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In this paper, we propose in a Hilbertian setting a second-order timecontinuous dynamic system with fast convergence guarantees to solve structured convex minimization problems with an affine constraint. The system is associated with the augmented Lagrangian formulation of the minimization problem. The corresponding dynamics brings into play three general time-varying parameters, each with specific properties, and which are respectively associated with viscous damping, extrapolation and temporal scaling. By appropriately adjusting these parameters, we develop a Lyapunov analysis which provides fast convergence properties of the values and of the feasibility gap. These results will naturally pave the way for developing corresponding accelerated ADMM algorithms, obtained by temporal discretization.

Introduction

Our paper is part of the active research stream that studies the relationship between continuous-time dissipative dynamical systems and optimization algorithms. From this perspective, damped inertial dynamics offer a natural way to accelerate these systems. An abundant literature has been devoted to the design of the damping terms, which is the basic ingredient of the optimization properties of these dynamics. In line with the seminal work of Polyak on the heavy ball method with friction [START_REF] Polyak | Some methods of speeding up the convergence of iterative methods[END_REF][START_REF] Polyak | Trajectory of alternating direction method of multipliers and adaptive acceleration[END_REF], the first studies have focused on the case of a fixed viscous damping coefficient [START_REF] Alvarez | On the minimizing property of a second order dissipative system in Hilbert spaces[END_REF][START_REF] Attouch | The heavy ball with friction method. I. The continuous dynamical system: global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system[END_REF][START_REF] Alvarez | A second-order gradient-like dissipative dynamical system with Hessian-driven damping. Application to optimization and mechanics[END_REF]. A decisive step was taken in [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: theory and insights[END_REF] where the authors considered inertial dynamics with an asymptotic vanishing viscous damping coefficient. In doing so, they made the link with the accelerated gradient method of Nesterov [START_REF] Nesterov | A method for solving the convex programming problem with convergence rate O(1/k 2 )[END_REF][START_REF] Nesterov | Gradient methods for minimizing composite functions[END_REF][START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] for unconstrained convex minimization. This has resulted in a flurry of research activity; see e.g. [START_REF] Attouch | Asymptotic stabilization of inertial gradient dynamics with timedependent viscosity[END_REF][START_REF] Attouch | Convergence rates of inertial forward-backward algorithms[END_REF][START_REF] Attouch | Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient[END_REF][START_REF] Attouch | Fast proximal methods via time scaling of damped inertial dynamics[END_REF][START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity[END_REF][START_REF] Attouch | Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α ≤ 3[END_REF][START_REF] Attouch | The rate of convergence of Nesterov's accelerated forwardbackward method is actually faster than 1/k 2[END_REF][START_REF] Attouch | A dynamical approach to an inertial forwardbackward algorithm for convex minimization[END_REF][START_REF] Attouch | Fast convex optimization via inertial dynamics with Hessian driven damping[END_REF][START_REF] Aujol | Stability of over-relaxations for the forward-backward algorithm, application to FISTA[END_REF][START_REF] Apidopoulos | Convergence rate of inertial forward-backward algorithm beyond Nesterov's rule[END_REF][START_REF] Bot | An inertial Tseng's type proximal algorithm for nonsmooth and nonconvex optimization problems[END_REF][START_REF] Chambolle | On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm[END_REF][START_REF] May | Asymptotic for a second-order evolution equation with convex potential and vanishing damping term[END_REF][START_REF] Shi | Understanding the acceleration phenomenon via high-resolution differential equations[END_REF][START_REF] Wilson | A lyapunov analysis of momentum methods in optimization[END_REF].

In this paper, we consider the case of affinely constrained convex structured minimization problems. To bring back the problem to the unconstrained case, there are two main ways: either penalize the constraint (by external penalization or an internal barrier method), or use (augmented) Lagrangian multiplier methods.

Accounting for approximation/penalization terms within dynamical systems has been considered in a series of papers; see [START_REF] Attouch | Coupling forward-backward with penalty schemes and parallel splitting for constrained variational inequalities[END_REF][START_REF] Bot | Second-order dynamical systems with penalty terms associated to monotone inclusions[END_REF] and the references therein. It is a flexible approach which can be applied to non-convex problems and/or illposed problems, making it a valuable tool for inverse problems. Its major drawback is that in general, it requires a subtle tuning of the approximation/penalization parameter.

Here, we will consider the augmented Lagrangian approach and study the convergence properties of a second-order inertial dynamic with damping, which is attached to the augmented Lagrangian formulation of the affinely constrained convex minimization problem. The proposed dynamical system can be viewed as an inertial continuous-time counterpart of the ADMM method originally proposed in the mid-1970s and which has gained considerable interest in the recent years, in particular for solving large-scale composite optimization problems arising in data science. Among the novelties of our work, the dynamics we propose involves three parameters which vary in time. These are associated with viscous damping, extrapolation, and temporal scaling. By properly adjusting these parameters, we will provide fast convergence rates both for the values and the feasibility gap. The balance between the viscosity parameter (which tends towards zero) and the extrapolation parameter (which tends towards infinity) has already been developed in [START_REF] Zeng | Dynamical primal-dual accelerated method with applications to network optimization[END_REF], [START_REF] He | Convergence rates of inertial primal-dual dynamical methods for separable convex optimization problems[END_REF] and [START_REF] Attouch | Fast convex optimization via a third-order in time evolution equation[END_REF], though for different problems. Temporal scaling techniques were considered in [START_REF] Attouch | Fast convex optimization via inertial dynamics combining viscous and hessian-driven damping with time rescaling[END_REF] for the case of convex minimization without affine constraint; see also [START_REF] Attouch | First-order optimization algorithms via inertial systems with hessian driven damping[END_REF][START_REF] Attouch | Fast proximal methods via time scaling of damped inertial dynamics[END_REF][START_REF] Attouch | Fast convex optimization via time scaling of damped inertial gradient dynamics[END_REF]. Thus, another key contribution of this paper is to show that the temporal scaling and extrapolation can be extended to the class of ADMMtype methods with improved convergence rates. Working with general coefficients and in general Hilbert spaces allows us to encompass the results obtained in the above-mentioned papers and to broaden their scope.

It has been known for a long time that the optimality conditions of the (augmented) Lagrangian formulation of convex structured minimization problems with an affine constraint can be equivalently formulated as a monotone inclusion problem; see [START_REF] Rockafellar | Monotone operators and the proximal point algorithm[END_REF][START_REF] Rockafellar | Monotone operators associated with saddle-functions and minimax problems[END_REF][START_REF] Rockafellar | Augmented Lagrangians and applications of the proximal point algorithm in convex programming[END_REF]. In turn, the problem can be converted into finding the zeros of a maximally monotone operator, and can therefore be attacked using inertial methods for solving monotone inclusions. In this regard, let us mention the following recent works concerning the acceleration of ADMM methods via continuous-time inertial dynamics:

• In [START_REF] Bot | An inertial alternating direction method of multipliers[END_REF], the authors proposed an inertial ADMM by making use of the inertial version of the Douglas-Rachford splitting method for monotone inclusion problems recently introduced in [START_REF] Bot | Inertial Douglas-Rachford splitting for monotone inclusion problems[END_REF], in the context of concomitantly solving a convex minimization problem and its Fenchel dual; see also [START_REF] Goldstein | Fast alternating direction optimization methods[END_REF][START_REF] Patrinos | Douglas-Rachford splitting: Complexity estimates and accelerated variants[END_REF][START_REF] Pejcic | Accelerated ADMM based on accelerated Douglas-Rachford splitting[END_REF]47] in the purely discrete setting. • Attouch [START_REF] Attouch | Fast inertial proximal ADMM algorithms for convex structured optimization with linear constraint[END_REF] uses the maximally monotone operator which is associated with the augmented Lagrangian formulation of the problem, and specializes to this operator the inertial proximal point algorithm recently developed in [START_REF] Attouch | Convergence of inertial dynamics and proximal algorithms governed by maximally monotone operators[END_REF] to solve general monotone inclusions. This gives rise to an inertial proximal ADMM algorithm where an appropriate adjustment of the viscosity and proximal parameters gives provably fast convergence properties, as well as the convergence of the iterates to saddle points of the Lagrangian function. This approach is in line with [START_REF] Attouch | Augmented Lagrangian and proximal alternating direction methods of multipliers in Hilbert spaces. Applications to games, PDE's and control[END_REF] who considered the case without inertia. But this approach fails to achieve a fully split inertial ADMM algorithm.

Contents In Section 2, we introduce the inertial second-order dynamical system with damping (coined (TRIALS)) which is attached to the augmented Lagrangian formulation. In Section 3, which is the main part of the paper, we develop a Lyapunov analysis to establish the asymptotic convergence properties of (TRIALS). This gives rise to a system of inequalities-equalities which must be satisfied by the parameters of the dynamics. From the energy estimates thus obtained, we show in Section 4 that the Cauchy problem attached to (TRIALS) is well-posed, i.e. existence and possibly uniqueness of a global solution. In Section 5, we examine the case of the uniformly convex objectives. In Section 6, we provide specific choices of the system parameters that satisfy our assumptions and achieve fast convergence rates. This is then supplemented by preliminary numerical illustrations. Some conclusions and perspectives are finally outlined in Section 7.

Problem statement

Consider the structured convex optimization problem:

min x∈X , y∈Y F (x, y) := f (x) + g(y) subject to Ax + By = c, (P)
where, throughout the paper, we make the following standing assumptions:

         X , Y, Z are real Hilbert spaces; f : X → R, g : Y → R are convex functions of class C 1 ; A : X → Z, B : Y → Z are linear continuous operators, c ∈ Z;
The solution set of (P) is non-empty.

(H P ) Throughout, we denote by •, • and • the scalar product and corresponding norm associated to any of X , Y, Z, and the underlying space is to be understood from the context.

Augmented Lagrangian formulation

Classically, (P) can be equivalently reformulated as the saddle point problem min

(x,y)∈X ×Y max λ∈Z L(x, y, λ), (1) 
where L : X × Y × Z → R is the Lagrangian associated with (1)

L(x, y, λ) := F (x, y) + λ, Ax + By -c . (2) 
Under our standing assumption (H P ), L is convex with respect to (x, y) ∈ X × Y, and affine (and hence concave) with respect to λ ∈ Z. A pair (x , y ) is optimal for (P), and λ is a corresponding Lagrange multiplier if and only if (x , y , λ ) is a saddle point of the Lagrangian function L, i.e. for every (x, y, λ)

∈ X × Y × Z, L(x , y , λ) ≤ L(x , y , λ ) ≤ L(x, y, λ ). ( 3 
)
We denote by S the set of saddle points of L. The corresponding optimality conditions read

(x , y , λ ) ∈ S ⇐⇒      ∇xL(x , y , λ ) = 0 ∇yL(x , y , λ ) = 0 ∇ λ L(x , y , λ ) = 0 ⇐⇒      ∇f (x ) + A * λ = 0 ∇g(y ) + B * λ = 0 Ax + By -c = 0 , (4) 
where we use the classical notations: ∇f and ∇g are the gradients of f and g, A * is the adjoint operator of A, and similarly for B. The operator ∇z is the gradient of the corresponding multivariable function with respect to variable z. Given µ > 0, the augmented Lagrangian Lµ : X × Y × Z → R associated with the problem (P), is defined by

Lµ(x, y, λ) := L(x, y, λ) + µ 2 Ax + By -c 2 . (5) 
Observe that one still has (x , y , λ ) ∈ S ⇐⇒      ∇xLµ(x , y , λ ) = 0, ∇yLµ(x , y , λ ) = 0, ∇ λ Lµ(x , y , λ ) = 0.

The inertial system (TRIALS)

We will study the asymptotic behaviour, as t → +∞, of the inertial system:

(TRIALS): Temporally Rescaled Inertial Augmented Lagrangian System.

             ẍ(t) + γ(t) ẋ(t) + b(t)∇xLµ x(t), y(t), λ(t) + α(t) λ(t) = 0 ÿ(t) + γ(t) ẏ(t) + b(t)∇yLµ x(t), y(t), λ(t) + α(t) λ(t) = 0 λ(t) + γ(t) λ(t) -b(t)∇ λ Lµ x(t) + α(t) ẋ(t), y(t) + α(t) ẏ(t), λ(t) = 0, for t ∈ [t 0 , +∞[ with initial conditions (x(t 0 ), y(t 0 ), λ(t 0 )) and ( ẋ(t 0 ), ẏ(t 0 ), λ(t 0 )).
The parameters of (TRIALS) play the following roles:

• γ(t) is a viscous damping parameter,

• α(t) is an extrapolation parameter,

• b(t) is attached to the temporal scaling of the dynamic.

In the sequel, we make the following standing assumption on these parameters:

γ, α, b : [t 0 , +∞[→ R + are non-negative continuously differentiable functions. (H D )
Plugging the expression of the partial gradients of Lµ into the above system, the Cauchy problem associated with (TRIALS) is written as follows, where we unambiguously remove the dependence of (x, y, λ) on t to lighten the formula,

                 ẍ + γ(t) ẋ + b(t) ∇f (x) + A * λ + α(t) λ + µ(Ax + By -c) = 0 ÿ + γ(t) ẏ + b(t) ∇g(y) + B * λ + α(t) λ + µ(Ax + By -c) = 0 λ + γ(t) λ -b(t) A(x + α(t) ẋ) + B(y + α(t) ẏ) -c = 0
(x(t 0 ), y(t 0 ), λ(t 0 )) = (x 0 , y 0 , λ 0 ) and ( ẋ(t 0 ), ẏ(t 0 ), λ(t 0 )) = (u 0 , v 0 , ν 0 ).

(TRIALS)

If in addition to (H P ), the gradients of f and g are Lipschitz continuous on bounded sets, we will show later in Section 4 that the Cauchy problem associated with (TRIALS) has a unique global solution on [t 0 , +∞[. Indeed, although the existence and uniqueness of a local solution follows from the standard non-autonomous Cauchy-Lipschitz theorem, the global existence necessitates the energy estimates derived from the Lyapunov analysis in the next section. The centrality of these estimates is the reason why the proof of well-posedness is deferred to Section 4. Thus, for the moment we take for granted the existence of classical solutions to (TRIALS).

A fast convergence result

Our Lyapunov analysis will allow us to establish convergence results and rates under very general conditions on the parameters of (TRIALS), see Section 3. In fact, there are many situations of practical interest where such conditions are easily verified, and which will be discussed in detail in Section 6. Thus for the sake of illustration and reader convenience, here we describe an important situation where convergence occurs with the fast rate O(1/t 2 ).

Theorem 1 Suppose that the coefficients of (TRIALS) satisfy

α(t) = α 0 t with α 0 > 0, γ(t) = η + α 0 α 0 t , b(t) = t 1 α 0 -2 ,
where η > 1. Suppose that the set of saddle points S is non-empty and let (x , y , λ ) ∈ S . Then, for any solution trajectory (x(•), y(•), λ(•)) of (TRIALS), the trajectory remains bounded, and we have the following convergence rates:

L(x(t), y(t), λ ) -L(x , y , λ ) = O 1 t 1 α 0 , Ax(t) + By(t) -c 2 = O 1 t 1 α 0 , - C 1 t 1 2α 0 ≤ F (x(t), y(t)) -F (x , y ) ≤ C 2 t 1 α 0 , ( ẋ(t), ẏ(t), λ(t) = O 1 t .
where C 1 and C 2 are positive constants.

In particular, for α 0 = 1 2 , i.e. no time scaling b ≡ 1, we have

L(x(t), y(t), λ ) -L(x , y , λ ) = O 1 t 2 , Ax(t) + By(t) -c 2 = O 1 t 2 , - C 1 t ≤ F (x(t), y(t)) -F (x , y ) ≤ C 2 t 2 .
For the ADMM algorithm (thus in discrete time t = kh, k ∈ N, h > 0), it has been shown in [START_REF] Davis | Convergence rate analysis of several splitting schemes[END_REF][START_REF] Davis | Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions[END_REF] that the convergence rate of (squared) feasibility is

O 1 k and that on |F (x k , y k ) -F (x , y )| is O 1 k 1/2
. These rates were shown to be essentially tight in [START_REF] Davis | Convergence rate analysis of several splitting schemes[END_REF]. Our results then suggest than for α 0 = 1 2 , a proper discretization of (TRIALS) would lead to an accelerated ADMM algorithm with provably faster convergence rates (see [START_REF] Kang | Inexact accelerated augmented Lagrangian methods[END_REF][START_REF] Kang | Accelerated Bregman method for linearly constrained 1 -2 minimization[END_REF] in this direction on specific problem instances and algorithms). These discrete algorithmic issues of (TRIALS) will be investigated in a future work.

Again, for α 0 = 1 2 , the O 1 t 2 rate obtained on the Lagrangian is reminiscent of the fast convergence obtained with the continuous-time dynamical version of the Nesterov accelerated gradient method in which the viscous damping coefficient is of the form γ(t) = γ0 t and the fast rate is obtained for γ 0 ≥ 3; see [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity[END_REF][START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method: theory and insights[END_REF]. With our notations this corresponds to γ 0 = η+α0 α0 , and our choice α 0 = 1 2 entails γ 0 = 2η + 1 > 3. This corresponds to the same critical value as Nesterov's but the inequality here is strict. This is not that surprising in our context since one has to handle the dual multiplier and there is an intricate interplay between γ and the extrapolation coefficient α.

The role of extrapolation

One of the key and distinctive features of (TRIALS) is that the partial gradients (with the appropriate sign) of the augmented Lagrangian function are not evaluated at (x(t), y(t), λ(t)) as it would the case in a classical continuous-time system associated to ADMM-type methods, but rather at extrapolated points. This new property will be instrumental to allow for faster convergence rates, and it can be interpreted from different standpoints: optimization, game theory, or control:

• Optimization standpoint: in this field, this type of extrapolation was recently studied in [START_REF] Attouch | Fast convex optimization via a third-order in time evolution equation[END_REF][START_REF] He | Convergence rates of inertial primal-dual dynamical methods for separable convex optimization problems[END_REF][START_REF] Zeng | Dynamical primal-dual accelerated method with applications to network optimization[END_REF]. It will play a key role in the development of our Lyapunov analysis. Observe that α(t) ẋ(t) and α(t) λ(t) point to the direction of future movement of x(t) and λ(t). Thus, (TRIALS) involves the estimated future positions x(t)+α(t) ẋ(t) and λ(t)+α(t) λ(t). Explicit discretization

x k +α k (x k - x k-1 ) and λ k + α k (λ k -λ k-1
) gives an extrapolation similar to the accelerated method of Nesterov. The implicit discretization reads

x k + α k (x k+1 -x k ) and λ k + α k (λ k+1 -λ k ).
For α k = 1, this gives x k+1 and λ k+1 , which would yield implicit algorithms with associated stability properties. • Game theoretic standpoint: let us think about (x, y) and λ as two players playing against each other, and shortly speaking, we identify the players with their actions. We can then see that in (TRIALS), each player anticipates the movement of its opponent. In the coupling term, the player (x, y) takes account of the anticipated position of the player λ, which is λ(t) +α(t) λ(t), and vice versa. • Control theoretic standpoint: the structure of (TRIALS) is also related to control theory and state derivative feedback. By defining w(t) = (x(t), y(t), λ(t)) the equation can be written in an equivalent way

ẅ(t) + γ(t) ẇ(t) = K(t, w(t), ẇ(t)),
for an operator K appropriately identified from (TRIALS) in terms of the partial gradients of Lµ, α and b. In this system, the feedback control term K, which takes the constraint into account, is not only a function of the state w(t) but also of its derivative. One can consult [START_REF] Michiels | Stabilizability and stability robustness of state derivative feedback controllers[END_REF] for a comprehensive treatment of state derivative feedback. Indeed, we will use α(•) as a control variable, which will turn to play an important role in our subsequent developments.

Associated monotone inclusion problem

The optimality system (4) can be written equivalently as

T L (x, y, z) = 0, (6) 
where

T L : X × Y × Z → X × Y × Z
is the maximally monotone operator associated with the convex-concave function L, and which is defined by

T L (x, y, λ) = (∇x,yL, -∇ λ L) (x, y, λ) = ∇f (x) + A * λ, ∇g(y) + B * λ, -(Ax + By -c) . (7) 
Indeed, it is immediate to verify that T L is monotone using (H P ). Since it is continuous, it is a maximally monotone operator. Another way of seeing it is to use the standard splitting of T L as

T L = T 1 + T 2 where T 1 (x, y, λ) = (∇f (x), ∇g(y), 0) T 2 (x, y, λ) = A * λ, B * λ, -(Ax + By -c) .
The operator

T 1 = ∂Φ is nothing but gradient of the convex function Φ(x, y, λ) = f (x) + g(y)
, and therefore is maximally monotone owing to (H P ) (recall that convexity of a differentiable function implies maximal monotonicity of its gradient [START_REF] Rockafellar | Monotone operators and the proximal point algorithm[END_REF]). The operator T 2 is obtained by translating a linear continuous and skew-symmetric operator, and therefore it is also maximally monotone. This immediately implies that T L is maximally monotone as the sum of two maximally monotone operators, one of them being Lipschitz continuous ([30, Lemma 2.4, page 34]). In turn, S can be interpreted as the set of zeros of the maximally monotone operator T L . As such, it is a closed convex subset of X × Y × Z.

The evolution equation associated to T L is written

       ẋ(t) + ∇f (x(t)) + A * (λ(t)) = 0 ẏ(t) + ∇g(y(t)) + B * (λ(t)) = 0 λ(t) -(A(x(t)) + B(y(t)) -c) = 0 (8) 
Following [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF], the Cauchy problem ( 8) is well-posed, and the solution trajectories of ( 8), which define a semi-group of contractions generated by T L , converge weakly in an ergodic sense to equilibria, which are the zeros of the operator T L . Moreover, appropriate implicit discretization of ( 8) yields the proximal ADMM algorithm.

The situation is more complicated if we consider the corresponding inertial dynamics. Indeed, the convergence theory for the heavy ball method can be naturally extended to the case of maximally monotone cocoercive operators. Unfortunately, because of the skew-symmetric component T 2 in T L (when c = 0), the operator T L is not cocoercive. To overcome this difficulty, recent studies consider inertial dynamics where the operator T L is replaced by its Yosida approximation, with an appropriate adjustment of the Yosida parameter; see [START_REF] Attouch | Convergence of inertial dynamics and proximal algorithms governed by maximally monotone operators[END_REF] and [START_REF] Attouch | Fast inertial proximal ADMM algorithms for convex structured optimization with linear constraint[END_REF] in the case of the Nesterov accelerated method. However, such an approach does not achieve full splitting algorithms, hence requiring an additional internal loop.

Lyapunov analysis

Let (x , y ) ∈ X × Y be a solution of (P), and denote by F := F (x , y ) the optimal value of (P). For the moment, the variable λ is chosen arbitrarily in Z. We will then be led to specialize it. Let t → (x(t), y(t), λ(t)) be a solution trajectory of (TRIALS) defined for t ≥ t 0 . It is supposed to be a classical solution, i.e. of class C 2 . We are now in position to introduce the function t ∈ [t 0 , +∞[ → E(t) ∈ R that will serve as a Lyapunov function,

E(t) := δ 2 (t)b(t) Lµ(x(t), y(t), λ ) -Lµ(x , y , λ ) + 1 2 v(t) 2 (9) 
+ 1 2 ξ(t) (x(t), y(t), λ(t)) -(x , y , λ ) 2 , v(t) := σ(t) (x(t), y(t), λ(t)) -(x , y , λ ) + δ(t)( ẋ(t), ẏ(t), λ(t)). ( 10 
)
The coefficient σ(t) is non-negative and will be adjusted later, while δ(t), ξ(t) are explicitly defined by the following formulas:

δ(t) := σ(t)α(t), ξ(t) := σ(t) 2 γ(t)α(t) -α(t) -1 -2α(t)σ(t) σ(t) (11) 
This choice will become clear from our Lyapunov analysis. To guarantee that E is a Lyapunov function for the dynamical system (TRIALS), the following conditions on the coefficients γ, α, b, σ will naturally arise from our analysis:

Lyapunov system of inequalities/equalities on the parameters.

(G 1 ) σ(t) γ(t)α(t) -α(t) -1 -2α(t) σ(t) ≥ 0, (G 2 ) σ(t) γ(t)α(t) -α(t) -1 -α(t) σ(t) ≥ 0, (G 3 ) -d dt σ(t) σ(t) γ(t)α(t) -α(t) -2α(t) σ(t) ≥ 0, (G 4 ) α(t)σ(t) 2 b(t) -d dt α 2 σ 2 b (t) = 0.
Observe that condition (G 1 ) automatically ensures that ξ(t) is a non-negative function. In most practical situations (see Section 6), we will take σ as a non-negative constant, in which case (G 1 ) and (G 2 ) coincide, and thus conditions (G 1 )-(G 4 ) reduce to a system of three differential inequalities/equalities involving only the coefficients (γ, α, b) of the dynamical system (TRIALS).

Convergence rate of the values

By relying on a Lyapunov analysis with the function E, we are now ready to state our first main result.

Theorem 2 Assume that (H P ) and (H D ) hold. Suppose that the growth conditions (G 1 )-(G 4 ) on the parameters (γ, α, σ, b) of (TRIALS) are satisfied for all t ≥ t 0 . Let t ∈ [t 0 , +∞[ → (x(t), y(t), λ(t)) be a solution trajectory of (TRIALS). Let E be the function defined in (9)- [START_REF] Attouch | First-order optimization algorithms via inertial systems with hessian driven damping[END_REF]. Then the following holds:

(1) E is a non-increasing function, and for all t ≥ t 0

F (x(t), y(t)) -F = O 1 α(t) 2 σ(t) 2 b(t) .
(2) Suppose moreover that S , the set of saddle points of L in (1) is non-empty, and let (x , y , λ ) ∈ S . Then for all t ≥ t 0 , the following rates and integrability properties are satisfied:

(i) 0 ≤ L(x(t), y(t), λ ) -L(x , y , λ ) = O 1 α(t) 2 σ(t) 2 b(t) ; (ii) Ax(t) + By(t) -c 2 = O 1 α(t) 2 σ(t) 2 b(t) ; (iii) there exists positive constants C 1 and C 2 such that - C 1 α(t)σ(t) b(t) ≤ F (x(t), y(t)) -F ≤ C 2 α(t) 2 σ(t) 2 b(t) ; (iv) +∞ t0 α(t)σ(t) 2 b(t) Ax(t) + By(t) -c 2 dt < +∞; (v) +∞ t0 k(t) ( ẋ(t), ẏ(t), λ(t)) 2 dt < +∞, where k(t) = α(t)σ(t) σ(t) (γ(t)α(t) -α(t) -1) -α(t) σ(t) .
Proof To lighten notation, we drop the dependence on the time variable t. Recall that (x , y ) is a solution of (P) and λ is an arbitrary vector in Z. Let us define w := (x, y, λ), w := (x , y , λ ), Fµ(w) := Lµ(x, y, λ ) -Lµ(x , y , λ ).

With these notations we have (recall ( 9) and ( 10)

) v = σ(w -w ) + δ ẇ, ∇Fµ(w) = (∇xLµ(x, y, λ ), ∇yLµ(x, y, λ ), 0) E = δ 2 bFµ(w) + 1 2 v 2 + 1 2 ξ w -w 2 .
Differentiating E gives

d dt E = d dt (δ 2 b)Fµ(w) +δ 2 b ∇Fµ(w), ẇ + v, v + 1 2 ξ w -w 2 +ξ w -w , ẇ . ( 12 
)
Using the constitutive equation in (TRIALS), we have

v = σ(w -w ) + (σ + δ) ẇ + δ ẅ = σ(w -w ) + (σ + δ) ẇ -δ (γ ẇ + bKµ,α(w)) = σ(w -w ) + (σ + δ -δγ) ẇ -δbKµ,α(w),
where the operator Kµ,α :

X × Y × Z → X × Y × Z is defined by Kµ,α(w) :=   ∇xLµ(x, y, λ + α λ) ∇yLµ(x, y, λ + α λ) -∇ λ Lµ(x + α ẋ, y + α ẏ, λ)   Elementary computation gives Kµ,α(w) = ∇Fµ(w) +   A * (λ -λ + α λ) B * (λ -λ + α λ) -A(x + α ẋ) -B(y + α ẏ) + c  
According to the above formulas for v, v and Kµ,α, we get

v, v = σ(w -w ) + (σ + δ -δγ) ẇ -δbKµ,α(w), σ(w -w ) + δ ẇ = σ σ w -w 2 + δ σ + σ(σ + δ -δγ) ẇ, w -w + δ σ + δ -δγ ẇ 2 -δb σ ∇Fµ(w), w -w + δ ∇Fµ(w), ẇ -δb σ λ -λ + α λ, Ax -Ax + δ λ -λ + α λ, A ẋ -δb σ λ -λ + α λ, By -By + δ λ -λ + α λ, B ẏ +δbσ A(x + α ẋ) + B(y + α ẏ) -c, λ -λ +δ 2 b A(x + α ẋ) + B(y + α ẏ) -c, λ .
Let us insert this expression in [START_REF] Attouch | Fast proximal methods via time scaling of damped inertial dynamics[END_REF]. We first observe that the term ∇Fµ(w), ẇ appears twice but with opposite signs, and therefore cancels out. Moreover, the coefficient of ẇ, w -w becomes ξ + δ σ -σ(γδ -δ -σ). Thanks to the choice of δ and ξ devised in [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity[END_REF], the term ẇ, w -w also disappears. We recall that by virtue of (G 1 ), ξ is non-negative, and thus so is the last term in E. Overall, the formula ( 12) simplifies to

d dt E = d dt (δ 2 b)Fµ(w) + 1 2 ξ + σ σ w -w 2 + δ σ + δ -δγ ẇ 2 -δbσ ∇Fµ(w), w -w -δbW, (13) 
where

W := σ λ -λ + α λ, Ax -Ax + δ λ -λ + α λ, A ẋ +σ λ -λ + α λ, By -By + δ λ -λ + α λ, B ẏ -σ A(x + α ẋ) + B(y + α ẏ) -c, λ -λ -δ A(x + α ẋ) + B(y + α ẏ) -c, λ .
Since (x , y ) ∈ X × Y is a solution of (P), we obviously have Ax + By = c. Thus, W reduces to

W = σ Ax + By -c, λ -λ + α λ + δ A ẋ + B ẏ, λ -λ + α λ -σ Ax + By -c, λ -λ -σα A ẋ + B ẏ, λ -λ -δ Ax + By -c, λ -δα A ẋ + B ẏ, λ = (σα -δ) Ax + By -c, λ -A ẋ + B ẏ, λ -λ .
Since it is difficult to control the sign of the above expression, the choice of δ in (11) appears natural, which entails W = 0. On the other hand, by convexity of L(•, •, λ ), strong convexity of µ 2 • -c 2 , the fact that Ax + By = c and Fµ(w ) = 0, it is straightforward to see that

-Fµ(w) - µ 2 Ax(t) + By(t) -c 2 ≥ ∇Fµ(w), w -w .
Collecting the above results, (13) becomes

d dt E + δbσ - d dt (δ 2 b) Fµ(w) (14) 
≤ 1 2 ξ + σ σ w -w 2 + δ σ + δ -δγ ẇ 2 - δbσµ 2 Ax(t) + By(t) -c 2 .
Since δ is non-negative (σ and α are), and in view of (G 2 ), the coefficient of the second term in the right hand side ( 14) is non-positive. The same conclusion holds for the coefficient of the first term since its non-positivity is equivalent to (G 3 ). Therefore, inequality [START_REF] Attouch | Fast convex optimization via a third-order in time evolution equation[END_REF] implies

d dt E + δbσ - d dt (δ 2 b) Fµ(w) ≤ 0. ( 15 
)
The sign of Fµ(w) is unknown for arbitrary λ . This is precisely where we invoke (G 4 ) which is equivalent to

δbσ - d dt (δ 2 b) = 0.
(1) Altogether, we have shown so far that (15) eventually reads, for any t ≥ t 0 , d dt

E(t) ≤ 0, (16) 
i.e. E is non-increasing as claimed. Let us now turn to the rates. E being non-increasing entails that for all t ≥ t 0

E(t) ≤ E(t 0 ). ( 17 
)
Dropping the non-negative terms 1 2 v(t)

2 and 1 2 ξ(t) w(t) -w 2 entering E, and according to the definition of Lµ, we obtain that, for all t ≥ t 0

δ(t) 2 b(t) Lµ(x(t), y(t), λ ) -Lµ(x , y , λ ) (18) = δ(t) 2 b(t) L(x(t), y(t), λ ) -L(x , y , λ ) + µ 2 Ax(t) + By(t) -c 2 ≤ E(t 0 ).
Dropping again the quadratic term in [START_REF] Attouch | The rate of convergence of Nesterov's accelerated forwardbackward method is actually faster than 1/k 2[END_REF], we obtain

δ(t) 2 b(t) F (x(t), y(t)) -F + λ , Ax(t) + By(t) -c ≤ δ 2 (t 0 )b(t 0 ) F (x(t 0 ), y(t 0 )) -F + λ , Ax(t 0 ) + By(t 0 ) -c + µ 2 Ax(t 0 ) + By(t 0 ) -c 2 + 1 2 v(t 0 ) 2 + 1 2 ξ(t 0 ) (x(t 0 ), y(t 0 ), λ(t 0 )) -(x , y , λ ) 2 ≤ δ 2 (t 0 )b(t 0 ) λ Ax(t 0 ) + By(t 0 ) -c + C 0 ,
where C 0 is the non-negative constant

C 0 = δ 2 (t 0 )b(t 0 ) F (x(t 0 ), y(t 0 )) -F + µ 2 Ax(t 0 ) + By(t 0 ) -c 2 + 1 2 v(t 0 ) 2 + 1 2 ξ(t 0 ) (x(t 0 ), y(t 0 ), λ(t 0 )) -(x , y , λ ) 2 . ( 19 
)
When Ax(t) + By(t) -c = 0, we are done by taking, e.g. λ = 0 and C > C 0 . Assume now that Ax(t) + By(t) -c = 0. Since λ can be freely chosen in Z, we take it as the unit-norm vector

λ = Ax(t) + By(t) -c Ax(t) + By(t) -c . ( 20 
)
We therefore obtain

δ(t) 2 b(t) F (x(t), y(t)) -F + Ax(t) + By(t) -c ≤ C, (21) 
where C > δ 2 (t 0 )b(t 0 ) Ax(t 0 ) + By(t 0 ) -c + C 0 . Since the second term in the left hand side is non-negative, the claimed rate in (1) follows immediately.

(2) Embarking from (18) and using (3) since (x , y , λ ) ∈ S , we have the rates stated in (i) and (ii).

To show the lower bound in (iii), observe that the upper-bound of (3) entails that F (x(t), y(t)) ≥ F (x , y ) -Ax(t) + By(t) -c, λ .

Applying Cauchy-Schwarz inequality, we infer

F (x(t), y(t)) ≥ F (x , y ) -λ Ax(t) + By(t) -c .
We now use the estimate (ii) to conclude. Finally the integral estimates of the feasibility (iv) and velocity (v) are obtained by integrating (14).

Boundedness of the trajectory and rate of the velocity

We will further exploit the Lyapunov analysis developed in the previous section to assert additional properties on the iterates and velocities.

Theorem 3 Suppose the assumptions of Theorem 2 hold. Assume also that S , the set of saddle points of L in (1) is non-empty, and let (x , y , λ ) ∈ S . Then, each solution trajectory t ∈ [t 0 , +∞[ → (x(t), y(t), λ(t)) of (TRIALS) satisfies the following properties:

(1) There exists a positive constant C such that, for all t ≥ t 0

(x(t), y(t), λ(t)) -(x , y , λ ) 2 ≤ C σ(t) 2 γ(t)α(t) -α(t) -1 -2α(t)σ(t) σ(t) ( ẋ(t), ẏ(t), λ(t)) ≤ C α(t)σ(t) 1 + σ(t) σ(t) (γ(t)α(t) -α(t) -1) -2α(t) σ(t)
.

(2) If sup t≥t0 σ(t) < +∞ and (G 1 ) is strengthened to

(G + 1 ) inf t≥t0 σ(t) σ(t) (γ(t)α(t) -α(t) -1) -2α(t) σ(t) > 0, then sup t≥t0 (x(t), y(t), λ(t)) < +∞ and ( ẋ(t), ẏ(t), λ(t)) = O 1 α(t)σ(t) .
If moreover, (G 5 ) inf t≥t0 α(t) > 0, then sup t≥t0 ( ẋ(t), ẏ(t), λ(t)) < +∞.

Proof We start from [START_REF] Attouch | The heavy ball with friction method. I. The continuous dynamical system: global exploration of the local minima of a real-valued function by asymptotic analysis of a dissipative dynamical system[END_REF] in the proof of Theorem 2, which can be equivalently written

δ 2 (t)b(t) Lµ(x(t), y(t), λ ) -Lµ(x , y , λ ) + 1 2 v(t) 2 + 1 2 ξ(t) (x(t), y(t), λ(t)) -(x , y , λ ) 2 ≤ E(t 0 ).
Since (x , y , λ ) ∈ S , the first term is non-negative by (3), and thus 1 2

v(t) 2 + 1 2 ξ(t) (x(t), y(t), λ(t)) -(x , y , λ ) 2 ≤ E(t 0 ).
Choosing a positive constant C ≥ 2E(t 0 ), we immediately deduce that for all

t ≥ t 0 (x(t), y(t), λ(t)) -(x , y , λ ) ≤ C ξ(t)
and

v(t) ≤ C. (23) 
Set z(t) = (x(t), y(t), λ(t)) -(x , y , λ ). By definition of v(t), we have

v(t) = σ(t)z(t) + δ(t) ż(t).
From the triangle inequality and the bound ( 23), we get

δ(t) ż(t) ≤ C 1 + σ(t) ξ(t)
.

According to the definition (11) of δ(t) and ξ(t), we get

( ẋ(t), ẏ(t), λ(t)) ≤ C α(t)σ(t) 1 + σ(t) σ(t) (γ(t)α(t) -α(t) -1) -2α(t) σ(t)
, which ends the proof.

The role of α and time scaling

The time scaling parameter b enters the conditions on the parameters only via (G 4 ), which therefore plays a central role in our analysis. Now consider relaxing (G 4 ) to the inequality

(G + 4 ) d dt α 2 σ 2 b (t) -α(t)σ(t) 2 b(t) ≥ 0
. This is a weaker assumption in which case the corresponding term in [START_REF] Attouch | Fast convex optimization via time scaling of damped inertial gradient dynamics[END_REF] does not vanish. However, such an inequality can still be integrated to yield meaningful convergence rates. This is what we are about to prove.

Theorem 4 Suppose the assumptions of Theorem 2(2) hold, where condition (G 4 ) is replaced with (G + 4 ). Let (x , y , λ ) ∈ S = ∅. Assume also that inf F (x, y) > -∞.

Then, for all t ≥ t 0

L(x(t), y(t), λ ) -L(x , y , λ ) = O exp - t t0 1 α(s) ds , (24) 
Ax(t) + By(t) -c 2 = O exp - t t0 1 α(s) ds , (25) 
-C 1 exp - t t0 1 2α(s) ds ≤ F (x(t), y(t)) -F ≤ C 2 exp - t t0 1 α(s) ds , (26) 
where C 1 and C 2 are positive constants.

Proof We embark from [START_REF] Attouch | Fast convex optimization via time scaling of damped inertial gradient dynamics[END_REF] in the proof of Theorem 2. In view of (G + 4 ) and ( 11), [START_REF] Attouch | Fast convex optimization via time scaling of damped inertial gradient dynamics[END_REF] becomes

0 ≥ d dt E - d dt α 2 σ 2 b -ασ 2 b Fµ(w) ≥ d dt E - d dt α 2 σ 2 b -ασ 2 b α 2 σ 2 b E. (27) 
Since (x , y , λ ) ∈ S , Fµ is non-negative and so is the Lyapunov function E.

Integrating [START_REF] Bot | An inertial Tseng's type proximal algorithm for nonsmooth and nonconvex optimization problems[END_REF], we obtain the existence of a positive constant C such that, for all t ≥ t 0

0 ≤ E(t) ≤ Cα(t) 2 σ(t) 2 b(t) exp - t t0 1 α(s) ds ,
which entails, after dropping the positive terms in E,

Fµ(w(t)) ≤ C exp - t t0 1 α(s) ds . (28) 
(24) and ( 25) follow immediately from [START_REF] Bot | Inertial Douglas-Rachford splitting for monotone inclusion problems[END_REF] and the definition of Fµ.

Let us now turn to [START_REF] Bot | An inertial alternating direction method of multipliers[END_REF]. Arguing as in the proof of Theorem 2(2), we have

F (x(t), y(t)) -F ≥ -λ Ax(t) + By(t) -c .
Plugging [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] in this inequality yields the lower-bound of [START_REF] Bot | An inertial alternating direction method of multipliers[END_REF].

For the upper-bound, we will argue as in the proof of Theorem 2(1) by considering λ as a free variable in Z. By assumption, we have F is bounded from below. This together with [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] implies that E is also bounded from below, and we denote E this lower-bound. Define Ẽ(t) = E(t) -E if E is negative and Ẽ(t) = E(t) otherwise. Thus, from [START_REF] Bot | An inertial Tseng's type proximal algorithm for nonsmooth and nonconvex optimization problems[END_REF], it is easy to see that Ẽ verifies

d dt Ẽ ≤ d dt α 2 σ 2 b -ασ 2 b α 2 σ 2 b Ẽ. (29) 
Integrating [START_REF] Bot | Second-order dynamical systems with penalty terms associated to monotone inclusions[END_REF] and arguing with the sign of E, we get the existence of a positive constant C such that, for all t ≥ t 0

E(t) ≤ Ẽ(t) ≤ Cα(t) 2 σ(t) 2 b(t) exp - t t0 1 α(s) ds .
Dropping the quadratic terms in E, this yields

F (x(t), y(t)) -F + λ , Ax(t) + By(t) -c ≤ C exp - t t0 1 α(s) ds .
When Ax(t) + By(t) -c = 0, we are done by taking, e.g. λ = 0. Assume now that Ax(t) + By(t) -c = 0 and choose

λ = Ax(t) + By(t) -c Ax(t) + By(t) -c
.

We arrive at

F (x(t), y(t)) -F ≤ F (x(t), y(t)) -F + Ax(t) + By(t) -c ≤ C exp - t t0 1 α(s) ds ,
which completes the proof.

Remark 1 Though the rates in Theorem 2 and Theorem 4 look apparently different, it turns out that as expected, those of Theorem 2 are actually a specialisation of those in Theorem 4 when (G + 4 ) holds as an equality, i.e. (G 4 ) is verified. To see this, it is sufficient to realize that, with the notation a(t) := α(t) 2 σ(t) 2 b(t), (G 4 ) is equivalent to ȧ(t) = 1 α(t) a(t). Upon integration, we obtain a(t) = exp t t0 1 α(s) ds , or equivalently 1

α(t) 2 σ(t) 2 b(t) = exp - t t0 1 α(s) ds .
4 Well-posedness of (TRIALS)

In this section, we will show existence and uniqueness of a strong global solution to the Cauchy problem associated with (TRIALS). The main idea is to formulate (TRIALS) in the phase space as a non-autonomous first-order system. In the smooth case, we will invoke the non-autonomous Cauchy-Lipschitz theorem [35, Proposition 6.2.1]. In the non-smooth case, we will use a standard Moreau-Yosida smoothing argument.

Case of globally Lipschitz continuous gradients

We consider first the case where the gradients of f and g are globally Lipschitz continuous over X and Y. Let us start by recalling the notion of strong solution.

Definition 1 Denote H := X × Y × Z equipped with the corresponding product space structure, and w : t ∈ [t 0 , +∞[ → (x(t), y(t), λ(t)) ∈ H. The function w is a strong global solution of the dynamical system (TRIALS) if it satisfies the following properties:

• w is in C 1 ([0, +∞[; H); • w and ẇ are absolutely continuous on every compact subset of the interior of [t 0 , +∞[ (hence almost everywhere differentiable); • for almost all t ∈ [t 0 , +∞[, (TRIALS) holds with w(t 0 ) = (x 0 , y 0 , λ 0 ) and ẇ(t 0 ) = (u 0 , v 0 , ν 0 )).

Theorem 5 Suppose that (H P ) holds 1 and, moreover, that ∇f and ∇g are Lipschitz continuous, respectively over X and Y. Assume that γ, α, b : [t 0 , +∞[→ R + are nonnegative continuous functions. Then, for any given initial condition (x(t 0 ), ẋ(t 0 )) = (x 0 , ẋ0 ) ∈ X × X , (y(t 0 ), ẏ(t 0 )) = (y 0 , ẏ0 ) ∈ Y × Y, (λ(t 0 ), λ(t 0 )) = (λ 0 , λ0 ) ∈ Z × Z, the evolution system (TRIALS) has a unique strong global solution.

Proof Recall the notations of Definition 1. Let I = [t 0 , +∞[ and let Z : t ∈ I → (w(t), ẇ(t)) ∈ H 2 . (TRIALS) can be equivalently written as the Cauchy problem on

H 2 Ż(t) + G(t, Z(t)) = 0 for t ∈ I, Z(t 0 ) = Z 0 , ( 30 
)
1 Actually, convexity is not needed here.

where Z 0 = (x 0 , y 0 , λ 0 , u 0 , v 0 , ν 0 ), and G : I × H2 → H 2 is the operator 

G(t, (x, y, λ), (u, v, ν)) =            -u -v -ν γ(t)u + b(t) ∇f (x) + A * (λ + α(t)ν + µ(Ax + By -c)) γ(t)v + b(t) ∇g(y) + B * (λ + α(t)ν + µ(Ax + By -c)) γ(t)ν -b(t) A(x + α(t)u)) + B(y + α(t)v) -c            . ( 31 
G(t, Z) -G(t, Z) ≤ Cβ(t) Z -Z , β(t) = 1 + γ(t) + b(t)(1 + α(t)).
Owing to the continuity of the parameters γ(•), α(•), b(•), β(•) is integrable on [t 0 , T ] for all t 0 < T < +∞. Similar calculation shows that

G(t, (x, y, λ), (u, v, ν)) ≤ Cβ(t) (∇f (u), ∇g(v)) + (x, y, λ, u, v, ν) ,
and we conclude similarly. It then follows from [35, Proposition 6.2.1] that there exists a unique global solution Z(•) ∈ W 1,1 loc (I; H 2 ) of ( 30) satisfying the initial condition Z(t 0 ) = Z 0 , and thus, by [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]Corollary A.2] that Z(•) is a strong global solution to [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]. This in turn leads to the existence and uniqueness of a strong solution (x(•), y(•), λ(•)) of (TRIALS).

Remark 2 One sees from the proof that for the above result to hold, it is only sufficient to assume that the parameters γ, α, b are locally integrable instead of continuous. In addition, in the above results, we even have existence and uniqueness of a classical solution.

Case of locally Lipschitz continuous gradients

Under local Lipschitz continuity assumptions on the gradients ∇f and ∇g, the operator Z → G(t, Z) defined in [START_REF] Chambolle | On the convergence of the iterates of the "fast iterative shrinkage/thresholding algorithm[END_REF] is only Lipschitz continuous over the bounded subsets of H 2 . As a consequence, the Cauchy-Lipschitz theorem provides the existence and uniqueness of a local solution. To pass from a local solution to a global solution, we will rely on the estimates established in Theorem 3.

Theorem 6 Suppose that (H P ) holds 2 and, moreover, that ∇f and ∇g are Lipschitz continuous over the bounded subsets of respectively X and Y. Assume that γ, α, b : [t 0 , +∞[→ R + are non-negative continuous functions such that the conditions (G + 1 ), (G 2 ), (G 3 ), (G 4 ) and (G 5 ) are satisfied, and that sup t≥t0 σ(t) < +∞. Then, for any initial condition (x(t 0 ), ẋ(t 0 )) = (x 0 , ẋ0 ) ∈ X × X , (y(t 0 ), ẏ(t 0 )) = (y 0 , ẏ0 ) ∈ Y × Y, (λ(t 0 ), λ(t 0 )) = (λ 0 , λ0 ) ∈ Z ×Z, the evolution system (TRIALS) has a unique strong global solution.

Proof We use the same notation as in the proof of Theorem 5. Let us consider the maximal solution of the Cauchy problem [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF], say Z : [t 0 , T [→ H 2 . We have to prove that T = +∞. Following a classical argument, we argue by contradiction, and suppose that T < +∞. It is then sufficient to prove that the limit of Z(t) exists as t → T , so that it will be possible to extend Z locally to the right of T thus getting a contradiction. According to the Cauchy criterion, and the constitutive equation Ż(t) = G(t, Z(t)), it is sufficient to prove that Z(t) is bounded over [t 0 , T [. At this point, we use the estimates provided by Theorem 3, which gives precisely this result under the conditions imposed on the parameters.

The non-smooth case

For a large number of applications (e.g. data processing, machine learning, statistics), non-smooth functions are ubiquitous. To cover these practical situations, we need to consider the case where the functions f and g are non-smooth. In order to adapt the dynamic (TRIALS) to this non-smooth situation, we will consider the corresponding differential inclusion

                 ẍ + γ(t) ẋ + b(t) ∂f (x) + A * λ + α(t) λ + µ(Ax + By -c) 0 ÿ + γ(t) ẏ + b(t) ∂g(y) + B * λ + α(t) λ + µ(Ax + By -c) 0 λ + γ(t) λ -b(t) A(x + α(t) ẋ) + B(y + α(t) ẏ) -c = 0 (x(t 0 ), y(t 0 ), λ(t 0 )) = (x 0 , y 0 , λ 0 ) and ( ẋ(t 0 ), ẏ(t 0 ), λ(t 0 )) = (u 0 , v 0 , ν 0 ), (32) 
where ∂f and ∂g are the subdifferentials of f and g, respectively. Beyond global existence issues that we will address shortly, one may wonder whether our Lyapunov analysis in the previous sections is still valid in this case. The answer is affirmative provided one takes some care in two main steps that are central in our analysis. First, when taking the time-derivative of the Lyapunov, one has to invoke now the (generalized) chain rule for derivatives over curves (see [START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF]). The second ingredient is the validity of the subdifferential inequality for convex functions. In turn all our results and estimates presented in the previous sections can be transposed to this more general non-smooth context. Indeed, our approximation scheme that we will present shortly turns out to be monotonically increasing. This gives a variational convergence (epi-convergence) which allows to simply pass to the limit over the estimates established in the smooth case.

Let us now turn to the existence of a global solution to [START_REF] Davis | Convergence rate analysis of several splitting schemes[END_REF]. We will again consider strong solutions to this problem, i.e. solutions that are C 1 ([t 0 , +∞[; H), locally absolutely continuous, and (32) holds almost everywhere on [t 0 , +∞[. A natural idea is to use the Moreau-Yosida regularization in order to bring the problem to the smooth case before passing to an appropriate limit. Recall that, for any θ > 0, the Moreau envelopes f θ and g θ of f and g are defined respectively by

f θ (x) = min ξ∈X f (ξ) + 1 2θ x -ξ 2 , g θ (y) = min η∈Y g(η) + 1 2θ y -η 2 .
As a classical result, f θ and g θ are continuously differentiable and their gradients are 1 θ -Lipschitz continuous. We are then led to consider, for each θ > 0, the dynamical system

         ẍθ + γ(t) ẋθ + b(t) ∇f θ (x θ ) + A * λ θ + α(t) λθ + µ(Ax θ + By θ -c) = 0 ÿθ + γ(t) ẏθ + b(t) ∇g θ (y θ ) + B * λ θ + α(t) λθ + µ(Ax θ + By θ -c) = 0 λθ + γ(t) λθ -b(t) A(x θ + α(t) ẋθ ) + B(y θ + α(t) ẏθ ) -c = 0.
(33) The system [START_REF] Davis | Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions[END_REF] comes under our previous study, and for which we have existence and uniqueness of a strong global solution. In doing so, we generate a filtered sequence (x θ , y θ , λ θ ) θ of trajectories.

The challenging question is now to pass to the limit in the system above as θ → 0 + . This is a non-trivial problem, and to answer it, we have to assume that the spaces X , Y and Z are finite dimensional, and that f and g are convex real-valued (i.e. dom(f ) = X and dom(g) = Y in which case f and g are continuous). Recall that ∂F (x, y) = ∂f (x) × ∂g(y), and denote [∂F (x, y)] 0 the minimal norm selection of ∂F (x, y).

Theorem 7 Suppose that X , Y, Z are finite dimensional Hilbert spaces, and that the functions f : X → R and g : Y → R are convex. Assume that (i) F is coercive on the affine feasibility set;

(ii) β F := sup (x,y)∈X ×Y [∂F (x, y)] 0 < +∞; (iii) the linear operator L = [A B] is surjective.
Suppose also that γ, α, b : [t 0 , +∞[→ R + are non-negative continuous functions such that the conditions (G + 1 ), (G 2 ), (G 3 ) (G 4 ) and (G 5 ) are satisfied, and that sup t≥t0 σ(t) < +∞. Then, for any initial condition (x(t 0 ), ẋ(t 0 )) = (x 0 , ẋ0 ) ∈ X ×X , (y(t 0 ), ẏ(t 0 )) = (y 0 , ẏ0 ) ∈ Y × Y, (λ(t 0 ), λ(t 0 )) = (λ 0 , λ0 ) ∈ Z × Z, the evolution system (32) admits a strong global solution .

Condition (i) is natural and ensures for instance that the solution set of (P) is non-empty. Condition (iii) is also very mild. A simple case where (ii) holds is when f and g are Lipschitz continuous.

Proof The key property is that the estimates obtained in Theorem 2 and 3, when applied to [START_REF] Davis | Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions[END_REF], have a favorable dependence on θ. Indeed, a careful examination of the estimates shows that θ enters them through the Lyapunov function at t 0 only via |F θ (x 0 , y 0 ) -F θ (x θ , y θ )| and (x θ , y θ , λ θ ) , where F θ (x, y) = f θ (x) + g θ (y), (x θ , y θ ) ∈ argmin Ax+Bx=c F θ (x, y) and λ θ is an associated dual multiplier; see [START_REF] Attouch | Convergence of inertial dynamics and proximal algorithms governed by maximally monotone operators[END_REF]. With standard properties of the Moreau envelope, see [START_REF] Attouch | Variational convergence for functions and operators. Applicable mathematics series[END_REF]Chapter 3] and [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Chapter 12], one can show that for all (x, y) ∈ X × Y

F (x, y) - θ 2 [∂F (x, y)] 0 2 ≤ F θ (x, y) ≤ F (x, y).
This, together with the fact that (x θ , y θ ) ∈ argmin Ax+Bx=c F θ (x, y) and (x , y ) ∈ argmin Ax+Bx=c F (x, y) yields

F θ (x θ , y θ ) ≤ F θ (x , y ) ≤ F (x , y ) ≤ F (x θ , y θ ).
Thus

F (x 0 , y 0 ) -F (x , y ) - θ 2 [∂F (x 0 , y 0 )] 0 2 ≤ F θ (x 0 , y 0 ) -F θ (x θ , y θ ) ≤ F (x 0 , y 0 ) -F (x , y ) + θ 2 ∂F (x θ , y θ ) 0 2 .
This entails, owing to (ii), that

F θ (x 0 , y 0 ) -F θ (x θ , y θ ) ≤ F (x 0 , y 0 ) -F (x , y ) + β 2 F θ 2
and thus, since we are interested in the limit as θ → 0 + , sup

θ∈[0, θ] F θ (x 0 , y 0 ) -F θ (x θ , y θ ) ≤ F (x 0 , y 0 ) -F (x , y ) + β 2 F θ 2 < +∞.
On the other hand,

F (x θ , y θ ) ≤ F θ (x θ , y θ ) + β 2 F θ 2 ≤ F θ (x , y ) + β 2 F θ 2 ≤ F (x , y ) + β 2 F θ 2 .
Thus, in view of (i), ∃a > 0 and b ∈ R such that

a (x θ , y θ ) + b ≤ F (x , y ) + β 2 F θ 2 , which shows that sup θ∈[0, θ] (x θ , y θ ) < +∞.
Let us turn to λ θ . When λ θ is chosen as in ( 20), then we are done. When λ θ is the optimal dual multiplier satisfying (4), then it is a solution to the Fenchel-Rockafellar dual problem

min λ∈Z F * θ (-L * λ) + c, λ ,
where F * θ is the Legendre-Fenchel conjugate of F θ . Without loss of generality, we assume c = 0. Classical conjugacy results give

F * θ (u) = F * (u) + θ 2 u 2 .
Since f and g are convex and real-valued, the domain of F is full. This is equivalent to coercivity of F * . This together with injectivity of L * (see (iii)), imply that there exists a > 0 and b ∈ R (potentially different from those above) such that

a λ θ +b ≤ F * (-L * λ θ ) ≤ F * θ (-L * λ θ ) ≤ F * θ (-L * λ ) ≤ F * (-L * λ )+ θ 2 L * λ 2 < +∞.
Altogether this shows that sup

θ∈[0, θ] λ θ < +∞.
Combining the above with Theorem 3, we conclude that for all T > t 0 , the trajectories (x θ (.), y θ (.), λ θ (•)) and the velocities ( ẋθ (.), ẏθ (.), λθ (•)) are bounded in L 2 (t 0 , T ; X × Y) uniformly in θ. Since X and Y are finite dimensional spaces, we deduce by the Ascoli-Arzelà theorem, that the trajectories are relatively compact for the uniform convergence over the bounded time intervals. By properties of the Moreau envelope, we also have, for all (x, y) ∈ X × Y, ∇F θ (x, y) [∂F (x, y)] 0 as θ 0, and thus

∇F θ (x, y) ≤ β F .
Using this and the boundedness assertions of the trajectories and velocities proved above in the constitutive equations [START_REF] Davis | Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions[END_REF], the acceleration remains also bounded on the bounded time intervals. Passing to the limit as θ → 0 + in ( 33) is therefore relevant by a classical maximal monotonicity argument. Indeed, we work with the canonical extension of the maximally monotone operators ∇F θ and ∂F to L 2 (t 0 , T, X × Y), and, in this functional setting, we use that ∇F θ graph converges to ∂F in the strong-weak topology.

We conclude this section by noting that at this stage, uniqueness of the solution to [START_REF] Davis | Convergence rate analysis of several splitting schemes[END_REF] is a difficult open problem. In fact, even existence in infinite dimension and/or with any proper lower semicontinuous convex functions f and g is not clear. This goes far beyond the scope of the present paper and we leave it to a future work.

The uniformly convex case

We now turn to examine the convergence properties of the trajectories generated by (TRIALS), when the objective F in (P) is uniformly convex on bounded sets. Recall, see e.g. [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF], that F : X × Y → R is uniformly convex on bounded sets if, for each r > 0, there is an increasing function ψr : [0, +∞[→ [0, +∞[ vanishing only at the origin, such that

F (v) ≥ F (w) + ∇F (w), v -w + ψr( v -w ) (34) 
for all (v, w) ∈ (X × Y) 2 such that v ≤ r and w ≤ r. The strongly convex case corresponds to ψr(t) = c F t 2 /2 for some c F > 0. In finite dimension, strict convexity of F entails uniform convexity on any non-empty bounded closed convex subset of X × Y, see [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 10.18].

Theorem 8 Suppose that F is uniformly convex on bounded sets, and let (x , y ) be the unique solution of the minimization problem (P). Assume also that S , the set of saddle points of L in (1) is non-empty. Suppose that the conditions (G + 1 )-(G 4 ) on the coefficients of (TRIALS) are satisfied for all t ≥ t 0 . Then, each solution trajectory

t ∈ [t 0 , +∞[ → (x(t), y(t), λ(t)) of (TRIALS) satisfies, ∀t ≥ t 0 , ψr (x(t), y(t)) -(x , y ) = O 1 α(t) 2 σ(t) 2 b(t) .
As a consequence, assuming that lim t→+∞ α(t) 2 σ(t) 2 b(t) = +∞, we have that the trajectory t → (x(t), y(t)) converges strongly to (x , y ) as t → +∞.

Proof Uniformly convex functions are strictly convex and coercive, and thus (x , y ) is unique. From Theorem 3(2), there exists r 1 > 0 such that sup t≥t0 (x(t), y(t)) -(x , y ) ≤ r 1 .

Taking r ≥ r 1 + (x , y ) , we have that the trajectory (x(•), y(•)) and (x , y ) are both contained in the ball of radius r centered at the origin. Let λ be a Lagrange multiplier of problem (P), i.e. (x , y , λ ) ∈ S . On the one hand, applying the uniform convexity inequality (34) at v = (x(t), y(t)) and w = (x , y ), we have Invoking the estimate in Theorem 2(2)(i) yields the claim.

Remark 3

The assumption lim t→+∞ α(t) 2 σ(t) 2 b(t) = +∞ made in the above theorem is very mild. It holds in particular in all the situations discussed in Section 6.

In particular, for α(t) = t r , 0 ≤ r < 1, σ constant, and b(t) = 1 t 2r exp 1 1-r t 1-r , one has α(t) b(t) = exp 1 2(1-r) t 1-r . Thus, if F is strongly convex, the trajectory t → (x(t), y(t)) converges exponentially fast to the unique minimizer (x , y ).

Parameters choice for fast convergence rates

In this section, we suppose that the solution set S of the saddle value problem (4) is non-empty, so as to invoke Theorem 2(2), Theorem 3 and Theorem 4. The set of conditions (G + 1 ), (G 2 ), (G 3 ), (G 4 ) and (G 5 ) imposes sufficient assumptions on the coefficients γ, α, b of the dynamical system (TRIALS), and on the coefficients σ, δ, ξ of the function E defined in [START_REF] Attouch | Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient[END_REF], which guarantee that E is a Lyapunov function for the dynamical system (TRIALS).

Let us show that this system admits many solutions of practical interest which in turn will entail fast convergence rates. For this, we will organize our discussion around the coefficient α as dictated by Theorem 4. Indeed, the latter shows that the convergence rate of the Lagrangian values and feasibility is O exp - This means that the critical growth is α(t) = at for a > 0. If α(t) grows faster, our analysis do not provide an instructive convergence rate. So, it is an essential ingredient of our approach to assume that α(t) remains positive, but not too large as t → +∞. In fact, the set of conditions (G + 1 ), (G 2 ), (G 3 ), (G 4 ) and (G 5 ) simplifies considerably by taking σ a positive constant, and γα -α a constant strictly greater than one. This is made precise in the following statement whose proof is immediate. 

Following the above discussion, we are led to consider the following three cases.

Constant parameter α

Consider the simple situation where σ ≡ σ 0 > 0 and η > 1 in which case (G + 1 ) reads γα -α -1 = η -1 > 0. Taking α ≡ α 0 , a positive constant, yields γ ≡ η α0 and ( 35) amounts to solving b -α 0 ḃ = 0, that is, b(t) = exp t α0 . Capitalizing on Corollary 1, and specializing the results of Theorem 2(2) (or equivalently Theorem 4 according to Remark 1) and Theorem 3 to the current choice of parameters yields the following statement.

Proposition 1 Suppose that σ ≡ σ 0 > 0, η > 1, and that the coefficients of (TRIALS) satisfy: the functions α, γ are constant with

α ≡ α 0 > 0, γ ≡ η α 0 , b(t) = exp t α 0 .
Suppose that S is non-empty. Then, for any solution trajectory (x(•), y(•), λ(•)) of (TRIALS), the trajectory and its velocity remain bounded, and we have

L(x(t), y(t), λ ) -L(x , y , λ ) = O exp - t α 0 , Ax(t) + By(t) -c 2 = O exp - t α 0 , -C 1 exp - t 2α 0 ≤ F (x(t), y(t)) -F ≤ C 2 exp - t α 0 , ( ẋ(•), ẏ(•), λ(•)) ∈ L 2 ([t 0 , +∞[),
where C 1 and C 2 are positive constants.

Linearly increasing parameter α

We now take σ ≡ σ 0 > 0, η > 1 and α(t) = α 0 t with α 0 > 0. Then (G + 1 ) is satisfied and we have γ(t) = η+α0 α0t . Condition [START_REF] Haraux | Systèmes dynamiques dissipatifs et applications[END_REF] then becomes b(t)(1 -2α 0 ) -α 0 t ḃ(t) = 0, which admits b(t) = t In view of Theorem 2(2) and Theorem 3, we obtain the following result.

Proposition 2 Suppose that σ ≡ σ 0 > 0, η > 1, and that the coefficients of (TRIALS) satisfy α(t) = α 0 t with α 0 > 0, γ(t) = η + α 0

α 0 t , b(t) = t 1 α 0 -2 .
Suppose that S is non-empty. Then, for any solution trajectory (x(•), y(•), λ(•)) of (TRIALS), the trajectory remains bounded, and we have the following convergence rates:

L(x(t), y(t), λ ) -L(x , y , λ ) = O 1 where C 1 and C 2 are positive constants.

Power-type parameter α

Let us now take σ ≡ σ 0 > 0, η > 1 and consider the intermediate case between the two previous situations, where α(t) = t r , 0 < r < 1. Thus (G + 1 ) is satisfied and we have γ(t) = η t r + r t . Condition [START_REF] Haraux | Systèmes dynamiques dissipatifs et applications[END_REF] is then equivalent to b(t)(1 -2rt r-1 ) -t r ḃ(t) = 0, which, after integration, shows that b(t) = 1 t 2r exp 1 1-r t 1-r is a solution. Appealing again to Theorem 2(2) and Theorem 3, we obtain the following claim. (c) α(t) = t r Fig. 1: Experiment on the solely convex objective. Observed (solid) and predicted (dashed) rates on the objective error |F (x(t), y(t)) -F | on the left, the feasibility gap Ax(t) + By(t) -c in the middle, and the velocity ( ẋ(t), ẏ(t), λ(t)) on the right.

Conclusion, perspectives

In this paper, we adopted a dynamical system perspective and we have proposed a second-order inertial system enjoying provably fast convergence rates to solve structured convex optimization problems with an affine constraint. One of the most original aspects of our study is the introduction of a damped inertial dynamic involving several time-dependent parameters with specific properties. They allow to consider a variable viscosity coefficient (possibly vanishing so making the (c) α(t) = t r Fig. 2: Experiment on the strongly convex objective. Observed (solid) and predicted (dashed) rates on the objective error |F (x(t), y(t)) -F | on the left, the feasibility gap Ax(t) + By(t) -c in the middle, and the velocity ( ẋ(t), ẏ(t), λ(t)) on the right.

link with the Nesterov accelerated gradient method), as well as variable extrapolation parameters (possibly large) and time scaling. The analysis of the subtle and intricate interplay between these objects together has been made possible through Lyapunov's analysis. It would have been quite difficult to undertake such an analysis directly on the algorithmic discrete form. On the other hand, as we have now gained a deeper understanding with such a powerful continuous-time framework, we believe this will serve us as a guide to design and analyze a class of inertial ADMM algorithms which can be naturally obtained by appropriate discretization of the dynamics (TRIALS). Their full study would go beyond the scope of this paper and will be the subject of future work. Besides, several other open questions remain to be studied, among which, the introduction of geometric damping controlled by the Hessian, and the convergence of the trajectories in the general convex constrained case.

1 α

 1 obtain a meaningful convergence result, we need to assume that +∞ t0

Corollary 1

 1 Suppose that σ ≡ σ 0 is a positive constant, and γα -α ≡ η > 1. Then the set of conditions (G + 1 ), (G 2 ), (G 3 ), (G 4 ) and (G 5 ) reduces to b(1 + 2η -2γα) -α ḃ = 0 and inf t≥t0 α(t) > 0.

1 α 0 - 2

 102 as a solution. We then have b ≡ 1 for α 0 = 1/2, while one can distinguish two regimes for its limiting behaviour with lim t→+∞

≤F

  (x(t), y(t)) -F ≤ t), ẏ(t), λ(t) = O 1 t .

  )To invoke[35, Proposition 6.2.1], it is sufficient to check that for a.e. t ∈ I, G(t, •) is β(t)-Lipschitz continuous with β(•) ∈ L 1 loc (I), and for a.e. t ∈ I, G(t, Z) = O(P (t)(1+ Z ), ∀Z ∈ H 2 , with P (•) ∈ L 1 loc (I). Since ∇f , ∇g are globally Lipschitz continuous, and A and B are bounded linear, elementary computation shows that there exists a constant C > 0 such that

  ∇F (x , y ), (x(t), y(t)) -(x , y ) + ψr (x(t), y(t)) -(x , y ) .

	On the other hand, the optimality conditions (4) tells us that
	∇F (x , y ), (x(t), y(t)) -(x , y ) = -λ , Ax(t) + By(t)) -c
	and obviously
	Thus,

F (x(t), y(t)) ≥ F (x , y ) + F (x , y ) = L(x , y , λ ).

ψr (x(t), y(t)) -(x , y ) ≤ L(x(t), y(t), λ ) -L(x , y , λ ).

Again, convexity is superfluous here.

Proposition 3 Take σ ≡ σ 0 > 0 and η > 1. Suppose that the coefficients of (TRIALS) satisfy α(t) = t r with 0 < r < 1, γ(t)

Suppose that S is non-empty. Then, for any solution trajectory (x(•), y(•), λ(•)) of (TRIALS), the trajectory remains bounded, and we have the convergence rates:

where C 1 and C 2 are positive constants.

Numerical experiments

To support our theoretical claims, we consider in this section two numerical examples with X = Y = Z = R 2 , one with a strongly convex objective F and one where F is convex but not strongly so.

Example 1 We consider the quadratic programming problem min

whose objective is strongly convex and verifies all required assumptions. The objective is convex (but not strongly so) and smooth as required. This problem is reminiscent of (regularized) logistic regression very popular in machine learning. In all our numerical experiments, we consider the continuous time dynamical system (TRIALS), solved numerically with a Runge-Kutta adaptive method (ode45 in MATLAB) on the time interval [START_REF] Alvarez | On the minimizing property of a second order dissipative system in Hilbert spaces[END_REF][START_REF] Attouch | A dynamical approach to an inertial forwardbackward algorithm for convex minimization[END_REF].

For the solely convex (resp. strongly convex) objective, Figure 1 (resp. Figure 2) displays the objective error |F (x(t), y(t)) -F | on the left, the feasibility gap Ax(t) + By(t) -c in the middle, and the velocity ( ẋ(t), ẏ(t), λ(t)) on the right. In each figure, the first row shows the results for α(t) ≡ α 0 with α 0 ∈ {1, 2, 4}, the second row corresponds to α(t) = α 0 t with α 0 ∈ {0.25, 0.5, 1} and the third row to α(t) = t r with r ∈ {0.01, 0.1, 0.5}. In all our experiments, we set µ = 10 (recall that µ is the parameter associated with the augmented Lagrangian formulation). All these choices of the parameters comply with the requirements of Propositions 1, 2 and 3. The numerical results are in excellent agreement with our theoretical results, where the values, the velocities and the feasibility gap all converge at the predicted rates.