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ABSTRACT 

Silicic systems generate the most explosive eruptions on Earth. ln contrast to basaltic systems, they 
can accumulate large volumes of magma without systematically erupting, confronting the classical 
interpretation that a volcano inflates when a magmatic intrusion occurs. Understanding the mechanisms 
of volcanic inflation and unrest is thus one of the most important challenges in volcanic risk assessment. 
Laguna del Maule (LdM) in the Southern Volcanic Zone (SVZ) of Chile, is one of the most active Holocene 
silicic complexes in the world and it has been inflating since 2007, accumulating 2 m of uplift without 
erupting. Severa( geophysical and geochemical studies conclude that a large crystal rich reservoir would 
be residing beneath LdM, in consistency with other multi-disciplinary studies showing that such crystal­
rich reservoirs ("mush zones") can be maintained beneath silicic volcanoes, fed by matie magma recharge 
from below. Nevertheless, the mechanical state of such reservoirs remains unclear. Here, we characterize 
for the first time the mechanical properties of such a mush reservoir, able to promote large surface 
displacements such as those measured at LdM. Using a 3D finite element method we simulate a recharge 
of magma at the base of a crystal rich reservoir, by assuming an overpressurized source surrounded by 
a large viscoelastic shell. Inversion results show that this mode! fits the observed temporal and spatial 
evolution of ground displacements measured with lnSAR data and GNSS data between 2007 and 2017. We 
interpret the temporal behavior of ground displacement at LdM as resulting from two contributions. A 
magma recharge occurred within the first 4 yr of the active inflation, followed by the viscous response of 
the large viscoelastic shell, set to a viscosity of 1017 Pas. Compared to a purely elastic solution, our model 
suggests that up to 50% of the accumulated surface displacement during the ten-year period can be 
explained by this viscous response, and predicts ongoing displacements 50 yr after the onset of inflation. 
This model agrees with geophysical and geochemical observations and offers a simple explanation of the 
temporal evolution of surface displacements. lt further allows to reconsider the mechanical behavior of 
large partially crystallized domains in the upper crust; such significant transient stress transfer over large 
viscoelastic areas should thus be accounted for in other studies of silicic volcanic complexes. 
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 Introduction 

Silicic systems generate the most explosive eruptions on Earth. 
ey can accumulate large volumes of rhyodacitic or rhyolitic mag­
as (Degruyter and Huber, 2014) and display sometimes large in-

 Corresponding auchor ac: GET/UMRS563 (UPS, CNRS, IRD, CNES); Obs. Midi­
rénées, Université P. Sabatier, Toulouse, France.. 
mE-mail address: camila.novoa@gec.omp.eu (C. Novoa). 
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tion signais over several years, without necessarily leading to an 
uption. The origin of this unrest remains unclear and is subject of 
bate in many volcanic complexes such as Long Valley, Campi Fle­
ei, Yellowstone and many others (Pritchard et al., 2019). To im­
ove eruptions forecasting, understanding the mechanical unrest 
 these silicic systems constitutes a fundamental question, if not 
e of the most important challenges in volcanology (Segall, 2019; 
itchard et al., 2019). Here, we study the unrest of Laguna del 
aule over the last decade, but the mechanism that we propose 

ay also explain the unrest of other silicic systems. 
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The Laguna del Maule (LdM) (Fig. 1) is a rhyolitic volcanic 

ld located in the Southern Volcanic Zone (SVZ) of Chile that 

st erupted ~2000 yr ago (Andersen et al., 2012). It is consid­

ed to be an active rhyolitic complex since it displays the highest 
equency of eruptions in the world (Hildreth et al., 2010) with 

minimum of 50 rhyolitic eruptions in the last 26.000 yr. It is 

aracterized by a ring of 36 post-glacial rhyolite and rhyodacite 

ulees and dames erupted from 24 silicic vents which are dis­

ibuted over a wide basin of about 300 krn2 • Lava flows from this 

ghest concentration of silicic vents observed in the Southern Vol­
nic Zone covered an area of 100 km2, for a total lava volume of 

out 6.4 km3 (Hildreth et al., 2010). 

The LdM volcanic field has fostered huge interest from the 

odesy community in the last decade because it is one of the 
rongest deforming volcanic zone on Earth. Based on the analysis te
 Synthetic Aperture Radar (InSAR) data acquired between 2001 

 2008, Fournier et al. (2010) presented the first evidence of a 

rong inflation up to ~18 cm/yr over an elliptical area of 26 km 

E-SSW major axis and 19 km minor axis starting sometime be­

een February 2004 and January 2007 (the lack of well-correlated 

terferograms spanning this period prevents precise determina­

n of the displacement onset). Using JnSAR and Global Navigation 

tellite System (GNSS) data, Feigl et al. (2013) showed the persis­

nce of this large-wavelength inflation and provided a value of the 

splacement rate observed at the center of the inflation of about 
 cm/yr for the 2007-2012 period. The studies carried out by Le 

ével et al. (2015, 2016) revealed a temporal change in behavior 

 the displacement rate with 24 ± 0.6 cm/yr from 2007 to early 

10 decaying to 22 cm/yr in 2014 (consistent with a nearly linear 
mporal behavior after 2010). 



Fournier et al. (2010), Feigl et al. (2013) and Le Mével et al.
(2015) proposed that this uplift observed at LdM was caused by an 
inflating sill located at about 5 km depth. These studies assumed 
that the crust surrounding the displacement sources behaved as a 
pure elastic solid (Okada, 1985). Only Le Mével et al. (2016) con-
sidered a more complex viscoelastic response of the rocks in the 
vicinity of the pressurized source. These authors propose to explain 
the change in temporal behavior of surface displacements by vis-
cous magma influx from a deep chamber into a shallow chamber 
connected by a vertical conduit. In this model the magma’s in-
flux asymptotically approaches zero as the pressure balance of this 
plumbing system is reached. It allows them to correlate the change 
in observed surface uplift rate with a bi-modal evolution of magma 
volume flow rate from 0.03 km3/yr from 2007 to mid-2009 to 0.02 
km3/yr from mid-2009 to late 2014.

Multiple lines of evidence suggest the presence of a crystal 
rich reservoir at shallow crustal level beneath the LdM volcanic 
field. Field observations and geochemical data indicate that the 
huge concentration of silicic vents observed in the area is rather 
due to a large upper-crustal magma chamber evolving throughout 
postglacial times, instead of a deeper (i.e. 20 km) crustal melt-
ing zone releasing recurrent batches of ascending silicic magma 
(Hildreth et al., 2010). From geochemical analysis, Andersen et al.
(2017) argued that all eruptions since 26 kyr were fed by the same 
large crystallized reservoir, despite differences between the north-
ern and southern domains of the LdM. According to these authors, 
the crustal reservoir system would be thinner in the north leading 
to a lower residence time of the magmatic intrusion and induc-
ing andesitic vent compositions, in contrast to the southern part 
of LdM where principally rhyolitic eruptions occurred. Magnetotel-
luric (MT) studies in turn (Singer et al., 2014; Wagner et al., 2017;
Cordell et al., 2018) indicate the presence of a conductive body 
in the northern part of LdM at about 5 km depth, which was in-
terpreted as a hot partially molten body. On the other hand, in 
the southern part of LdM, Bouguer gravity anomalies indicate an 
anomaly of −19 mGal centered below the observed on-going infla-
tion (Nieblas area, Fig. 1), which would be caused by a low density 
mostly crystallized magma body (∼115 km3) containing some 30 
km3 of crystal poor rhyolite magma (>85 % of melt) (Miller et 
al., 2017). Cordell et al. (2018) support the hypothesis of a large 
crystal rich reservoir beneath the observed on-going inflation, but 
question the existence of 30 km3 of molten magma, arguing that it 
would then be detected by their magnetotelluric study (MT). From 
these different studies, it appears reasonable to consider that be-
neath the entire volcanic complex of LdM a large partially molten 
body may have been residing since at least the last 26 kyr, but 
both the geometry and the storage duration of this magma source 
remains unclear. Here we will investigate how such a hypothesis 
may help to interpret the strong surface displacements measured 
in the Nieblas area.

In this study, we benefit from a long InSAR time series of 
ground surface displacement at LdM spanning a period of ten years 
to analyze the characteristic of the surface displacement source 
and its time-dependent behavior. First, to constrain the geometry 
of the source, we invert the InSAR time series considering that sur-
face displacements are triggered by an increase in internal pressure 
within a massive source assuming that the crust acts as a pure 
elastic medium. Next, in order to account for a more complex rhe-
ology related to the presence of a mush reservoir beneath LdM, 
we use a 3D finite element approach to study the viscoelastic re-
sponse of a large crystal rich reservoir to an inflating basal magma 
source. We invert the InSAR and GNSS time series with this model 
to constrain the duration of the source’s inflation and the viscosity 
associated to this crystal rich reservoir beneath LdM. The results 
show that both sets of elastic and visco-elastic models are able to 
explain the measured ground surface displacement at LdM. How-
ever they both lead to different conclusions, and provide useful 
information for a better characterization and understanding of the 
present-day magmatic activity at LdM.

2. GNSS and InSAR data

Ground deformation at LdM was characterized from daily solu-
tions at five continuous GNSS stations installed by the Observatorio 
Volcanológico de los Andes del Sur (OVDAS) covering a period of 
about five years (May 2012 to April 2017) (Fig. 2). SAR imagery 
over LdM was acquired by two satellite missions: C-band Interfero-
metric Wide Swath mode images from the European Space Agency 
(ESA) Sentinel-1A/B (Table 1) and L-band Stripmap mode images 
from ALOS 1 and 2 operated by the Japan Aerospace Exploration 
Agency (JAXA). Full details on GNSS and InSAR processing can be 
found in Supplemental Section S1.

3. Time series analysis

The good agreement between the GNSS and InSAR data con-
firms the reliability of the InSAR processing (Fig. 3B). The subset 
of inverted InSAR time series (Fig. 3) indicates that C-band and 
L-band data exhibit a good coherence (>0.6) over most of the
study area. The time series maps also reveal a displacement pat-
tern affecting an elliptical area with a 26 km NNE-SSW major axis
and a 19 km minor axis with a difference between ascending and
descending tracks due to their difference in satellite viewing ge-
ometry. The resulting GNSS and InSAR time series are analyzed
by applying a principal component decomposition using the de-
composition algorithm available in PCAIM (Perfettini et al., 2010;
Remy et al., 2014) (see details in Supplemental section S2.1). This
analysis suggests that the shape of the displacement field remains
nearly constant over the three-year period and that only the am-
plitude of the signal evolves linearly over time, indicating that the
observed signal is mainly the result of a unique process.

3.1. Spatial and temporal patterns of the ground displacement at LdM

We benefit from the ascending and descending Sentinel-1 
tracks to retrieve the easting and the vertical components of the 
ground displacement, allowing us to map the displacement field at 
LdM (see Text S2.2 for a detailed explanation). The resulting maps 
of vertical and horizontal displacement rates derived from Sentinel 
data from October 2014 to July 2017 are shown in Fig. 4A. Vertical 
displacement rates reach a maximum of 20 cm/yr, while maxi-
mum eastern displacement rates are lower reaching 10 cm/yr and 
5 cm/yr for the displacement to the west and to the east, respec-
tively. The easting displacement map exhibits clearly a double-lobe 
pattern along a N10◦–N30◦ axis with a positive lobe pattern (dis-
placement toward the east) much smaller than the negative one 
(displacement toward the west). Assuming a homogeneous crust, 
such a behavior suggests that the source roof is not horizontal. An-
other hypothesis is that this asymmetry is due to spatial variations 
in the mechanical properties of the rocks. However, in absence of 
more precise information on rock layering at depth, and given that 
a number of non-unique rock heterogeneities can explain simi-
lar displacement patterns (e.g. see review by Mastelark (2007), we 
choose to condense the information of this pattern into a single 
meaningful property, e.g. the roof of the magmatic source (there 
may be a gradational transition of the rock magma boundary, e.g. 
see discussion in Townsend et al., 2019).

We take advantage of the availability of the InSAR data acquired 
since 2007 by ALOS-1 satellite to extent the period of ground 
displacement measurements at the location of the GNSS station 
MAU2, which records is the highest rate of displacement at LdM. 
It was not possible to use ENVISAT data for this purpose since 
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ly one interferogram formed from the C-band Envisat images ac­

ired in March 2003 and February 2004 is coherent, and it does 

t reveal any displacements. Consequently, we generate two in­

pendent ALOS-1 lnSAR time series from tracks 112 and 113, 

ing a similar approach to the one used previously. As the LOS are 

ry close for these two tracks, we can compare the two resulting 

SAR time series. This comparison shows a good agreement be­

een the two independent datasets providing confidence in our 

SAR processing (Fig. 4B). ln order to make the GPS vectors geo­

etrically comparable with the lnSAR data, we projected the GPS 

ctor observed at MAU2 into the LOS of the track 112. To fill the 

p between the end of lnSAR measurement and the beginning of 

e acquisition at MAU2 we used the average velocity observed at 
AU2 using ALOSl data spanning the one-year period 2010-2011. al
 agreement with Le Mével et al. (2016), the reconstructed dis­
acement time history recorded at MAU2 from January 2007 to 

ly 2017 highlights a clear decrease of the displacement rate at 

AU2 from 24.4 cm/yr for the period spanning January 2007 to 

nuary 2011 and 15 cm/yr for the period spanning October 2014 

 January 2017 (Fig. 4B). 

Mechanical modeling strategy

We first verify our assumption that the surface displacements 

easured by lnSAR and GNSS could be related to a pressure in­

ease in a massive source. To determine the most appropriate 

ometry of such a source, we consider a variety of classical an­
ytical source geometries to mode! the surface displacements at 
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M (more details are in Supplemental section S3). Inversions fa­
r flat-topped sources rather than spheres or prolate ellipsoids 

ee Supplemental Table S1), in agreement with the estimated ra­
 of maximum horizontal to maximum vertical displacement, 

ual to about 0.31 according to GNSS measurements (Dieterich 

d Decker, 1975; Remy et al., 2014). Therefore, we explore how 

large and wide flat-topped pressurized cavity immersed in an 
astic crust. can simulate a reservoir filled with a Iow-viscosity 
agmatic fluid. We assume that the pressure increases within this 

rge and wide flat-topped reservoir, with the shape of an ellip­

al truncated cone. ln a second step, and following authors like 

llinek and DePaolo (2003) or Le Mével et al. (2016) who consid­

ed a viscoelastic upper crust, we search for a mode( that would 

mulate the intrusion of new magma at the base of a large silicic 
ush reservoir itself acting as a viscoelastic boundary zone. We 

sume that this large reservoir is composed of Iargely crystallized 

yolite close to the solidus temperature (670 °C) or of country 

ck heated above the brittle-ductile transition (S00-600 °C), as 

as deduced from geochemical and thermodynamic models for 

M (Andersen et al., 2017; Miller et al., 2017). We also assume 

at the timescale of surface deformation is very small compared 
 the temperature evolution of the system, with a diffusive time­

ale r = L 2 /k ~ 1 Myr (L ~ 5 km the characteristic width of the

servoir and k ~ 10-6 m2/s the thermal diffusivity). Therefore, it 

 reasonable to consider a steady-state temperature, and conse­
ently we define a steady-state viscosity inside a shell that be- pl
ves according to Maxwell viscoelasticity (Del Negro et al., 2008; 

rrenti and Williams, 2014; Segall, 2016 and references therein). 

e main difficulty then stands in inferring the geometry of this 
servoir. First, we verify that our finite-element method Adeli-3D 

assani et al., 1997), which accounts for viscoelasticity, matches 
assical analytical solutions (e.g. Segall, 2010, details presented in 

pplemental section S4). Then, we compare the results produced 
 Adeli-3D with those produced by the 30-boundary-elements 
ethod MO (Cayo( and Cornet, 1998) that accounts for elasticity 

ly. Therefore, we compare the surface displacements produced 

 a truncated cone embedded in an elastic domain (with MO) 

ith those produced by this same truncated cone acting as a vis­

elastic shell at the base of which a small pressure source is de­

ed (with Adeli-3D). Our results show that both models produce 
e same patterns of ground surface displacements after enough 

e allows for the complete transfer of pressure from the in­

r source to the visco-elastic shell walls. This convergence, is 

pected from analytical models (Segall, 2010, for further details 

fer to Supplemental section SS). Therefore, taking these results 

to account, we first invert the observed ground surface displace­

ents considering that they are triggered by a pressure increase 
 an elliptical truncated cone embedded in an elastic medium 

ection 4.1), and second we use the geometrical parameters in­

rred from that inversion to explore the influence of a viscoelastic 

sponse of this truncated cone on the temporal evolution of dis­
acement field (section 4.2). 



Table 2
Parameters of the different ground deformation models. X and Y are the location
of the source center expressed in km (UTM WGS84 zone 19 South). Depth is the
depth below the mean surface elevation (i.e., 2500 m asl). V is the volume of the
elliptical truncated cone. �V is the rate of volume change from October, 2014 to
July 2017. �P is the rate of pressure change from October, 2014 to July 2017. S1

is the major axis and S2 the minor axis. Strike is clockwise angle relative to the
north, Dip is the dip angle of the minor axis, alpha is the dip angle of the source
wall with the following convention, alpha <0 the source walls dip outward (i.e.
a cone which widens downward) and alpha >0 the source walls dip inward (i.e.
a cone which narrows downward). �P and �V are the rate of pressure and of
volume changes from October, 2014 to July 2017, respectively. V is the volume of
the elliptical truncated cone estimated from the geometrical parameters inferred
from the inversion. χ2

r is the value of the fit of model to data. t1 is the loading 
time, η: the viscosity, P the pressure in the basal magmatic intrusion and rms is
the root mean square difference between modeled and observed displacement at
MAU2.

Model form Model 1 Model 2 Model 3

Parameters inferred from elastic inverse models
X position (km) 361.267 361.948 360.949
Y position (km) 6007.115 6006.876 6007.321
Depth (km) 5.42 3.00 5.15
S1 (km) 11.52 3.00 12.58
S2 (km) 8.92 2.22 8.85
Strike (◦) 23 25 24
Dip (◦) −19 −23 −23
Height (m) 1000 3000 2000
Alpha (◦) 0 −60 59
�P (MPa y−1) 1.35 1.45 1.66
�V (km3 y−1) 0.0214 0.0190 0.0205
V (km3) 80.97 137.17 100.75
χ2

r 1.07 1.08 1.08

Parameters inferred from visco-elastic inverse models
t1 (days) 1980.95 1742.5 1549.36
η (Pa s) 9.97e16 9.5e16 9.94e16
P (MPa) 36 18.7 23
rms (m) 0.04 0.02 0.01

4.1. Modeling of ground deformation with an elastic rheology

To determine the best fitting reservoir geometry, we use MC3 
for linear elastic media (Cayol and Cornet, 1998) and the following 
inversion scheme. For all model cases, we assume a homogeneous 
crust with Poisson’s ratio of 0.25 and a shear modulus of 13 GPa 
obtained from the velocity model from Cardona et al. (2018), as-
suming a constant density of the upper crust of 2500 kg/m3. In 
agreement with the result of the decomposition, we invert only 
the first principal component of the different data set in order to 
search for the geometries that best explain the data, rather than 
inverting the displacement data available at each epoch. Next, we 
use the resulting best geometries for the elliptical truncated cone 
to compute the pressure history of the sources using the same 
approach as Remy et al. (2014). The inversion is performed us-
ing a neighborhood search algorithm (Sambridge, 1999a, 1999b), 
which finds optimal values of the parameters by minimizing the 
chi-square and allows for a detailed exploration of the parameter 
space. The reduced chi-square (χ2

r ) of the residuals between obser-
vations and modeled displacements used to compare the goodness 
of fit of the data to the models is given by:

χ2
r = 1

N − k

∑[
Xobs − Xmod

σ

]2

Where N is the length of data and model vectors, k is the number 
of free parameters of the model, Xobs and Xmod are the observed 
and the modeled displacement and σ is the data uncertainties. 
The elliptical truncated cone source depends on the ten parame-
ters listed in Table 2. As already observed in Remy et al. (2014), the 
inversion indicates that the geographical location, the azimuth of 
the displacement source and the dip of its major axes are well re-
solved. However a trade-off appears when constraining the depth, 
thickness and dip of the source walls, leading to a continuum of 
acceptable models with a depth ranging from 2000 m to 6000 m. 
This trade-off leads also to a strong uncertainty on the determina-
tion of the source volume which varies from about 50 km3 to 200 
km3. Nevertheless, whatever the source considered, the value of 
the rate of volume change is very similar and close to 0.02 km3/yr 
from October 2014 to January 2017. Table 2 presents three charac-
teristic models from the continuum of acceptable models that are 
able to match the data. These models provide slightly lower values 
of χ2

r than the Okada-type dislocation model (see Supplemental 
Section S3). Nevertheless, similarly to the Okada-type dislocation 
model (χ2

r of 8.50), they fail to properly match the GNSS data (χ2
r

of 6.50) essentially due to significant discrepancies between the 
observed and the modeled horizontal displacements, in particular 
at station PUEL. On the other hand, χ2

r for the InSAR data increases 
with the time span between a given InSAR time series map and 
the reference image used for the least square adjustment, due to 
the presence of localized residual patterns located around the lake. 
Possible explanations for this misfit pattern can be that the ge-
ometry of the source is more complex than the simple truncated 
cone used here, or that subsurface heterogeneities alter the ground 
displacement. In Fig. 5 we compare the displacement observed on 
the largest period of each track and on a three-year 2014–2017 
period of GNSS data with the modeled displacements using one of 
the best elliptical truncated cones (Model 3 in Table 2). In order 
to check if these models are able to reproduce the ground dis-
placement field observed since 2007, we use them to invert the 
best interferograms obtained from ALOS1 (Supplemental Figs. S19 
and S20). Considering that these models still adjust well the data, 
yielding χ2

r of about 1, we conclude that it is reasonable to assume 
that the source of ground surface displacements has not changed 
significantly neither in shape nor in location since 2007.

4.2. Modeling of ground deformation with a visco-elastic rheology

In this section, we model the temporal evolution of the ground 
displacement caused by a source simulating an intrusion of mafic 
magma located at the base of a viscoelastic mush reservoir im-
mersed in an elastic crust. First, we use the 3D finite-element 
code ADELI (Hassani et al., 1997), which has been used to simulate 
a variety of geodynamical contexts, including long-term deforma-
tion at subduction zones (Hassani et al., 1997; Cerpa et al., 2015)
and short-term interseismic deformation (Contreras et al., 2016). 
This code uses a time-explicit dynamic relaxation method (Cundall, 
1988) to solve the quasi-static equation of motion, and can han-
dle a variety of visco-elasto-plastic rheologies. More details can be 
found in Chéry et al. (2001), Cerpa et al. (2015) and Gerbault et al.
(2018). The modeled mesh domain includes an elliptical truncated 
cone embedded in a surrounding elastic crust, with a pressurized 
ellipsoidal source at its base simulating magma recharge. Maxwell 
visco-elasticity is assumed inside this elliptical truncated cone, to 
simulate a crystal rich mush reservoir in agreement with Dragoni 
and Magnanensi (1989), who showed that this rheology repro-
duces well the behavior of volcanic rocks at high temperature. 
Supplemental section S4 provides benchmarks of ADELI with so-
lutions for a viscoelastic shell in an infinite medium (Dragoni and 
Magnanensi, 1989) and with solutions accounting for a free surface 
(Segall, 2010), illustrating that a resolution of 100 m is required to 
generate accurate solutions. We test a full 3D model geometry: the 
modeled domain is a cube of lateral extent 80 km, large enough 
to minimize border effects. The mesh is composed of a total of 
6,9 × 105 elements, with highest resolution (100 m) between the 
source and the free surface above (Fig. 6A). The LdM is not a high-
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solution of 100 m. 

lief volcanic edifice and the topographie slope in the area is Jess 

an the limit of 10° for which its effects become significant (Cayol 

d Cornet, 1998), therefore we define a planar top-free surface. 

e use the three characteristic chamber's geometries found in the 

evious section (Table 2), since the cumulated surface displace­

ent does not change between an elastic model and a viscoelastic 

ode! (Supplemental section SS) (Dragoni and Magnanensi, 1989; 

nafede and Ferrari, 2009). Without reliable information concern­

g the geometry of the basal magmatic intrusion, we choose to 

ply a pressure increase within a small ellipsoïdal source (volume 

 10 km3 ) situated at the base of the large elliptical truncated 

nes (Fig. 68). 

A trapezoidal function over time is then used to model the vari­

ion of pressure inside a thin ellipsoïdal source Jocated at the 

se of the large viscoelastic shell (as in Newman et al., 2001: 

gall, 2010; Del Negro et al., 2008; Parks et al., 2015). Dur­

g the first period, pressure increases linearly between 0 and 

 simulating a recharge of new magma mass at constant rate 

to an existing reservoir. During the second period, pressure re­

ains constant, which means that the characteristic time scale 

 the major processes of i) injection supply rate and ii) internai 

ecipitation and exsolution rates are basically slower than the 

laxation time of the viscoelastic shell, at the scale of the 10 
 period of measured surface deformation and over the breath Ne
 the volcanic complex. During this second period, the pressure 

ithin the viscoelastic shell progressively evolves with time, from 

 base to its outer extremities (walls). Maximum ground sur­

ce displacement is achieved when this pressure is totally trans­

rred to the walls and the roof of the visco-elastic reservoir. 

nsequently at this moment, the surface displacement pattern 

ïncides with that obtained assuming a purely elastic medium, 

ith a discrepancy Jess than 5% (Pascal et al., 2013, Supplemen­

l section SS). This behavior illustrates that the surface displace­

ents pattern is clearly dominated by the pressure increase at 

e walls of the visco-elastic domain rather than by the pres­

re inside the smaller ellipsoidal reservoir, as shown by previous 

thors with spherical sources (Dragoni and Magnanensi, 1989; 

nafede and Ferrari, 2009). 

In order to reproduce the temporal evolution of LOS displace­

ents at MAU2, we solve the inverse problem and fit these dis­

acements with our visco-elastic mode! according to the following 

proach. A grid method is used to sample the log10 of the viscos­

 (11) on the truncated cone mush reservoir, bounded by Iower 

d upper limits of 15 and 18, respectively (See Supplemental 

g. S21). The choice of these limits is based on different theoreti­

l studies (Dragoni and Magnanensi, 1989; Bonafede and Ferrari, 

09), thermomechanical models Uellinek and DePaolo, 2003; Del 
gro et al., 2008), and laboratory experiments of silicic volcanoes 
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ewman et al., 2001, 2006). Then, a Levenberg-Marquardt nu­
erical optimization grid search method determines the optimum 
ading duration of the magma injection (t0) together with the op­

um overpressure (dP) inside the ellipsoidal source and the op­
um viscosity (17) in the visco-elastic cane truncated (Levenberg, 

44). We limit the range of duration of this magma injection from 

veral months to 10 yr and the overpressure from 1 to 150 MPa. tia
e present on Fig. 7, the different viscoelastic models inferred 
m each geometry, that best match the observed 10 years-long 
e series of ground displacements at MAU2 (spanning period 

07-2017). 
The resulting viscosities ( 1J) in the truncated cane reservoir are 

ry similar in ail three mode! geometries. Nevertheless, the dura­

n of the loading time (to) and the pressure (dP) differ slightly. 



The best minimum root mean square (rms) error between ob-
served and modeled ground surface displacements are obtained 
for a viscosity η ∼ 1017 Pa s in model 1, model 2 and model 3; 
resulting in rms values of 0.04, 0.02 and 0.01 m, respectively. The 
loading time varies between t0 ∼ 4 yr for model 2 and model 3, to 
a maximum t0 ∼ 5.4 yr, for model 1 supporting the idea that the 
mafic recharge could not have been longer than the first 6 yr and 
that the remaining deformation was caused by the viscoelastic re-
sponse of the surrounding shell. The applied overpressure in the 
elliptical source at the base of the truncated cones varies slightly 
showing that a thicker viscoelastic reservoir requires less overpres-
sure to generate similar ground surface deformation; dP ranges 
from 18 MPa for the thickest viscoelastic source (3 km height) to 
36 MPa for the thinnest source (1 km height). The appropriateness 
of these values are further discussed in the following section 5.

5. Discussion

5.1. Source characterization

This study confirms that the uplift at LdM started sometime be-
tween 2004 and 2007 (Fournier et al., 2010; Feigl et al., 2013) and 
continued at least until March 2017. The decomposition of both In-
SAR and GNSS time series indicates that displacements have been 
linear in time since early 2012. The best inflating truncated cone 
models embedded in an elastic crust, deduced from the inversions 
of Sentinel 1 and GNSS data match well the ALOS1 data acquired 
from 2007 to 2011, indicating that the source’s shape and location 
have not changed significantly since 2007. Our inversions show 
that the center location, the orientation and the dip of the source 
remain very similar whatever its geometry. The center is located 
below the southwest part of the lake, its major axis is elongated 
N22◦E–23◦E and it dips down to the west with an angle of about 
20◦ . Furthermore, the inversions cannot provide strong constraints 
on the depth of the source, due to the trade-off between depth 
and pressure. Nevertheless, the estimated rate of volume change, 
of about 0.02 km3/yr from October 2014 to January 2017, is close 
to that obtained by Le Mével et al. (2016) and is independent of 
the source type when assuming a purely elastic crust and an in-
compressible magma.

5.2. Visco-elastic parameters of the mush reservoir

A large spectrum of acceptable source geometries explains the 
data, ranging from a thin source (sill) to a large massive source 
of equivalent basal area of about 10 × 8 km2. The volume and 
the thickness of this large massive source range from ∼60 to 
200 km3 and from 1000 to 3000 m, respectively. Such values 
might seem large, but they are compatible with the size of the 
magma chamber that would have triggered the formation of the 
12 × 8 km2-wide Bobadilla caldera ∼950 kyr ago (Hildreth et 
al., 2010). From the continuum of possible sources, we selected 
three representative geometries simulating a mush reservoir that 
responds visco-elastically to a basal pressure change. Whatever 
the geometry considered, they fit the temporal evolution of sur-
face displacements at MAU2 for a viscosity converging towards 
1017 Pa s. Our results indicate that a thicker mush reservoir (model 
2 and 3 in Fig. 7B–C) explains better the temporal evolution of 
surface displacements than the thinner model 1 (Fig. 7A). Model 
1 cannot explain the variation in slope that starts in 2014 (day 
∼1980, Fig. 7A), illustrating the importance of the thickness of the
mush reservoir in amplifying surface displacements.

The presence of a large mush reservoir beneath LdM has two 
main implications. (i) Although an elastic medium requires a full 
10 yr of inflation over the 10 yr of observed surface uplift, a 
visco-elastic medium “overtopping” an ellipsoidal source requires 
a shorter period of active inflation (less than 6 years), the re-
maining four-years reflecting its delayed visco-elastic response. (ii) 
Although the cumulated surface displacements are similar between 
an elastic medium and a visco-elastic medium, the visco-elastic 
mush model requires less basal magma recharge, i.e. a volume 
change 50% lower than the elastic model.

According to Le Mevel’s model, a 25 km deep reservoir would 
feed a 30–60 m wide conduit with mafic magma during the first 
2 yr (2007–2009) at a constant increasing pressure rate, itself fill-
ing in a shallow crustal reservoir. Over the following years, the 
pressure remains constant in the deep reservoir, but it continues 
to increase in the shallow reservoir until hydrostatic equilibrium 
is reached. This model explains both the amplitude and the pro-
gressive deceleration of the ground surface displacements with the 
elastic response of the bedrock surrounding the upper chamber. Le 
Mével et al. (2016) justify their assumption of an elastical bedrock 
by showing that a viscous component of deformation increments 
the surface uplift by only 4% compared to a purely elastic solution. 
But these authors assumed that the viscoelastic shell corresponds 
to the thermal variation associated to a mafic intrusion into a small 
magmatic source (16 km3), thus insufficient to significantly am-
plify ground surface displacements. This would imply a continuous 
supply of magmatic material from below. Our assumptions here 
differ from Le Mével et al. (2016) because we consider a thicker 
mush reservoir developing over at least 26 kyr, hypothesizing that 
it would be continuously reheated with mafic magma during that 
broader time-scale. This assumption is coherent with the process 
suggested by Andersen et al. (2017) and others pointing towards 
the presence of a long-standing near-solidus magma body beneath 
the area of active uplift, cf. Section 5.3 below.

5.3. Large near-solidus magma body beneath LdM

The volume of the “mush” reservoir inferred by the inversion of 
InSAR and GNSS data must be taken with caution as we did not ac-
count for the possible contribution of additional viscous and brittle 
deformation of the bedrock around and below the reservoir. This 
host rock could be mechanically damaged by dyking and meta-
morphic reactions in a potentially hydrated environment, which 
would contribute to further reducing its effective strength (Rubin 
Allan, 1995; Newman et al., 2001; Jellinek and DePaolo, 2003;
Gerbault et al., 2018). The viscosity of about 1017 Pa s inferred 
from our modeling study is one order of magnitude below com-
mon values of crustal viscosity ∼1018 Pa s inferred for volcanic 
regions with a large amount of heated country rock (Newman 
et al., 2006; Parks et al., 2015; Le Mével et al., 2016), but it is 
higher than that obtained in other thermo-mechanical studies such 
as those of Del Negro et al. (2008) and Currenti and Williams
(2014) that obtained a crystal viscosity of ∼1016 Pa s. This value 
of 1017 Pa s is in turn too high to support the hypothesis of a 
large quantity of molten magma beneath the LdM volcanic com-
plex, which is in agreement with the main conclusions of the MT 
analysis carried out by Cordell et al. (2018), who suggested that 
a molten magma body below the uplift area was unlikely to be 
greater than 10–20 km3. Our modeled values are also consistent 
with the gravity anomaly pattern reaching 19 mGal at the center 
of inflation, which was interpreted to witness a large shallow sili-
cic system of low density, mostly crystallized magma (Miller et al., 
2017). It is also consistent with the results of isotopic geochem-
ical studies that rule out the possibility of LdM rhyolites being 
generated in the lower crust, and rather favor the hypothesis that 
the last period of activity resulted from mafic magma intruding 
a well-developed pre-existing crystallized rhyolitic reservoir in the 
shallow crust (Andersen et al., 2017).

Jellinek and DePaolo (2003) pointed out that the accumula-
tion of large quantities of magma for many years in silicic vol-



canoes is favored by warm-wall rocks with lower effective vis-
cosity compared to conventional bedrocks. Conjointly for silicic 
volcanoes, Cooper and Kent (2014) suggested for Mount Hood, 
USA, that nearly all of the duration of magma storage (>88% and 
perhaps 99%) occurs at near-solidus conditions, i.e. under rela-
tively cool (<750◦), viscous and uneruptible conditions. They sug-
gested that eruptions in these systems occur via remobilization of 
a cold and rigid state that reacts immediately to mafic recharge, 
as had also been suggested for other silicic volcanoes such as 
Taupo volcano, Long Valley, and others (Charlier et al., 2004;
Hildreth, 2004; Hildreth and Wilson, 2007; Cooper and Kent, 2014;
Degruyter and Huber, 2014). This concept of magma storage is also 
similar to that proposed in the recent study by Szymanowski et al.
(2017) from the analysis of zircon and titanite crystals collected 
in the Kneeling Nun Tuff (New Mexico). These authors conclude 
that magma has been mainly stored at cold temperatures rang-
ing from 680 to 730◦ . Therefore, despite the detection by MT of a 
large partially molten magma body in the northern zone of LdM, 
which could forecast an imminent eruption, the small volume of 
high melt concentrations immediately below LdM probably reflects 
that the mafic recharge is not able to promote an eruption. A 
large near-solidus magma body beneath LdM maintained in a non-
eruptible state, might still be reactivated before an eruption, but 
not necessarily “enough”.

A significant influx of magma over a long period of time is 
still required to allow for the development of a long-lived large 
near-solidus magma body (Annen, 2009; Galetto et al., 2017), or 
else diffusive cooling would freeze it. At LdM, the abundance and 
the frequency of post-glacial rhyolitic eruptions are characterized 
by a prolonged history of explosive silicic eruptions since 1.5 Ma 
(for instance the Bobadilla caldera collapse ∼950 ka ago, Hildreth 
et al., 2010). The development of this high crystal rich reservoir 
with successive transient mafic recharges might be linked with the 
>60 m magnitude of surface deformation accumulated since 9.4
thousand years in the southern-east zone of LdM, and that was in-
terpreted as the evidence for the incremental growth of a magma
reservoir just underneath (Singer et al., 2014, 2018). Another hy-
pothesis is that the LdM complex is fed from a large magmatic sys-
tem at >8 km of depth to the north that could provide sufficient
heat and melt to maintain the shallower system (Reyes-Wagner et
al., 2017; Cordell et al., 2018). Finally, several studies converge to
the same interpretation that the past 50 rhyolitic eruptions that
encircled the lake in the postglacial period were derived from a
single and large shallow silicic system of low density. This silicic
magmatic system together with volatile mingling within it would
furthermore inhibit the direct ascent of mafic magma to the sur-
face (Hildreth et al., 2010; Singer et al., 2014; Miller et al., 2017;
Andersen et al., 2017).

5.4. Implication on the source overpressure

The three representative geometries of viscoelastic truncated 
cones that we tested match the observed evolution of ground sur-
face displacements with a maximum residual of 4 cm between 
models and observations. The models require a basal overpres-
sure source ranging between 18 MPa for the largest viscoelastic 
reservoir (3 km thick, model 2) and 36 MPa for the thinnest vis-
coelastic reservoir (1 km thick, model 1). This pressure/thickness 
relationship can be justified with a simplified 1D analogy: con-
sidering a similar total surface uplift or deformation rate (dv) 
and a similar viscosity (η) for both geometrical domains, but 
a different height H1, H2 over which this deformation occurs, 
one can write dv = H1 × P1/η = H2 × P2/η (invoking the stan-
dard stress-strain-rate viscous constitutive relationship). This leads 
P1 × H1 = P2 × H2, showing that the thicker the viscoelastic do-
main, the smaller the overpressure required to produce the same 
uplift rate. Such overpressures remain realistic since 18 MPa is 
of the order of the tensile strength of crustal rocks and a com-
mon value assumed for overpressurised magmatic crustal reser-
voirs. 36 MPa is also likely possible in contexts of rather dry 
and competent bedrock environments (Jellinek and DePaolo, 2003;
Gerbault et al., 2018).

Finally, our study confirms that viscoelasticity is a key factor to 
promote long-term surface displacements over decades. Our model 
3 in particular, which best fits the data between 2007 and 2017 
at LdM, predicts that a four-year continuous injection of mafic 
magma at the base of a mush reservoir can promote 3.8 m of cu-
mulative displacements at station MAU2 within 50 yr (Fig. 8). This 
increase reflects the slow transference of overpressure between a 
pressurized basal source and the walls of the large mush reservoir, 
due to its retarded viscoelastic response. While an elastic model is 
a good indicator of the pressure at the walls of a large source (if 
related to a small injection of magma over a short period of time) 
it cannot reflect the activation of a large magma chamber for silicic 
volcanoes displaying long-term deformation such as LdM. In such 
cases viscoelastic shells should rather be considered. Future mea-
surements will help clarify the geometry of this large visco-elastic 
shell, and the associated inflating overpressure, further helping to 
predict the evolution of this volcanic hazard.

6. Conclusion

Our study quantifies for the first time the characteristic prop-
erties of a mush reservoir promoting large surface displacements 
above a silicic volcanic system such as LdM, Long Valley, Campi 
Flegrei, etc. Such large mush reservoirs may be associated to re-
current mafic recharges that these volcanic complexes experience, 
but do not necessarily indicate imminent eruption.

From the analysis of a 10 years-long combined time series of 
InSAR and GNSS data we first confirm the spatial and temporal 
evolution of the regional uplift (up to 2 m of accumulated dis-
placement) observed at the LdM volcanic complex. As an alterna-
tive to previously proposed models explaining such surface dis-
placements, we tested 3D visco-elastic models simulating a mafic 
magma recharge at the base of a crystal rich reservoir behaving 
visco-elastically. The tested geometries of visco-elastic reservoirs 
match the observed evolution of ground surface displacements 
over time, with a viscosity approaching 1017 Pa s. The resulting 
overpressure ranges between 18 and 36 MPa depending on the 
reservoir’s dimension. Our models support a scenario in which 
a basal mafic intrusion first inflated during the first 4 or 6 yr 
of active deformation, then triggering a continuous slow transfer 
of pressure between this basal load to the viscoelastic reservoir’s 
walls, promoting an increase in ground surface displacements for 
up to another 50 yr.

Our best fitting dimensions, viscosity and overpressure of the 
visco-elastic mush reservoir are consistent with previous interpre-
tations of a large long-lived, near-solidus magma body underneath 
LdM. This raises the issue of how such magma bodies are thermo-
mechanically maintained over time, by other mechanisms than 
standard thermal diffusion/dyking processes (metamorphism, per-
colation through porous media etc.), and calls for improving our 
understanding of the multi-scale physics of volcanic plumbing sys-
tems, also with the help of high quality geophysical and geodetic 
campaigns.
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Introduction5

Section S1 presents in details GNSS and InSAR processing used in this study.6

Section S2.1 presents a principal component analysis based on singular value7

decomposition and Section S2.2 details the strategy adopted to determine8

the easting and vertical displacement maps from ascending and descending9

Sentinel-1 data. Section S3 presents modeled ground surface displacement10

using classical analytical models. Section S4 presents a benchmark between11

the analytical solutions of Dragoni et al. (1989) and the numerical solutions12

obtained with the 3D finite-element code ADELI, for a viscoelastic rheology13

in an infinite medium. S4 presents another comparison between the numer-14

ical solutions of ADELI and those by Segall (2010), accounting for a free15

surface. Section S5 presents the comparison of surface displacement patterns16

between a pressurized elliptical source immersed in an elastic medium and17

a small pressurized source surrounded by a viscoelastic shell. In this section18

we show that the viscoelastic model reproduces the surface displacements19

produced by the elastic model after a period of time.20
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S1 GNSS and InSAR processing21

S1.1 GNSS data22

Ground deformation at LdM was characterized from daily solutions at five23

continuous GNSS stations installed by the Observatorio Volcanológico de los24

Andes del Sur (OVDAS) covering a period of about five years (May 2012 to25

April 2017). The GNSS data were provided by OVDAS and processed using26

the GIPSY software from JPL. We obtained the precise ground displace-27

ment time series in three dimensions at GNSS stations after correcting for28

plate motion and long spatial wavelength post-seismic surface deformation29

associated with the 2010 Maule earthquake derived from the data recorded30

at MAUL station, about 39 km away from the center of the LdM volcanic31

complex (Li et al., 2018). The 1σ accuracy of the daily station positions is32

estimated at 3 mm and 5 mm for the horizontal and the vertical components,33

respectively.34

S1.2 InSAR data35

SAR imagery over LdM was acquired by two satellite missions: C-band36

Interferometric Wide Swath mode images from the European Space Agency37

(ESA) Sentinel-1A/B and L-band Stripmap mode images from ALOS 1 and38

2 operated by the Japan Aerospace Exploration Agency (JAXA). The C-39

band SAR dataset (Table 1) includes 33 acquisitions from ascending orbits (640

October 2014 to January 2017), and 32 acquisitions from descending orbits41

(23 October 2014 to 23 March 2017). The L-band SAR dataset is composed42

of 17 PALSAR images from ascending orbits (26 January 2007 to 8 January43

2011) and 5 PALSAR-2 images from descending orbits (12 March 2015 to 444

May 2017).45

We used the DIAPASON software (Diapason, 2006) to generate the dif-46

ferential interferograms, using the two-pass method described by Massonnet47

and Feigl (1995). For Sentinel data, we used the 3 arcsec Shuttle Radar48

Topographic Mission digital elevation model (SRTM) to remove the topo-49

graphic contribution and the 1 arcsec SRTM for the other SAR data. We50

used the 1 arcsec SRTM to provide a geographic framework (UTM WGS84)51

for the interferograms. The criteria used for selecting data were, to have a52

perpendicular baseline lower than 1500 m, and that for the ALOS-2 and Sen-53

tinel 1 satellites orbital with separations not exceeding 200 m, no selection54

was taken into account.55

Next, a weighted power spectral density filter (Goldstein et al., 1988)56

was used to filter the interferograms which were later unwrapped using an57

implementation of the Statistical cost, Network- flow Algorithm for Phase58

Unwrapping -SNAPHU (Chen and Zebker, 2002). The resulting interfero-59

grams indicate large seasonal variation in coherence with a strong decrease60

2



during the austral winter. This leads us to disregard interferograms com-61

puted with a pair of images acquired during the winter season for our ground62

deformation analysis. The resulting high-coherent interferogram dataset was63

next unwrapped using the SNAPHU Algorithm.64

Many interferograms reveal large-wavelength phase signals or phase sig-65

nal varying with topography. As the magnitude of these signals is not corre-66

lated with the Perpendicular baseline, we considered that they are produced67

either by a change in variation of water vapor or by a pressure change. To68

mitigate the phase delays we corrected the interferograms using a simple em-69

pirical function that correlates phase and topography and a ramp function70

(linear function and a phase offset) to account for long wavelength signals71

after masking the area affected by displacements (see Remy et al., 2014 for72

more details). This step also enables us to estimate the uncertainty for each73

interferogram and to make phase values comparable in both space and time.74

S2 Time Series Analysis75

S2.1 Principal component analysis using Singular Value De-76

composition77

GNSS and InSAR time series are decomposed separately into the sum of its78

principal components:79

Xsvd =

ncomp∑
k=1

UkSkV
t
k

where U,S, and V are the spatial function matrix, the matrix of the80

principal values and the time function matrix. Whatever the time series81

considered the resulting first component explains 82% and about 70% of the82

total variation in the surface displacements for the GNSS (horizontal and83

vertical) and InSAR (LOS) data respectively, followed by a 5% to 3% of the84

total variation explained by the second component, confirming that most85

information is contained in the first component (Figure S1).86

The resulting time functions of the first component of all the dataset87

show a similar linear temporal behaviour related to the on-going uplift. The88

first spatial functions of the InSAR time series reveal an elliptical displace-89

ment pattern which only differ according to their satellite viewing geometry.90

The amplitude of these first spatial components is much greater than those91

of the second and third components, clearly indicating that this elliptical92

displacement pattern is the dominant feature in the InSAR time series. To93

determine how well the data are represented by the different components94

we computed the reduced Chi square of the residual of the data for the 1 to95

k-th components.96
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χ2
r =

1

N − k
∑[

X −Xsvd

σ

]2
where N refers to the number of GNSS or InSAR data , k is the number97

of principal components selected for the signal reconstruction, X is the data98

matrix, Xsvd is the reconstructed data matrix obtained by multiplying the99

k spatial components by their respective singular values and time functions,100

and σ is the data standard error.101

χ2
r of the residuals between the observed and the reconstructed time se-102

ries for the first component are 1 for GNSS and 0.3, 0.28 and 0.25 for ALOS-103

2, Sentinel-1 ascending track and descending track, respectively (Figures 2104

of the main text and S2). The low values of χ2
r for InSAR data indicate that105

1) the reconstructed time series using the first component lie within the106

data uncertainty and 2) that our estimation of the InSAR data uncertainty107

seems a little bit overestimated. Taking into account this low value of χ2
r108

and the fact that the residuals between the observed and the reconstructed109

data do not reveal a clear pattern of coherent misfits over time, we consider110

that high-order components are negligible to reconstruct the observed signal.111

Nevertheless, the higher value of χ2
r for the GNSS data set could indicate112

that ground displacement could be driven by more than one process.113

As we suspect that a major part of the variance in GNSS data set is114

due to seasonal vertical signals, we decompose separately the horizontal and115

the vertical components of the displacements. The resulting χ2
r between the116

original data and the reconstructed one are 0.7 and 1.05 for the horizontal117

and the vertical components, showing that seasonal vertical signals recorded118

at the GNSS stations produce the major part of the variance signal not119

explained by the first component of the decomposition. All these results120

lead to the conclusion that the spatial pattern of the displacement did not121

change significantly during the three-year period (Oct. 2014 - Jul 2017), and122

that the amplitude of these displacements described by the first temporal123

function of InSAR and GNSS data decompositions evolves linearly over time.124

S2.2 Easting and vertical displacement maps at LdM125

We benefit from the ascending and descending Sentinel-1 tracks to retrieve126

the easting and the vertical components of the ground displacement, allowing127

us to map the displacement field at LdM. We consider only Sentinel data128

because they cover a period longer than the one covered by ALOS-2 data.129

Due to the near-polar orbit of Sentinel satellites, we do not take into account130

the northing component as it is poorly constrained. We assume here (taking131

GNSS measurement into account) that the northing displacements are not132

higher in magnitude than the vertical and the east components since they133

essentially vanish when they are projected in the radar line of sight. In order134

to make ascending and descending Sentinel InSAR displacements compatible135
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in time, we select the overlapping period and we use linear interpolation at136

missing epochs in time.The displacement rates in the 2D components of the137

ground displacement is finally inverted based on the vectors pointing from138

the ground to the satellite LOS and using the approach proposed by Wright139

et al. (2004).140

S3 Analytical models141

In this section, we consider a variety of classical analytical source models142

(a Mogi-type point source, a spheroidal Yang-type source and an Okada-143

type dislocation) to model surface displacement at LdM. Inversions favor144

flat-topped sources rather than spheres or prolate ellipsoids (see Table S1)145

in agreement with what is expected from the ratio of maximum horizontal146

to maximum vertical displacement, equal to about 0.31 according to the147

GNSS data [Dieterich and Decker, 1975 ; Fialko et al., 2001 ; Fialko and148

Pearse, 2012 ; Remy et al., 2014]. This result is also in agreement with149

the assumption that the observed uplift at LdM could be produced by a sill150

intrusion at about 5 km depth below the surface [Fournier et al., 2010 ; Feigl151

et al., 2013; Le Mével et al., 2015 ].152

Figure S3 shows the displacement observed on the largest period of each153

track and on a three-year 2014-2017 period of GNSS data, the modeled154

displacements using Okada-type displocation with the smallest misfit and155

the resulting residual between the observed and the modeled displacements.156

This model fails to properly match the GNSS data yielding χ2
rr of about 8.5157

(Figure S3.B). This high value of χ2
r is mainly associated with significant dif-158

ferences between the observed horizontal displacements observed by GNSS159

and those modeled. We observe the same behavior from InSAR data. The160

model matches well the entire InSAR dataset when each tracks are inverted161

separately (χ2
r = 0.75), but the location of the center of this source differs162

according to each specific track. The inversion of the ascending tracks alone163

leads to the estimation of a center 1.5 km further to the west with respect164

to the inversion of the descending tracks. Consequently, the combined in-165

version using Sentinel and ALOS-2 data leads to an increase of χ2
r between166

the value predicted by the model and the data. Although this model yields167

χ2
r for the InSAR data close to 1, this value increases with the time span168

between a given InSAR time series map and the reference image used for the169

least square adjustment, due to the presence of localized residual patterns170

located around the lake.171
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S4 Benchmark of Adeli-3D with viscoelastic ana-172

lytical solutions173

To evaluate the accuracy of Adeli-3D in simulating a viscoelastic rheology,174

we benchmark its numerical solutions with analytical solutions of surface175

displacements due to the pressurization of a spherical source surrounded176

by a Maxwell viscoelastic spherical shell. First, we present the analytical177

solutions of Dragoni et al. (1989), in which an infinite space domain is178

assumed (IDM). Second, we present the analytical solutions provided by179

Segall (2010) for a half-space domain HDM).180

In order to estimate the differences between analytical and numerical181

solutions, we calculate the maximum local discrepancies ε|max, Eq.1, that182

correspond to the normalized difference at the maximum of the analytical183

(UAn
x ) and numerical surface displacement (UFE

x ), following Pascal et al.184

(2013):185

ε|max =
abs

{
UAn
x |max − UFE

x |max

}
abs{UAn

x |max}
(1)

S4.1 A visco-elastic shell in an infinite domain186

Dragoni et al. (1989) assumed an Infinite Domain Model (IDM); this model187

provides analytical solutions for radial displacements (ur) due to a trape-188

zoidal pressure history in a spherical source surrounded by a concentric,189

spherical, Maxwell viscoelastic shell (Eq. 2).190

ur(r, t) =
1

4

P0

G

R3
2

r2

[
f1(t)−

(
1− R3

1

R3
2

)
f2(t)

]
. (2)

Where r is the distance between the center of the magmatic source and a191

point outside the source, P0 is the applied pressure, G is the shear modulus,192

R1 is the radius of the magmatic source, η is the viscosity in the shell and193

R2 is the radius of the larger viscoelastic shell. Other variables are :194

195

f1(t) =
t− (t− t1)H(t− t1)

t1
+

(t− t3)H(t− t3)− (t− t2)H(t− t2)
t3 − t2

,

f2(t) = τ

(
M −N
t1

+
O − P
t3 − t2

)
,

M = 1− e
−t
τ , N = H(t− t1)(1− e

−(t−t1)
τ ),

O = H(t− t3)(1− e−
(t−t3)
τ ), P = H(t− t2)(1− e−

(t−t2)
τ ).
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In the trapezoidal pressure history, the pressure increases linearly until
t1, then remains constant until t2, and decreases linearly to zero until t3.
H(t) is the Heaviside step function (H = 1 when t > 0 and H = 0 when
t < 0), and the characteristic time τ depends not only on η and G, but also
on the dimensions of the shell:

τ =
9

5

η

G

(
R2

R1

)3

.

.196

S4.2 A visco-elastic shell in a half-space domain197

Segall (2010) provides an approximate solution for the vertical displacements198

(uz) at the free-surface due to an instantaneous increase of magma pressure199

in a spherical source, surrounded by a Maxwell viscoelastic spherical shell,200

immersed in a half-space domain (Eq. 3).201

uz(ρ, z = 0, t) =
(1− ν)p0R

3
1

µd2

[
e−t/tR +

R3
2

R3
1

(1− e−t/tR)

]
1

(1 + ρ2)3/2
(3)

with,202

tR =
3η(1− ν)R3

2

µ(1 + ν)R3
1

where ρ is the radial distance from the center of the source normalized203

by the source depth, p0 is the instantaneous pressure acting at the walls of204

the spherical source, ν the Poisson’s ratio, R1 is the radius of the magmatic205

source, R2 is the radius of the shell, µ the shear modulus, d is the depth to206

the center of the source, t is time, tR is the characteristic relaxation time207

and η is the viscosity.208
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S4.3 Infinite Domain Model (IDM) and Half Space Model209

(HSM)210

First, we compare the surface displacements obtained by the analytical so-211

lutions of Dragoni et al. (1989) assuming an Infinite Domain model (IDM)212

with the numerical solutions of Adeli-3D. These surface displacements are213

produced by a spherical pressurized source surrounded by a concentric spher-214

ical Maxwell viscoelastic shell. The applied pressure has a trapezoidal time215

variation and the surface displacements are calculated at a radial distance216

of 6 km from the source’s center.217

In order to bench Dragoni’s model, we simulate an IDM with a box of218

size 80 [km] x 80 [km] x 80 [km] in which a chamber is located at its cen-219

ter (at 40 km depth, Fig.S4). We bench Dragoni’s model in Fig. S5. Our220

numerical results show the impact of the mesh resolution on the magnitude221

of surface displacement, reaching a maximum local discrepancy of ε|max =222

25% for a mesh resolution of 300 [m], then decreasing for a resolution of223

100 [m], Fig.S6a. The numerical surface displacements corresponding to224

the analytical solutions proposed by Dragoni and Magnanensi et al. (1989)225

were reached for a numerical model with resolution of 100 m, including a226

high resolution (100 [m]) square domain situated 6 km above and below the227

source (ε|max = 0.5 %).228

Furthermore, we evaluate the numerical temporal resolution necessary to229

calibrate our numerical solutions with the analytical solutions. Fig.S6b230

shows that we obtain a solution with ε|max = 0.5% when using 87500 nu-231

merical time steps, or more.232

233

Second, we compare the analytical solutions of Segall (2010) assuming234

a Half-Space model (HSM), with the numerical solutions of Adeli-3D. As235

in the first case, these surface displacements are produced by a spherical236

pressurized source surrounded by a concentric spherical Maxwell viscoelastic237

shell, but in this case we consider the free-surface condition.238

In order to bench Segall’s model, we use the same model box of size239

80 [km] x 80 [km] x 80 [km], but we move the chamber to 6 km depth,240

leaving the upper surface free and considering a resolution of 100 [m] at the241

measurement points, Fig. S7 (box inside the large domain). In figure S8,242

we bench the figure 7.38 presented p.246 of Segall (2010), considering the243

vertical displacements of Eq. 3 normalized by (1 − ν)p0R
3
1/µd

2. Fig. S8a244

displays the vertical displacement as a function of radial distance along the245

free surface at four different nondimensional times for the analytical solu-246

tions and for Adeli’s numerical solutions. Fig. S8b shows the displacement247

as a function of nondimensional time immediately above the magma cham-248

ber for the analytical solutions and for Adeli’s numerical solutions. For these249

models R2/R1 = 1.2.250

251
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As mentioned above, our results are displayed Fig.S5 and S8. We bench252

Dragoni’s IDM model with Adeli 3D to ε|max = 0.5 %, and benchmark253

Segall’s model to ε|max = 1.11 %. The local maximum discrepancies of254

these two models demonstrate that the differences in surface displacements255

provided by Adeli’s numerical solutions are insignificant, since they are lower256

than 5% (Pascal et al., 2013).257

S5 Comparing Surface displacements between vis-258

coelastic and elastic models259

In this section, we compare the spatial pattern of surface displacement due260

to: a) a large elliptical source of 100 km3 pressurized with 10 [MPa] immersed261

in an elastic domain; and b) a small source of 10 km3 pressurized with262

10 [MPa] surrounded by a viscoelastic shell, itself immersed in an elastic263

domain. In this case the viscoelastic shell has the same geometry as the264

large elliptical source of case a). We use ’Elastic source’ to refer to the first265

case and ’Viscoelastic source’ to refer to the second case.266

The ‘Elastic source’ model is illustrated in Fig.S9a. The surface dis-267

placements produced by the overpressure within this source were calculated268

using the BEM model (MC3, explained in section 3.3 of the main text).269

For the ’Viscoelastic source’, the configuration of the source is illustrated270

in Fig.S9b. In this case, the surface displacements produced by the presur-271

ization of the small source were calculated using Adeli-3D, counting for the272

viscoelastic response of the shell. Considering the temporal evolution in-273

herent to a viscoelastic behavior, this second model was ran for 10 [years],274

applying a linear increase of pressure from 0 to 10 [MPa] during the first275

year, and then the pressure remained constant for the next 9 years.276

For the ’Viscoelastic source’, our results show that the surface displace-277

ments continue to increase after the first year, Fig.S10 and Fig.S11, and278

evolve until the pressure is completely transfered to the shell’s walls. We279

can see in Fig.S10 and S12 that after that, the surface displacements pattern280

is very close to that produced by the ’Elastic source’. In Fig.S13, Fig.S14281

and Fig.S15, we compare surface displacements at the top-free surface pro-282

duced by the ’Elastic source’ and by the ’Viscoelastic source’ after 10 years.283

The maximum local discrepancies between the elastic and viscoelastic as-284

sumptions are εeast|max=2.0%, εnorth|max=0.7% and εup|max=1.0%, showing285

that the differences between the elastic and viscoelastic configurations are286

insignificant (Pascal et al., 2013).287

These results show that it is possible to obtain surface displacements of288

the order of 1 [m] with a large pressurized source immersed in an elastic289

medium, but also with a viscoelastic shell surrounding a pressurized source290

of significant lower volume. The viscoelastic response of such a shell can291

contribute for 60 % of the surface displacements after the injection of new292
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Figure S1: Results from the principal component decomposition applied to
InSAR and GNSS time series. A) The first and the second spatial and
temporal functions obtained for the three different tracks. They show the
signal related to the inflation as observed with different viewing angles.
The first component explains about 70% of the variance observed in InSAR
data. The linear combination of the first component U1, S1 and V1 makes it
possible to reconstruct the observed signal within the InSAR uncertainties
whatever the track considered. B) The two first components of the GNSS
time series. The first component explains 82% of the total variation in the
surface displacements recorded at the GNSS stations. The first time function
of each data set evolves linearly with time.
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Figure S2: Examples of reconstructed displacements over LdM using the first
principal component of the decomposition. Up) Adjusted LOS Displacement
maps, Reconstructed LOS displacement maps using the first component of
the decomposition and residual of the difference for the Sentinel ascending
track. Middle) Same as previously but for the Sentinel descending track.
Bottom) Same as previously, but for the ALOS descending track.
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Figure S3: Maps of the observed and modeled GNSS and InSAR data using
the best Okada-type dislocation. A) Upper, middle and botton include
an example of three LOS displacement maps, the model prediction and
the residuals between observed and modeled data. B) Observed cumulated
horizontal and vertical GPS displacements (red vectors) from 2014 to 2017
and modeled displacements (blue vectors).
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Figure S4: Mesh resolution used in S4.2, for Dragoni’s model. The IDM was
represented by a box of 80[km] x 80[km] x 80 [km]. The spherical source
surrounded by the concentrical viscoelastic shell is located at -40000[m].
Into this domain we include a smaller box with high resolution surrounding
the source. The upper boundary of this box is located 6000[m] above the
source and its lower boundary is located 6000[m] below the source.
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Figure S5: Predicted surface displacement produced by a trapezoidal time
variation of pressure at a radial distance of 6 km between the source’s cen-
ter and the point of measure. Surface displacements were calculated using
Dragoni’s model assuming an IDM., and serve as a benchmark to validate
the solutions calculated with Adeli 3D using Maxwell viscoelastiity.
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a)

b)

Figure S6: Radial displacement produced by a source of radial distance 6
km immersed in an IDM. a) The resolution test shows that the numerical
solution converges with the analytical solution of Dragoni et al., 1989 for a
mesh resolution of 100[m]. The resolution test at 300[m] underestimates the
surface displacement. b) Tests with different numerical time-steps ((itera-
tions). A total number of time steps of 87500 and 175000 provide the same
solution that converges to Dragoni’s model.
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Figure S7: Mesh resolution used in S4.2, to bench Segall’s model. The
spherical source surrounded by a concentric viscoelastic shell is located at
-6000[m]. The upper surface is set free (HSM definition). A smaller box of
high resolution is also defined 6 km above the source.
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a)

b)

Figure S8: Figure modified from Segall et al. (2010). Numerical solutions
using Adeli-3D and analytical solutions by Segall et al. (2010). Top figure:
vertical displacement as a function of radial distance along the free surface
at four nondimensional times. Bottom figure: displacement as a function of
nondimensional time immediately above the magma chamber.
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b)a)

b)b)

Figure S9: a) A pressurized elliptical source (red) surrounded by an elastic
medium. b) a smaller pressurized source (in red), surrounded by an ellipitical
source; which represents the viscoelastic shell.
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Figure S10: Temporal evolution of surface displacement (east, north and
up) along profile B of Fig. S14 and profile D of Fig. S13 produced by the
’Viscoelastic source’. Surface displacements evolve in time (from blue to
red) as the pressure is transferred to the shell’s wall. When the pressure is
completely transferred to the shell’s wall the surface displacement remains
constant and mimicks the solution of the ’Elastic source’.
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a)

b)

c)

Figure S11: Temporal evolution of surface displacement (magnitud) pro-
duced by the ’Viscoelastic source’. The surface displacements evolve in time;
from 1 year (365 days) to 949 days. At 949 days the pressure is completely
transferred to the shell’s wall (in agreement with figure S10).
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a)

b)

Figure S12: a) Displacements (magnitud) produced by the ’Viscoelastic
source’ after 10 years (3650 days). b) Displacements (magnitud) produced
by the ’Elastic source’. In case (a) the pressure is completely transferred to
the shell’s walls and mimicks the displacements produced in case (b).

23



a)

b)

East component

0 50 100 150 200 250 300 350 400 450
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1
Profile C

MC3
Adeli

0 50 100 150 200 250 300 350 400 450
-0.4

-0.3

-0.2

-0.1

0
Profile A

MC3
Adeli

0 50 100 150 200 250 300 350 400 450
-0.6

-0.4

-0.2

0

0.2

0.4
Profile D

MC3
Adeli

0 50 100 150 200 250 300 350 400 450
-0.3

-0.2

-0.1

0

0.1

0.2
Profile E

MC3
Adeli

0 50 100 150 200 250 300 350 400 450
0

0.05

0.1

0.15

0.2
Profile B

MC3
Adeli

Figure S13: Comparison of the numerical solutions of surface displacements
(East component) produced by the ’Elastic source’ (left) obtained from
a three dimensional boundary element method (MC3, Cayol and Cornet,
(1998)) with ADELI’s numerical solutions produced by the ’Viscoelastic
source’ after 10 years (right) along profiles A, B, C, D, and E.
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a)

b)

North component
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Figure S14: Comparison of the numerical solutions of surface displacements
(North component) produced by the ’Elastic source’ (left) obtained from
a three dimensional boundary element method (MC3, Cayol and Cornet,
(1998)) with ADELI’s numerical solutions produced by the ’Viscoelastic
source’ after 10 years (right) along profiles A, B, C, D, and E.
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a)

b)

Up component
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Figure S15: Comparison of the numerical solutions of surface displacements
(Up component) produced by the ’Elastic source’ (left) obtained from a three
dimensional boundary element method (MC3, Cayol and Cornet, (1998))
with ADELI’s numerical solutions produced by the ’Viscoelastic source’ at
10 years (right) along profiles A, B, C, D, E and F.
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Figure S16: Results of the best fit of the temporal evolution of surface
displacements at MAU2 in the last 10 years (3650 days). This figure (A)
represents model 1 elliptical truncated cone geometry, used in the main text.
The upper panel of each figures provides the parameters associated to the
best model η: viscosity, t1: loading time, P: pressure, and rms: root mean
square error. The bottom panel includes the map of the modeled surface
displacement in 2017 (after 10 years of active surface deformation). The
projected geometrical models at depth are included in the east and north
axes.

27



 0  40000
 X Axis [m]

  Y
 Axis
 [m]

 40000

 0

B)

Figure S17: Results of the best fit of the temporal evolution of surface
displacements at MAU2 in the last 10 years (3650 days). This figure (B)
represent model 2 elliptical truncated cone geometry used in the main text.
The upper panel of each figures includes the parameters associated to the
best model η: viscosity, t1: loading time, P: pressure, and rms: root mean
square error. The bottom panel includes the map of the modeled surface
displacement in 2017 (after 10 years of active surface deformation). The
projected geometrical models at depth are included in the east and north
axes.
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Figure S18: Results of the best fit of the temporal evolution of surface
displacements at MAU2 in the last 10 years (3650 days). This figure (C)
represent model 3 elliptical truncated cone geometry used in the main text.
The upper panel of each figures includes the parameters associated to the
best model η: viscosity, t1: loading time, P: pressure, and rms: root mean
square error. The bottom panel includes the map of the modeled surface
displacement in 2017 (after 10 years of active surface deformation). The
projected geometrical models at depth are included in the east and north
axes.
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Figure S19: Subset of ALOS-1 interferograms formed with images acquired
in ascending mode tracks 112 and 113 overlaid onto a shaded relief map.
The lower part represents the perpendicular baseline (in meters) as function
of time. Black triangles and red lines represent the SAR images and the
interferograms used to extent the period of ground displacement measure-
ments at the location of the GNSS station MAU2. The satellite to ground
radar line of sight LOS is shown with a white arrow. LOS displacements
toward the satellite are positive. The areas shown in gray indicate areas
which are not coherent.
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ALOS  ASC. track 112  (2007/01/26−2008/01/29, BP=−1600 m, =0.88)

ALOS ASC. track 112 (2007/01/26−2009/01/31, BP=−1670 m, =0.97)
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Figure S20: Model predictions for the ground surface displacements observed
from 2007 to 2010 by ALOS-1 obtained from the best fit elliptical truncated
model (Model 2). The satellite to ground radar line of sight LOS is shown
with a black arrow. LOS displacements toward the satellite are positive.
The areas shown in gray indicate area which are not coherent.
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Figure S21: RMS plot of viscosity (η) versus loading time for our best model
(model geometry 3, in Figure 7 of the main text). The red circle shows the
model used to match the observations.
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Model form Mogi Yang Okada

χ2
r 2.4 2.14 1.08

X position (km) 361.750 362.617 360.270

Y position (km) 6006.983 6007.499 6007.496

Depth (km) 5.16 4.35 6.7

∇V (km3y−1) 0.02 0.021 0.024

Length - 6.3 6.9

Width - 1.95 3.5

Strike (◦) - 76 67

Dip (◦) - 2.49 -21

Table S1: Model predictions from the best fit classical analytical models
(Mogi-type point source, spheroidal Yang-type source and Okada-type dis-
location). X and Y are expressed in km (UTM WGS84 zone 19 South).
Depth is expressed in m below the mean surface elevation (i.e., 2500 m asl).
∇V is the rate of volume change from October, 2014 to July 2017. Length is
the length of the rectangle of the Okada-type dislocation and the semimajor
axis for the spheroidal Yang-type source. Width is the width of the rectan-
gle of the Okada-type dislocation and the semiminor axis for the spheroidal
Yang-type source. Strike is counterclockwise angle relative to the east and
Dip is the dip angle.
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Pressurized source: R1 0.5 [km]

Concentric spheric shell:R2 1.5 [km]

Distance from source center and point of measure: r 6 [km]

Gravity 0

η(viscosity) 1016 [Pa s]

Pressure 30 [MPa]

Rigidity (Shear modulus) 5 [GPa]

Poisson ratio 0.25

t1 200 [days]

t2 400 [days]

t3 600 [days]

Table S2: Parameters used in Dragoni’s model related to Figure S4
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