is satisfied since n 1 ≥ N and n j+1 -n j ≥ A for every j ≥ 1. We then set q = r m and we observe that max(n k : k ∈ I m r ) = n r,...,r

≤ 1 2 τ ρ m C(Λ) 1/α + c 2 Ar m ≤ τ ρ m C(Λ) 1/α -2c 1 ≤ 2c 1 n 1 ≤ τ ρ m C(Λ) 1/α .
We then consider the covering (Λ k ) k∈I m r of Λ given by Definition 1.4 and we fix

λ k ∈ Λ k . Since diam(Λ k ) ≤ ρ m C(Λ) ≤ τ n α k ,
we get (b). Let now k, j ∈ I m r with k < j and let λ ∈ Λ k , µ ∈ Λ j . Let p be the biggest integer such that k 1 = j 1 , . . . , k p-1 = j p-1 so that k p < j p . Then λ and µ both belong to Λ k 1 ,...,k p-1 which has diameter less than ρ p-1 C(Λ). On the other hand the definition of the sequence (n i ) ensures that

n j -n k ≥ 1 1 -ρ p/α -1 n k ≥ ρ p/α n k ≥ ρ p/α 2c 1 n j so that (c) is satisfied, since λ -µ ≤ C(Λ) ρ ρ p ≤ (2c 1 ) α C(Λ) ρ n j -n k n j α ≤ D n j -n k n j α .
Let us now prove (d) and (e). For j = k ∈ I m r , we denote by γ(j, k) the biggest integer p such that k 1 = j 1 , . . . , k p-1 = j p-1 , with γ(j, k) = 1 if k 1 = j 1 . In particular, if we fix k ∈ I m r and p ∈ {1, . . . , m}, we can observe that card ({j ∈ I m r : γ(j, k) = p}) ≤ r m+1-p .

Moreover, if γ(j, k) = p, then the computation done above shows that |n j -n k | ≥ ρ p/α n 1 ≥ κρ -(m-p)/α .

We then split the sum appearing in (d) into two parts. On the one hand, using this last estimation, by the choice of s. On the other hand, we observe that there are at most r +• • •+r s ≤ r s+1 elements j ∈ I m r such that j = k and γ(j, k) ≥ m -s + 1. Moreover, the difference between two consecutive terms of the sequence (n j ) is at least A. Thus, j =k γ(j,k)≥m-s+1

1 |n j -n k | β ≤ r s+1 l=1 1 l β A β < δ 3 .
This achieves the proof of (d) with the stronger bound 2δ/3. Moreover, we can use this improved estimate to get easily (e): Proof. We shall prove that the assumptions of the Basic Criterion are satisfied. Let r ≥ 2 be such that, for all m ≥ 0, there exists a sequence of compact sets (Λ k ) k∈I m r satisfying the assumptions of Definition 1.4. Since for each m ≥ 1 and each k ∈ I m r , the set Λ ′ = Λ k satisfies the same assumptions as Λ with C(Λ ′ ) = C(Λ) 1 r 1/γ m (just define, for j ∈ I m ′ r , Λ ′ j = Λ k,j ) and since the assumptions of Theorem 1.5 are satisfied by Λ ′ for the same constants α, β and D, we may assume that C(Λ) ≤ D (2c 1 ) α r 1/γ . Let ε > 0, u, v ∈ D. Let C, τ > 0 and N ∈ N be such that the assumptions of Theorem 1.5 are satisfied for both u and v. We then consider the sequences (n k ), (λ k ) and (Λ k ) given by Lemma 4.15 applied with τ, N and δ = ε/C (we may always assume that C ≥ 1). It is now an easy exercise to prove that the assumptions of the Basic Criterion are satisfied. The most difficult point is to prove that, for all k ∈ {1, . . . , q}, for all λ ∈ Λ k , one has Observe that in the previous proof the condition α < 1/γ was needed to get the convergence of the infinite product defining C(m, 1). 

  let (w(a)) a∈I be a family of weights. Assume that there exist C, α > 0 such that, for any n ≥ 1, for any a, b ∈ I, n j=1 log w j (a) -n j=1 log w j (b) ≥ Cn α |a -b|.

Figure 1 .

 1 Figure 1. How to order the dyadic covering (m = 2)

  j (a) -log w j (b) ≤ C ′ n α |a -b|. Let u = (u(1), . . . , u(d)) ∈ D and consider L > 0 such that the support of each u

Corollary 4 .

 4 2 yields immediately Corollary 1.6 stated in the introduction. Combining Example 1.7 and Example 3.4, we get the following interesting corollary.

Corollary 4 . 3 .

 43 Let d ≥ 1.There exists a family of operators (T a ) a∈(0,+∞) on ℓ p

Question 4 . 4 .

 44 7 and Example 3.4 do not settle the case α = 1/d. Let d ≥ 2, X = ℓ p (N), p ∈ [1, +∞), or X = c 0 (N) and let (w(a)) a>0 be the family of weights defined by w 1 (a) • • • w n (a) := exp(an 1/d ). Does (B w(λ(1)) × • • • × B w(λ(d)) ) λ(0,+∞) d admit a common hypercyclic vector?

Question 4 . 6 .

 46 Let Λ ⊂ (0, +∞) d be a β-Hölder curve for some β ∈ (0, 1). Let (w(a)) a>0 be the family of weights defined by w 1 (a)• • • w n (a) = exp(an β ) for all n ≥ 1. Does (B w(λ(1)) × • • • × B w(λ(d))) λ∈Λ admit a common hypercyclic vector? Now let us focus on the case w n (a) = 1 + a n . The product w 1 (a)• • • w n (a) behaves like n a , therefore a → n i=1 log(w i (a)) is log(n)-Lipschitz.In particular, it is Cn α -Lipschitz for all α > 0, which means that we may verify (a) of Theorem 1.5 with arbitrarily small values of β. Nevertheless the product w 1 (a) • • • w n (a) does not grow sufficiently fast in order to apply Corollary 4.2? This leads us to the forthcoming result, suitable for weights with slow varying weights.

Corollary 4 . 7 .

 47 Let X = ℓ p (N), p ∈ [1, +∞), or X = c 0 (N) and let (w(a)) a∈I be a continuous family of positive weights. Assume that there exist C 1 , C 2 , κ > 0 and N ≥ 0 such that, for all n ≥ N ,

Example 4 . 8 . 2 .

 482 Let X = ℓ p (N), p ∈ [1, +∞), or X = c 0 (N) and let (w(a)) a>0 be the family of weights defined by w n (a) = 1 + a n (resp. w n (a) := 1 + 1 n a ). Then λ∈(0,+∞) d HC(B w(λ(1)) × • • • × B w(λ(d)) ) = ∅. Let us also show how we may apply Theorem 1.5 to get a common hypercyclic vector for (e a B × e b B) (a,b)∈Λ with Λ a classical fractal set. Example 4.9. Let X = ℓ p (N), p ∈ [1, +∞), or X = c 0 (N). Let Λ be a homogeneous Cantor subset of (0, +∞) 2 with dissection ratio ρ ∈ (0, 1/4). Then (a,b)∈Λ HC(e a B × e b B) = ∅.Proof. We may apply Corollary 4.2 since Λ has homogeneous box dimension at most -ln 4/ ln ρ < 1 (we apply the definition with r = 4). Corollary 3.3 and Example 4.9 leave open the case of the Cantor set with dissection ratio ρ = 1/4. More generally, for Λ a compact subset of (0, +∞) 2 , we know thatdim H (Λ) > 1 =⇒ (a,b)∈Λ HC(e a B × e b B) = ∅ and dim HB (Λ) < 1 =⇒ (a,b)∈Λ HC(e a B × e b B) = ∅.It is natural to ask whether we can go further. In the first implication, we cannot replace the Hausdorff dimension by the homogeneous box dimension. Proposition 4.10. There exists a compact subset Λ ⊂ (0, +∞) 2 with dim HB (Λ) = 2 such that (a,b)∈Λ HC(e a B × e b B) = ∅. Proof. Let I = [1, 2] × {1} and for any n ≥ 1, any 0< k < 2 n , I n,k = {1 + k 2 n } × [1, 1 + 1 n ]. We consider Λ = I ∪ n≥1 0<k<2 n I n,k .We first remark that Λ is closed and thus compact. Let (λ m , µ m ) m≥1 ⊂ Λ be a sequence converging to (λ, µ) ∈ [1, 2] 2 . If µ m = 1 infinitely often then µ = 1 and thus (λ, µ) ∈ Λ. If we now assume that µ m = 1 for any m, then (λ m , µ m ) ∈ I nm,2km+1 for a unique n m ≥ 1 and a unique 0≤ k m ≤ 2 nm-1 -1. In particular, µ m ∈ [1, 1 + 1 nm ]. Therefore, if sup m n m = ∞,we get (λ, µ) ∈ Λ since µ = 1 and if sup m n m < ∞, up to an extraction, the sequences (n m ) m≥1 and (k m ) m≥1 are ultimately constant and (λ, µ) ∈ Λ since each I n,k is closed. Since Λ is a countable union of Lipschtiz curves, it is a consequence of Theorem 1.1 that (a,b)∈Λ HC(e a B × e b B) = ∅. It remains to show that dim HB (Λ) = 2. Note that it suffices to show that dim B (Λ) ≥ 2. Let m ≥ 2. How many cubes of size 1 2 m are needed to cover Λ? To cover each fiber I m-1,k , 0 < k < 2 m-1 , we need at least 2 m /(m -1) cubes of size 2 -m . Note that such a cube cannot intersect another fiber of the same generation I m-1,l with l = k. Therefore, in order to cover 0<k<2 m-1 I m-1,k , and thus Λ, we need at least (2 m-1 -1) • 2 m /(m -1) cubes of size 2 -m . We conclude that N (2 -m ) ≥ c 4 m m for some c > 0. Therefore, dim B (Λ) ≥ lim m→+∞ m log 4 -log m m log 2 = However the following question is open. Question 4.11. Let Λ be a compact subset of (0, +∞) 2 such that dim H (Λ) < 1. Does the family (e a B × e b B) (a,b)∈Λ admit a common hypercyclic vector?

4 × 4 m (m + 1 ) 2 .

 4412 (a,b)∈Λ HC(e a B × e b B) = ∅. Proof. Let φ(x) = x/ log 2 (x). Applying Theorem 3.1 as in the proof of Corollary 3.2, we know that H φ (Λ) = 0 for any Λ ⊂ (0, +∞) 2 such that (a,b)∈Λ HC(e a B × e b B) = ∅. Consider now for Λ the Cantor set starting from [1, 2] 2 and with non-constant dissection ratio 1 (j+1) 2 j 2 . Namely, Λ = m≥1 Λ m where Λ m consists in 4 m squares of width 1 Then dim H (Λ) = 1 and using the mass transference principle as in [6, Example 4.3], H φ (Λ) > 0. Hence, (a,b)∈Λ HC(e a B × e b B) = ∅.

1 . 5 . 1 r

 151 Let us start with Λ a compact subset of R d with homogeneous box dimension at most γ ∈ (0, d]. In order to apply the Basic Criterion, we will need a covering of Λ. Natural coverings are given by the definition of the homogeneous box dimension, namely by the sets (Λ k ) k∈I m r for a given value of m. As pointed out above, the way we order these sets which itself gives the (nonoptimal) values for C(1, B) and D(1, B) as in the statement. Let us now assume that the property is true at rank m -1 and let us verify it at rank m. For k ∈ I m-and i ∈ {1, . . . , r}, define m k (i) := n i,k 1 ,...,k m-1

  j =k γ(j,k)≤m-s 1 |n j -n k | β ≤ m-s p=1 j =k γ(j,k)=p κ -β ρ (m-p)β/α ≤ m-s p=1 rκ -β (rρ β/α ) m-p ≤ rκ -β +∞ p=s (rρ β/α ) p < δ 3

1

 1 |n k -n 1,...,1 | β < δ.4.6. Proof of Theorem 1.5.

λ

  S n k λ k v ≤ j>k C (n j -n k ) β , whereas, when j < k, λ -λ j ≤ D (n k -n j ) -n j ) β .Property (d) of Lemma 4.15 now finishes the job. Question 4.16. Condition (b) of Theorem 1.5 does not perfectly match (CS2) of the Costakis-Sambarino theorem because we cannot take α = 1/γ. Is it possible to cover this last case (changing if necessary condition (a))?
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is very important. We will choose the ordering obtained by endowing I m r with its natural lexicographic order: (i 1 , . . . , i m ) < (j 1 , . . . , j m ) ⇐⇒ ∃p ∈ {1, . . . , m}, i 1 = j 1 , . . . , i p-1 = j p-1 and j p > i p .

We first define the sequence (n k ) k∈I m r . Lemma 4.13. Let α > 0, ρ ∈ (0, 1) and r ≥ 2 be such that ρ 1/α r < 1. Then there exist c 1 > 0 and c 2 > 0 such that, for all m ≥ 1, for all n 1 ≥ 1, for all A > 0, the sequence

A key point of this lemma is that c 1 and c 2 depend neither on m nor on n 1 nor on A. We will do the proof by induction on m. Nevertheless, we need to introduce auxiliary sequences to keep track of the involved constants at each step. Lemma 4.14. Let α > 0, ρ ∈ (0, 1) and r ≥ 2. Let also

Proof. We proceed by induction on m. To simplify the notation, let q B :=

The first step m = 1 is easy. Indeed, for k = 1, . . . , r -1, we have