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Geometrically nonlinear flexural vibrations of plates: In-plane

boundary conditions and some symmetry properties

O. Thomasa,�, S. Bilbaob

aStructural Mechanics and Coupled Systems Laboratory, Cnam, 2 rue Conté, 75003 Paris, France
bAcoustics and Fluid Dynamics Group, James Clerk Maxwell Building, University of Edinburgh, Mayfield Road, Edinburgh EH93JZ, UK

This study is devoted to the derivation of some properties of the von Ka´ rma´ n equations for geometrically nonlinear
models of plates, with a boundary of arbitrary shape, for applications to nonlinear vibration and buckling. An intrinsic
formulation of the local partial differential equations in terms of the transverse displacement and an Airy stress function as
unknowns is provided. Classical homogeneous boundary conditions—with vanishing prescribed forces and displace-ments

—are derived in terms of the Airy stress function in the case of a boundary of arbitrary geometry. A special property of this
operator, crucial for some energy-conserving numerical schemes and called ‘‘triple self-adjointness’’, is derived in the case of
an edge of arbitrary shape. It is shown that this property takes a simple form for some classical boundary conditions, so that
the calculations in some practical cases are also simplified. The applications of this work are either semi-analytical methods

of solution, using an expansion of the solution onto an eigenmode basis of the associated linear problem, or special energy-
conserving numerical methods.

1. Introduction

Thin plates are widely used as parts of various engineering structures. In some applications, a linear model is

not sufficient to capture important aspects of their behavior and nonlinearities have to be introduced,

especially when the plate is subjected to displacements of the order of magnitude of the thickness. In the cases

of both static and dynamic loading, a realistic model has to include geometrical nonlinearities [1]. Under

dynamic conditions, numerous nonlinear phenomena can be observed, including energy transfer between

modes as well as chaotic vibrations, that a linear model fails to predict [2]. A nonlinear model is also necessary

when the plate is subjected to thermal or longitudinal forces that lead to buckling elastic deformation.

Whereas the buckling loads can generally be deduced from a linear analysis, the simulation of the plate post-

buckling behavior necessitates the introduction of geometrical nonlinearities into the model [3]. A widely used

way of introducing geometrical nonlinearity in plate models was introduced in the static case by von Kármán
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in 1910 [4]. It consists of retaining lower order nonlinear quadratic terms in the expressions for longitudinal

strain as a function of transverse displacement. This theory has been extended to dynamic problems of

homogeneous linear elastic plates in Ref. [5] and to laminated plates—see e.g. Refs. [1,6]. The same ideas are

also used to formulate shell theories. Examples are the Donnell–Mushtari–Vlasov theories for shallow shells

[7–11]. Another widely used plate theory that includes geometrical nonlinearities is that of Berger [12], in

which the first invariant of the strain tensor is neglected. However, this theory leads to erroneous results for

some boundary conditions, especially when the edge is free of loads in the in-plane direction [13–15]. von

Kármán and Berger theories usually give correct results for large displacements and moderate rotations, if the

transverse displacement remains of the order of magnitude of the thickness of the plate. Other theories include

higher order nonlinear terms, and account for large rotations. The interested reader is referred to Ref. [16] for

a thorough literature review as well as for precise derivations of those formulations.

The von Kármán equations have been used in a huge number of analytical and semi-analytical studies

during the past decades, devoted to a very large spectrum of applications: from the modeling and the analysis

of nonlinear vibrations and chaos in plates [17] and in percussive musical instruments [18], to the crumpling of

paper sheets [19], along with a huge number of engineering studies, from buckling and dynamics of micro/

nanosystems [20,21] to problems in flow-induced vibration [22]. The interested reader is referred to the

following reviews of the literature: [23,24] for studies on plates, [25–27] for shells and to recent textbooks on

nonlinear vibrations [2,16,28]. The von Kármán theory has been found to be attractive to scientists and

engineers probably because it is able to simulate complex nonlinear phenomena with an excellent accuracy as

compared to experiments (among others, see Refs. [2,28–30]), whereas the nonlinearities are included in a very

simple way—by adding only a single bilinear operator to the classical linear Kirchhoff–Love theory.

Aside from the previous cited studies involving particular applications, the von Kármán theory has been

rigorously justified in more mathematical works, through a reduction from the nonlinear three-dimensional

equilibrium equations. Asymptotic expansions have been used in Refs. [31–34] and lead to a classification of

various plate theories—including the von Kármán model—that are valid for a specific scaling of the applied

loads as compared to the thickness of the plate. A recent study [35] proposes a further justification. Even if all

these studies are restricted to static cases and particular boundary conditions, they give interesting and

rigorous justifications of the core of the von Kármán model and in particular the associated nonlinear

strain–displacement law. To the knowledge of the authors, similar studies that include the dynamical terms

have not yet been published.

The von Kármán equations can take several forms, depending on the choice of the unknowns. The natural

choice would be to write the equations with respect to the three unknown displacements. The three obtained

equations include several nonlinear terms, which probably explains why they have been scarcely used in

practical analytical works [15]. If the plate is free of an externally distributed in-plane forcing, one can derive

an alternate formulation with the transverse displacement w and an Airy stress function F as unknowns. In

this case, the problem is written with two equations that take a very compact form, with the nonlinear terms

concentrated within a single bilinear operator Lð�; �Þ. This formulation is useful when one is interested in

modeling the transverse displacement of the plate at first, all other unknown quantities—the stresses and the

in-plane displacements—being obtained in post-processing if necessary, as functions of w and F .

This ðw;F Þ formulation has been used in a large number of studies in the past, in majority related to

analytical or semi-analytical derivations. However, some energy-conserving numerical schemes recently

developed by the second author [36] use this ðw;F Þ formulation to simulate the nonlinear and chaotic response

of a plate in large deflection vibrations. In those cases, a difficulty related to the present ðw;F Þ formulation is

that the in-plane boundary conditions naturally appear in terms of the membrane forces and the in-plane

displacement. The first goal of this article is to revisit those boundary conditions in order to express them in

terms of F and w only, in the two classical homogeneous cases of a free edge and an immovable edge. The

derivation is conducted with intrinsic notations, so that it can be applied to any coordinate system and thus to

plates with an edge of arbitrary shape in the numerical simulations. These in-plane boundary conditions,

derived in Section 3.2, have already been derived and used in the literature in the case of a plate with a circular

edge (see Refs. [37–40]) but not in the general case.

The second goal of this work is to derive a special symmetry property of the bilinear operator Lð�; �Þ,
defined in Ref. [36] as ‘‘triple self-adjointness.’’ This property can be useful in some practical cases. Firstly, it
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allows considerable simplification when a solution to the von Kármán nonlinear equations is obtained by an

expansion onto eigenfunctions, a common manner of deriving semi-analytical solutions [2,16,40]. This latter

point will be emphasized in this paper. Secondly, this property has also been found crucial in the above-cited

energy-conserving numerical method of solution of the von Kármán equations.

This article is organized as follows: the classical governing equations are first presented in Section 2. Then,

the homogeneous boundary conditions are derived in terms of w and F in Section 3. A particular spatial

discretization of the partial differential equations by an expansion onto the eigenmode basis of the associated

linear problem is proposed in Section 4. Finally, Section 5 is devoted to the derivation of the triple self-

adjointness property in the general case and to some simplifications that can be exploited for some particular

boundary conditions.

2. Governing equations

This section gathers all the important hypotheses and formula that lead to the von Kármán equations that

will be written in Section 2.2. All equations are written with the help of intrinsic notation and can be applied to

a plate with an edge of arbitrary shape. They are equivalent to those found in many textbooks (see e.g. Refs.

[11,1,6,16]), often written in a particular set of coordinates associated with a particular edge geometry

(rectangular or circular). The interested reader will find in Appendix A some precisions about the notations

used in this article and in Appendix C the application of the intrinsic formulation to particular geometries: a

rectangular plate and a circular plate.

The underlying hypotheses that lead to the von Kármán equations formulation of Section 2.2 are recalled

here:

(1) A Kirchhoff–Love kinematic, where any normal to the plate mid-surface before deformations remains

normal to the deformed mid-surface, is used. The transverse shear stresses are thus neglected.

(2) The normal stress along the transverse direction is neglected.

(3) A von Kármán-like strain–displacement law is used, by neglecting the nonlinear terms of higher order in

the Green–Lagrange strain tensor plane part.

(4) The material is linear, homogeneous and isotropic.

(5) The in-plane and rotatory inertia terms are neglected.

(6) The in-plane external forcing is neglected.

2.1. Preliminary derivations

The plate in its reference configuration occupies a domain O of a three-dimensional Euclidean space, defined

by its mid-surfaceS, a bounded region of a given infinite planeP (called the mid-plane), and its thickness h by

O ¼ S� ½�h=2; h=2�. We use the right-handed orthonormal basis ðe1; e2; ezÞ, with ez chosen normal to the

mid-surface S of the plate so that ðe1; e2Þ is a basis of P. In the following, we shall often separate the in-plane

components (along e1 and e2) and the out-of-plane components (along ez) of vectors and tensors. We shall use

the Einstein summation rule, with Greek letter subscripts referring to in-plane components (i.e. ea means e1 or

e2, that is to say a 2 f1; 2g).
The location of any point M of the plate is defined by OM ¼ xþ zez, where O is a given point of P,

z 2 ½�h=2 h=2� and x 2 P are the transverse and in-plane coordinates, respectively. Under hypothesis (1), the

displacement field of the plate during its deformations may be written as

Uðx; zÞ ¼ uðxÞ � z=wðxÞ þ wðxÞez, (1)

where u and w are, respectively, the in-plane and transverse displacements of point M and =w is the plane part

of the vector gradient of scalar field w. Then, using hypothesis (3), the plane part e of the Green–Lagrange

strain tensor reads

eðxÞ ¼ eabea � eb ¼ eðxÞ � zjðxÞ (2)
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with membrane strain tensor e ¼ �abea � eb and curvature tensor j ¼ kabea � eb that are functions of u and w:

e ¼ 1
2
ð=uþ =Tuþ =w� =wÞ; j ¼ ==w. (3a, b)

In the above equations, � denotes the tensor product of two vectors, =u is the tensor gradient of vector field u

and =Tu is its transpose.

The material is assumed to be linear, elastic, homogeneous and isotropic (Hyp. (4)), of Young’s modulus E

and Poisson’s ratio n. Under hypotheses (2), all out of plane components of the stress tensor are neglected.

Then, by defining the membrane forces and moment’s tensor fields with integration of the stress tensor plane

part r over the thickness of the plate:

N ¼

Z h=2

h=2

rdz; M ¼

Z h=2

�h=2

zrdz, (4)

one obtains the constitutive laws:

N ¼ A½ð1� nÞeþ n tr e1�, (5a)

M ¼ �D½ð1� nÞ==wþ nDw 1�, (5b)

where A ¼ Eh=ð1� n2Þ and D ¼ Eh3=½12ð1� n2Þ� are, respectively, the membrane stiffness and the flexural

stiffness of the plate.

2.2. Equations of motion

By applying a variational formulation (Hamilton’s principle or the principle of virtual work) to the plate,

one obtains the local equations of motions in terms of N and M. Then, by neglecting the in-plane and rotatory

inertia terms (hypothesis (5)), and in the particular case of vanishing external membrane loading (hypothesis

(6)), the in-plane equilibrium equation is satisfied exactly by defining the following Airy stress function F :

DF1� ==F � N. (6)

In this case, the equations of motions can be written:

DDDwþ rh
q
2w

qt2
¼ Lðw;F Þ þ pðxÞ, (7a)

DDF ¼ �
Eh

2
Lðw;wÞ, (7b)

where pðxÞ is a normal pressure loading and r denotes the mass density of the material. The interested reader

can refer to Ref. [41] or to the textbooks [15,6,16] for exhaustive mathematical derivations. The problem is

now defined in terms of two unknown scalar fields—transverse displacement w and Airy stress function F—

that are solutions of the two scalar equations (7a, b). Eq. (7) is the transverse equation of motion and Eq. (7b)

comes from the compatibility condition [1].

The bilinear operator Lð�; �Þ introduced in the above equations appears in any von Kármán-like plate or

shell theory [1,6–8,10]. It is sometimes referred to as the ‘‘Monge-Ampère form’’ [34] and will be named in this

work as the ‘‘von Kármán operator’’. It is defined by

Lðw1;w2Þ ¼ Dw1 Dw2 � ==w1 : ==w2, (8)

where : denotes the doubly contracted product of two tensors (see Appendix A). One can remark that all the

nonlinear terms of the equations of motion are included within this single operator.

It is worth remarking that the Airy stress function, as defined by Eq. (6) as a function of N through its

second derivatives, is unique up to an arbitrary function, bilinear in the components of x. However, this non-

uniqueness is not a problem as F is only an auxiliary function that enables to solve the problem and to obtain

the physical variable w, and in a second step, u and N. In a practical problem, F can by uniquely determined

either by some particular boundary conditions [31,34] or by adding linear conditions on the boundary that do
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not change the value of w, u and N. The particular discretization procedure described in Section 4 also leads to

a unique determination of F .

2.3. Boundary conditions

The boundary is subjected to an external forcing, represented by a force field T eez þNe and a moment field

Me, with Ne andMe two vectors parallel to the plate mid-plane. One can also impose an in-plane displacement

ue, a transverse displacement we or a normal rotation of the edge wne. The boundary conditions can be

obtained in a classical manner using the principle of virtual work or the Hamilton principle [41,1,6,16]. At any

point of the plate boundary qS, s denotes the arc-length and ðn; sÞ are the normal and tangent unit vector (see

Fig. 1). The boundary conditions are:

u ¼ ue or Nn ¼ Ne, (9a, b)

w ¼ we or Qn þ
qMnt

qs
¼ Te þ

q

qs
ðMe � sÞ, (9c, d)

=w � n ¼ wne or Mnn ¼ Me � n, (9e, f)

where Qn ¼ ðdivMþN=wÞ � n, Mnn ¼ n �Mn is the normal bending moment and Mnt ¼ s �Mn is the normal

twisting moment. One can note that considering Eq. (5b) and identities (B.20, B.21, B.22) leads to

divM ¼ �D=ðDwÞ. (10)

In addition to the above boundary conditions (9a–f), the balance with Kirchhoff’s corner load has to be

fulfilled [42]: at any angular point of coordinate t0 of the plate boundary qS,

w ¼ we or ½Mnt �Me � s�
tþ
0
t�
0
¼ 0, (11)

where ½f �a
þ

a� ¼ f ðaþ eÞ � f ða� eÞ, with e5a, denotes the variation of function f around point a.

The purpose of the following sections is to rewrite the boundary conditions (9a–h) in terms of unknowns w

and F only. We restrict ourselves to the cases of homogeneous boundary conditions, defined by the

vanishing of the applied loads (Ne ¼ Me ¼ T e ¼ 0 on qS) and the applied displacements (ue ¼ we ¼ wne ¼ 0

on qS).

3. Boundary conditions in terms of ðw;FÞ

In this section, we use an orthogonal coordinate system to parametrize the plate boundary qS, so

that qS is exactly a coordinate line. For details about the curvilinear coordinate systems used in this work

as well as on differential operators, the reader can refer to Appendix B. ðn; tÞ denotes the two curvilinear

coordinates and Cn and Ct are the corresponding coordinate lines. qS coincides with Ct for a particular value

of n. n and s still denote unit vectors normal and tangent to qS (see Fig. 1). Rn and Rt are the curvatures

of Cn and Ct and if f denotes the mapping that defines the coordinate system, hn ¼ kqf=qnk and ht ¼ kqf=qtk,

Fig. 1. Sketch of domain O occupied by the plate and its middle plane surface S with edge qS.
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so that

n ¼
1

hn

qf

qn
; s ¼

1

ht

qf

qt
. (12)

The arc-length s on the plate boundary qS is then defined by ds ¼ ht dt.

3.1. Flexural boundary conditions

To be exhaustive, the classical homogeneous flexural boundary conditions are rewritten here in terms of w

and F only.

	 In the case of a transversely and rotationally immovable edge, we ¼ wne ¼ 0 and Eqs. (9c, e) are written as

w ¼ 0; =w � n ¼
qw

qn
¼ 0. (13a, b)

	 For a transversely free edge, Te ¼ 0 and the twisting moment Me � s has to be a constant along the edge.

Eq. (9d) together with Eqs. (10) and (5b) leads to

=ðDwÞ � nþ ð1� nÞ
q

qs
½n � ð==wÞs� þNwðF ;wÞ ¼ 0, (14)

where

NwðF ;wÞ ¼
1

D
ðNnÞ � =w (15)

is the nonlinear part of this boundary condition. One can remark thatNw is canceled on the edge if Nn ¼ 0,

and thus in the case of an edge free of loads in the in-plane direction (see Section 3.2.1).

	 For a rotationally free edge, Me � n ¼ 0. With Eq. (9f), one obtains:

Mnn ¼ n �Mn ¼ 0, (16)

which gives

nDwþ ð1� nÞn � ð==wÞn ¼ 0. (17)

3.2. In-plane boundary conditions

3.2.1. Free edge in the in-plane direction

The case of a free edge in the in-plane direction is defined by the vanishing of applied external in-plane

forcing at the plate edge, namely Ne ¼ 0. With Eqs. (9b, d), one obtains for all points of qS:

N � n ¼ 0 (18)

that may be written, with the help of Eq. (6), as

ðDF1� ==F Þ � n ¼ 0. (19)

This condition can be written in the above-defined orthogonal curvilinear coordinate system with Eqs. (B.15)

and (B.16) as given in Appendix B.1. Eq. (18) is then equivalent to the following two scalar equations that the

Airy stress function F has to verify at any point on the boundary:

q
2F

qt2
þ

h2t
Rthn

qF

qn
�

1

ht

qht

qt

qF

qt
¼ 0, (20a)

q
2F

qn qt
�

ht

Rn

qF

qn
�

hn

Rt

qF

qt
¼ 0. (20b)
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A much simpler expression for these boundary conditions can now be obtained by considering the following

conditions, for any point on the boundary:

F ¼
qF

qn
¼ 0. (21a, b)

Since the above relation (21a) is valid at any point on the edge qS, it necessarily implies

qF

qt
¼

q
2F

qt2
¼

q
2F

qt qn
¼ 0 (22)

for any point on the boundary, so that Eqs. (20a, b) and consequently Eq. (18) are verified. As a consequence,

Eqs. (21a, b) are sufficient conditions to impose a free edge in the in-plane direction. To the knowledge of the

authors, this last result has been introduced in the literature only by Ciarlet in Ref. [31] and used in Ref. [40] in

the case of a circular plate.

3.2.2. Immovable edge

The case of an immovable edge is defined by a vanishing in-plane displacement on the plate boundary, that

is to say for all points on qS (Eqs. (9a, c)):

u ¼ unnþ uts ¼ 0. (23)

Expressing the above condition, written using displacements, in terms of the Airy stress function F is less

straightforward than in the previous Section 3.2.1. The usual approach is first to integrate the local equation

(36) and thus obtain an analytical expression for F as a function of x, then to calculate N with Eq. (6) in order

to obtain � with the constitutive relation (5a) and finally to integrate � to obtain u with Eq. (3). It is then

possible to apply the boundary conditions (23) in terms of u.

Here, we follow an idea introduced in Ref. [39] that consists in writing two scalar equations with F that are

consequences of the boundary conditions written in terms of u. We first write the membrane strain tensor e as a

function of ut and un, by expressing Eq. (3) in curvilinear coordinates with Eqs. (B.9) and (B.11). We have

e ¼ �nnn� nþ �tts� sþ �ntðs� nþ n� sÞ with

�nn ¼
1

hn

qun

qn
�

ut

Rn

þ
1

2h2n

qw

qn

� �2

, (24a)

�tt ¼
1

ht

qut

qt
þ

un

Rt

þ
1

2h2t

qw

qt

� �2

, (24b)

�nt ¼
1

2

1

ht

qun

qt
þ

1

hn

qut

qn
�

ut

Rt

þ
un

Rn

þ
1

hnht

qw

qn

qw

qt

� �

. (24c)

A first remark is that since Eq. (23) is valid at any point on the edge qS, it necessarily implies that

qut

qt
¼

qun

qt
¼ 0. (25)

Consequently, by introducing Eqs. (23) and (25) into Eq. (24b), one arrives at

�tt þN1ðwÞ ¼ 0, (26)

where the nonlinear part may be written as

N1ðwÞ ¼ �
1

2h2t

qw

qt

� �2

. (27)

The above boundary condition can be written in terms of F by combining Eqs. (6) and (5a), yielding

e ¼
1

hE
DF1� ð1þ nÞ==F½ �, (28)
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so that

DF � ð1þ nÞs � ð==F ÞsþN1ðwÞ ¼ 0. (29)

The second boundary condition is obtained as a second consequence of Eq. (23), by eliminating all the

derivatives with respect to n in the components of e so that only derivatives with respect to t remain and then

vanish, due to the above remark (25). One can verify using Eqs. (24a–c) that the following expression is valid

for any point on the boundary, if Eq. (23) is fulfilled:

q

qn
ðht�ttÞ �

hnht

Rt

�nn � 2
q

qt
ðhn�ntÞ þNF ðwÞ ¼ 0 (30)

with

NF ðwÞ ¼
ht

2Rthn

qw

qn

� �2

þN2ðwÞ, (31)

where N2 is a nonlinear function of qw=qt, not written here for the sake of brevity. The above boundary

condition (30) can be easily written in terms of F by using Eq. (28). This operation will not be presented here in

general curvilinear coordinates, as it leads to very complex expressions. However, the interested reader will

find those calculations in case of particular geometries in Appendix C.

A simple practical case is obtained if the transverse displacement w vanishes on the entire boundary (w ¼ 0).

This assumption is justified as immovable edge in-plane boundary conditions are usually associated with zero

transverse displacement, as, for example, in clamped edge, simply supported or hinged edge (see Section 5.2)

conditions. As before, it leads to

qw

qt
¼ 0 (32)

at any point on the edge, so that N1 and N2 vanish in the above two boundary conditions (29) and (30).

Relations (29) and (30) can be considered as two boundary conditions written in terms of F . These two

equations are necessary to ensure u ¼ 0 on qS, but not sufficient. To ensure u ¼ 0 on qS, one would have to

integrate in space the expression for F with Eqs. (28) and (3a) to obtain u that would thus be defined up to an

arbitrary rigid body motion. The latter would then be canceled by applying condition Eq. (25). However, Eqs.

(29) and (30) written in terms of F are two sufficient boundary conditions if one is interested in transverse

displacement w only, as u appears only through F in the present formulation (Eqs. (36a, b)).

3.3. Crossed-similarity between the free edge and the clamped edge

In the case of an edge free of loads in both the transverse and the in-plane direction (classically denoted

‘‘free edge’’ boundary conditions), one has to impose Eqs. (14), (17) and (21). It may be written as

F ¼ 0;
qF

qn
¼ 0, (33a, b)

Eq. (14); Eq. (17). (33c, d)

In the case of an edge clamped in any direction (classically denoted ‘‘clamped edge’’ boundary conditions),

one has to impose Eqs. (13), (29) and (30). It appears as

Eq. (29); Eq. (30), (34a, b)

w ¼ 0;
qw

qn
¼ 0. (34c, d)

One can note that Eqs. (33a, b) have the same form as Eqs. (34c, d), so that free boundary conditions in the in-

plane direction written in terms of Airy stress function F have the form of clamped boundary conditions. This

result has been previously pointed out in Ref. [40] in the case of a circular plate and is extended here to a plate

of arbitrary geometry.
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Conversely, comparing Eqs. (33c, d) and Eqs. (34a, b) is difficult in the general case, because the

corresponding expressions in orthogonal curvilinear coordinates are complex. However, this can be done in

Cartesian coordinates—c.f. Eqs. (C.3a, b) and (C.4, C.6)—and in polar coordinates—c.f. Eqs. (C.11a, b) and

Eqs. (C.12, C.14). Consequently, one can observe that immovable in-plane boundary conditions (in term of F )

and transverse free boundary conditions (in terms of w) have forms that are very close to each other but not

perfectly identical, as some signs differ.

4. A solution to the nonlinear problem

4.1. Dimensionless form of the equations

Eqs. (7a, b) are rewritten in a dimensionless form by defining the following dimensionless quantities,

denoted by overbars:

x ¼ ax; w ¼ w0w; t ¼ a2
ffiffiffiffiffiffiffiffiffiffiffiffi

rh=D
p

t; F ¼ Ehw2
0F , (35a)

p ¼ Dw0=a
4p; N ¼ Ehw2

0=a
2N; M ¼ Dw0=a

2M e ¼ w2
0=a

2
e, (35b)

where a is the characteristic length of the mid-surface S and w0 is the order of magnitude of

transverse displacement w, generally chosen with reference to a particular problem. Substituting the above

definitions (Eqs. (35a, b)) into the equations of motion (7a, b) and dropping the overbars in the result, one

obtains

DDwþ €w ¼ eLðw;F Þ þ pðxÞ, (36a)

DDF ¼ �1
2
Lðw;wÞ, (36b)

where e ¼ 12ð1� n2Þw2
0=h

2 and €w denotes the second time derivative of w. The choices for w0 can be h, h2=a,
h3=a2, etc. w0 ¼ h is a good choice in the general case, because it enables easy interpretation of the results by

comparing the transverse displacement magnitude directly to the thickness of the plate. However, w0 ¼ h2=a
or w0 ¼ h3=a2 leads to a small value of e compared to unity, if the plate is thin (h=a51). This latter scaling

choice can be useful if perturbation methods are used, as they are justified when the nonlinear terms (scaled

by e) are small compared to the linear terms [39,40,43].

4.2. Mode expansion

The problem described by Eqs. (7a, b) can be discretized by expanding w and F onto proper expansion

functions. A useful set is the eigenmodes of the linear part of Eqs. (7a, b). The main advantage is that the

obtained discretized problem has a diagonal linear part.

We denote by ðok;FkðxÞÞ and ðzk;CkðxÞÞ the eigenmodes of the linear part of Eqs. (7a, b)—Fk and Ck are

two functions defined over domain S—that are solutions of, for all k 2 N

:

DDFk � o2
kFk ¼ 0, (37a)

DDCk ¼ z4kCk (37b)

along with proper boundary conditions, chosen in Eqs. (13a, b), (14) and (17) for Fk and in Eqs. (21), (29) and

(30) for Ck.

The solution of Eqs. (7a, b) is obtained by using the following expansions for the unknowns w and F :

wðx; tÞ ¼
X

þ1

k¼1

FkðxÞqkðtÞ; F ðx; tÞ ¼
X

þ1

k¼1

CkðxÞZkðtÞ. (38a, b)
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4.3. Quadratic ðZ; qÞ-formulation

By introducing Eq. (38a) into Eq. (7b), using Eq. (37b), multiplying the result by Ck, integrating over the

mid-surface S and finally using the orthogonality properties of modes ðzk;CkÞ, one obtains the membrane

modal coordinate Zk for all k 2 N

:

ZkðtÞ ¼ �
1

2z4k

X

þ1

p¼1

X

þ1

q¼1

Hk
pqqpðtÞqqðtÞ, (39)

where

Hk
pq ¼

RR

S
CkLðFp;FqÞdS
RR

S
C2

k dS
. (40)

By introducing Eqs. (38a, b) into Eq. (7a), using Eqs. (39) and Eq. (37a), multiplying the result by Fk,

integrating over the mid-surface S and finally using the orthogonality properties of modes ðok;FkÞ, one

obtains the following set of equations, satisfied by the transverse modal coordinates qk, for all k 2 N

:

€qkðtÞ þ 2xkok _qkðtÞ þ o2
kqkðtÞ ¼ e

X

þ1

p¼1

X

þ1

q¼1

Ek
pqqpðtÞZqðtÞ þQkðtÞ (41)

with

Ek
pq ¼

RR

S
FkLðFp;CqÞdS
RR

S
F2

k dS
. (42)

The initial continuous problem of Eqs. (36a, b), with proper boundary conditions, has been discretized and

now consists in finding modal coordinates ðqk; ZkÞ, for all k 2 N

, solutions of the set of ordinary differential

equations (ODEs) (39) and (41). One can remark that the present formulation is quadratic in terms of the

fqk; Zkgk2N
 . A linear viscous modal damping term has also been introduced, with modal damping factor xk.

4.4. Cubic q-formulation

Another formulation can be obtained by eliminating Zk in Eq. (41) by using its expression as a function of

the fqkgk2N
 (Eq. (39)). Eq. (41) becomes, for all k 2 N

:

€qkðtÞ þ 2xkok _qkðtÞ þ o2
kqkðtÞ ¼ �e

X

þ1

p¼1

X

þ1

q¼1

X

þ1

r¼1

Gk
pqrqpðtÞqqðtÞqrðtÞ þQkðtÞ (43)

with

Gk
pqr ¼

X

þ1

i¼1

H i
pqE

k
ri

2x4i
. (44)

In this case, the in-plane unknowns (F , through the in-plane modal coordinates fZkgk2N
) do not appear in

the formulation: one has just to calculate the transverse modal coordinates fqkgk2N
 by solving the set of ODEs

(43) and then using the deformed shapes fFkgk2N
 with Eq. (38a) to obtain wðx; tÞ. The present formulation has

fewer unknowns (only the fqkgk2N
) but, on the other hand, it is cubic in terms of the fqkgk2N
 .

4.5. Discussion

A practical advantage of the above choice of the eigenmodes to discretize the nonlinear equations of

motions is that the damping can be heuristically introduced by viscous modal damping terms, whose value for

each mode must be determined experimentally in any particular application. One obtains a rich damping

model, richer than traditional proportional damping approximations, which is essential if one is interested in

simulating realistic plate vibration decays [44].
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In a practical setting, one must truncate the infinite set of Eqs. (38a, b), by retaining Nw 2 N functions Fk

and NF 2 N functions Ck in the expansions. This truncation has to be carefully done [45,46] and the number

of expansion functions that have to be retained depends on the practical problem under study, in order to

obtain a good accuracy of the solution.

The advantage of the second (q cubic) formulation is that it is more compact, since it introduces fewer

unknowns (only Nw unknowns qk in Eq. (43)). It has been successfully used in many past studies of nonlinear

vibrations of plates and shells. The interested reader is referred to the following books for thorough literature

reviews [2,16,28]. The cubic-q formulation has also served as a basis for numerical simulations in more recent

studies. Among others, the interested reader can refer to the above-cited textbook [28] and to [46,47], that

present various numerical studies that solve similar cubic sets of ODEs. Direct time integrations as well as

amplitude/frequency diagrams obtained with the continuation software AUTO [48] are presented.

On the contrary, the first (Z; q) formulation has the advantage of being quadratic in terms of the unknowns.

Even if more unknowns have to be considered (NF unknowns Zk in Eq. (39) plus Nw unknowns qk in Eq. (41)),

some resolution methods mandatory need a quadratic formulation of the problem. This is the case of the

Asymptotic Numerical Method [49,50], a powerful continuation method that has recently been implemented

in the Matlab software environment, under the name MANLab [51,52]. Other interesting examples are some

energy-conserving schemes, developed by the second author [36] in the time–space (i.e. non-modal) context,

but applicable to systems of ODEs as well. In both formulations, the number of time integrations is the same:

Nw second-order nonlinear ODEs have to be integrated, since Eq. (39) is an algebraic nonlinear set of

equations.

Another remark is that any eigenmode Ck solution of Eq. (37b) associated with two boundary conditions

chosen in Eqs. (21), (29) and (30) is uniquely determined. As a consequence, F , calculated with relation (38b),

is also perfectly defined, with Zk and qk solutions of Eqs. (39) and (41). F obtained in this way then constitutes

one solution of the set (36a, b), which is not the only one, since an F solution of (36a, b) is defined up to an

arbitrary bilinear space function (see Section 2.2).

5. Triple self-adjointness of the von Kármán operator

In this section, a particular property of Lð�; �Þ is investigated in the general case of a plate boundary of

arbitrary geometry. This property has been introduced and called ‘‘triple self-adjointness’’ in Ref. [36] in the

case of a rectangular plate. It states that for scalar field f , g and h, from S into R, one has

ZZ

S

fLðg; hÞdS ¼

ZZ

S

Lðf ; gÞhdS þ

I

qS

I ds, (45)

where I is a function of f , g and h and their spatial derivatives.

The purpose of this section is to prove the above property and to find the expression for I , in the case of a

boundary of arbitrary shape. Moreover, it will be shown that I vanishes for some particular boundary

conditions.

5.1. General case

One can first remark that, by using identities (B.14) twice and (B.17):

f Dh ¼ f divð=hÞ (46)

¼ divðf=hÞ � =f � =h (47)

¼ divðf=hÞ � divðh=f Þ þ hdivð=f Þ, (48)

so that

f Dh ¼ hDf þ divðf=h� h=f Þ. (49)
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Then, using the same method and identities (B.14), (B.17) and (B.21), one has, for any vector field v:

Dgdiv v ¼ divðDg vÞ � v divð==gÞ. (50)

Finally, by multiplying Eq. (49) by Dg and using Eq. (50) by substituting f=h� h=f for v, one obtains

f DgDh ¼ hDf Dgþ div½Dgðf=h� h=f Þ� � ðf=h� h=f Þ � divð==gÞ. (51)

In the same manner as above, by using identity (B.19) twice, one can show that

f==h ¼ h==f þ =ðf=h� h=f Þ. (52)

Finally, by multiplying Eq. (52) by ==g and using identity Eq. (B.18) by substituting ==g for T and f=h�

h=f for u, one obtains

f==g : ==h ¼ h==g : ==f þ div½==gðf=h� h=f Þ� � divð==gÞ � ðf=h� h=f Þ. (53)

Now, by considering the definition (Eq. (8)) of the von Kármán operator Lð�; �Þ and using Eqs. (51) and (53),

one obtains the following compact formula:

fLðg; hÞ ¼ Lðf ; gÞhþ div½ðDg 1� ==gÞðf=h� h=f Þ�. (54)

Then, by integrating the above formula over domain S and applying the divergence theorem, one obtains the

triple self-adjointness property (45), with

I ¼ ½ðDg 1� ==gÞðf=h� h=f Þ� � n. (55)

5.2. A particular simplification

The purpose of this section is to investigate which of the classical boundary conditions leads to the

vanishing of IðxÞ for any x 2 qS. In this case, one has
ZZ

S

fLðg; hÞdS ¼

ZZ

S

Lðf ; gÞhdS, (56)

that simplifies the calculation of the coefficients that appear in the modal expansion introduced in Section 4, as

some of them become equal. In fact, if Eq. (56) holds, it is obvious with Eqs. (40), (42) and (44) that for any

integer p, q, r, k:

E
q
pk ¼ Hk

pq; Gk
pqr ¼

X

þ1

i¼1

H i
pqH

i
rk

2x4i
(57)

provided the mode shapes have been normalized in the following way, for all k:
ZZ

S

F2
k dS ¼

ZZ

S

C2
k dS ¼ 1. (58)

The above simplification can be very useful because all coefficients E
q
pk and Hk

pq are numerically evaluated in a

practical case. If NF �Nw functions Ck � Fk are retained, considering the symmetry of the von Kármán

operator (Lðf ; gÞ ¼ Lðg; f Þ), one has to numerically evaluate N ¼ NFNwðNw þ 1Þ=2 coefficients, a number that

can be large in a practical case (If NF ¼ Nw ¼ 30, N ¼ 13950). If Eq. (57) holds, only half of the coefficients

have to be calculated, which saves half the computation time.

As a preliminary step, IðxÞ is written in the orthogonal curvilinear coordinate system defined in Section 3.2,

with Eqs. (B.9), (B.15) and (B.16) of the appendix. One obtains

I ¼
1

hn

1

h2t

q
2g

qt2
þ

1

hnRt

qg

qn
�

1

h3t

qht

qt

qg

qt

" #

f
qh

qn
� h

qf

qn

� �

�
1

ht

1

hnht

q
2g

qn qt
�

1

hnRn

qg

qn
�

1

htRt

qg

qt

� �

f
qh

qt
� h

qf

qt

� �

(59)
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Then, two simple cases lead to a vanishing of I at any point on the boundary:

either f ¼
qf

qn
¼

qf

qt
¼ 0 or h ¼

qh

qn
¼

qh

qt
¼ 0 (60)

at any point on the boundary. As we are interested in proving Eqs. (57), considering Eq. (40), f plays the role

of Airy stress function F (or any in-plane mode Ck); g, and h play the role of transverse displacement w (or

any transverse mode Fk). Thus, Eq. (57) is fulfilled in the following two cases:

	 if the edge free of loads in the in-plane direction, since this case is obtained if

F ¼
qF

qn
¼ 0 (61a, b)

at any point on the edge (see Section 3.2.1);

	 if the edge is clamped in the transverse direction, since this case is obtained if

w ¼
qw

qn
¼ 0 (62)

at any point on the edge.

As in Section 3.2.1, we have considered that f ¼ qf =qn ¼ 0 at any point at the edge necessarily implies that

qf =qt ¼ 0, for any scalar field f . The above two cases obviously show that classical clamped-edge as well as

free-edge boundary conditions necessarily implied property Eq. (57).

The particular case of hinged-edge boundary conditions has to be addressed. As the nonlinearities couple

transverse-w and in-plane-F motion, one has to consider two subcases.

	 The case of a simply supported edge is obtained if

w ¼ Mnn ¼ 0 (63a, b)

and if the edge is free of loads in the plane (Eqs. (61a, b)). In this case, because of this latter reason, property

Eq. (57) is fulfilled.

	 The case of a hinged edge is obtained if Eqs. (63a, b) are fulfilled and if the edge is immovable in the plane

(Eqs. (29) and (30)). Considering the corresponding expressions as a function of w and F , it appears that

Table 1

Summary of the classical homogeneous boundary conditions and the associated relations in terms of w and F

Transversely immovable, w ¼ 0 Transversely free Eq. (14)

Rot. immov. Rot. free Rot. immov. Rot. free

qw=qn ¼ 0 Eq. (17) qw=qn ¼ 0 Eq. (17)

In-plane immovable

Eqs. (29) and (30)

Clamped STSA Hinged

In-plane free

F ¼ qF=qn ¼ 0

STSA Simply supported STSA STSA Free STSA

The cases where the simplified TSA property (56) holds are denoted by ‘‘STSA’’.
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they cannot generally lead to the vanishing of I . As a consequence, in the case of a hinged edge, property

Eq. (57) is generally not fulfilled.

As a consequence, three classical cases lead to the vanishing of I : a free edge, a clamped edge and a simply

supported edge. The case of a clamped edge in the transverse direction with a free edge in the in-plane

direction, that also leads to the vanishing of I , has already been shown in Ref. [53]. The case of a hinged edge

does not, in general, simplify Eq. (45) to Eq. (56). These results are gathered in Table 1.

6. Conclusion

The main goal of the paper has been to exhibit some properties of the von Kármán model of nonlinear

mechanical behavior of thin plates. As a preliminary, the main steps of the derivation of the two governing

partial differential equations have been written in terms of two unknown scalar fields: the transverse

displacement w and an Airy stress function F . To obtain a general and compact formulation, intrinsic

notations have been used, so that all the important relations can be written in any particular coordinate

system, depending on the plate edge shape. This can be easily done by using the formula giving the classical

differential operators in a particular coordinate system, to be found in many textbooks. As an example, an

appendix gathers all important formulae, written in Cartesian and polar coordinates.

As the nonlinearities couple the transverse and in-plane motions, one has to consider in-plane boundary

conditions (BC) even if only the transverse behavior of the plate is addressed. As a consequence, in-plane BC

in terms of F have been derived for a plate edge of arbitrary geometry, in the particular cases of a free edge

and an immovable edge. In the case of a free edge, it has been shown that the in-plane BC in terms of F take

the form of clamped boundary conditions. In the case of an immovable edge, the in-plane boundary

conditions show complicated expressions in terms of F , close, but not identical, to free BC. An intrinsic

expression, written in terms of the membrane strains for the sake of brevity and that can be easily rewritten in

terms of F , has been given.

Then, the governing partial differential equations have been discretized by expanding the two unknown

scalar fields w and F onto the eigenmodes of the associated linear problem. Two discretized formulations have

been exhibited, in terms of two sets of nonlinear ordinary differential equations (ODE). The first one is

quadratic in terms of the unknowns, an essential property if those ODE have to be integrated by the

asymptotic numerical method, such as a continuation method [49,50]. This quadratic form is also useful in the

context of some energy-conserving numerical schemes [36]. A second formulation, cubic in terms of the

unknowns and already used in past studies on plates, has also been obtained.

Finally, a particular property of the so-called von Kármán bilinear operator has been given and proved,

again for a plate edge of arbitrary geometry, thanks to the intrinsic formulation. It is shown that this property,

called the triple self-adjointness, can lead to simplifications that enable to divide by a factor two the

computation time needed for the numerical coefficients of the ODE set calculation. This property has also

been found to be essential to use the above-cited energy-conserving numerical schemes [36].
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Appendix A. Notations for operators

In this article, we use the same notation P for the plate mid-plane—a two-dimensional Euclidean space—

and the associated two-dimensional vector space.

u � v denotes the scalar (dot) product between two vectors u and v. In an orthonormal coordinate system, it

writes u � v ¼ uava.
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u� v denotes the tensor (dyadic) product between vectors u and v. If T ¼ u� v, where u; v 2 P, one defines

the linear transformation w 2 P 7!Tw ¼ ðv � wÞu 2 P. The components of tensor T on the basis ðe1; e2Þ of P
are Tab ¼ uavb. The obtained tensor is a second-order tensor, an element of a four-order vector space written

P�P. One usually writes T ¼ Tabea � eb.

S : T denotes the doubly contracted (double dot) product of tensors S and T, that writes in an orthonormal

coordinate system S : T ¼ SabTba.

=a and =u denote, respectively, the vector gradient of scalar field a and the tensor gradient of vector field u.

div u and divT denote, respectively, the scalar divergence of vector field u and the vector divergence of tensor

field T. Da is the Laplacian of scalar field a and ==a is the tensor gradient of the vector gradient of scalar field

a, also called the Hessian. All these differential operators are defined in Appendix B.

Appendix B. Differential operators in orthogonal curvilinear coordinates

The aim of this section is to recall the main properties of orthogonal curvilinear coordinates in the plane in

order to derive the expressions of the main differential operators (Fig. B.1).

B.1. Curvilinear orthogonal coordinates

The position vector x of any point M of a given region of plane P is defined by two curvilinear coordinates

ðn1; n2Þ 2 I1 � I2, with I1 � I2 � R
2, so that x ¼ OM ¼ fðn1; n2Þ, where f : ðn1; n2Þ 2 I1 � I2 7!fðn1; n2Þ 2 P is a

mapping from I1 � I2 into P that defines the curvilinear coordinate system.

Let two basis vectors of plane P be defined by

ga ¼
qf

qna
; a 2 f1; 2g. (B.1)

The two families of coordinate lines are defined by

C1 ¼ C1ðn20Þ ¼ fM 2 P=OM ¼ fðn; n20Þ; n 2 I1g, (B.2)

C2 ¼ C2ðn10Þ ¼ fM 2 P=OM ¼ fðn10; nÞ; n 2 I2g. (B.3)

One can note that ga, a 2 f1; 2g, is tangential to Ca.

We now assume that C1 and C2 form a family of orthogonal curves, so that for all ða1; a2Þ 2 I1 � I2, g1 is

normal to g2. It is convenient to use a basis of unit vectors, defined by

ea ¼
ga

kgak
¼

1

ha

qf

qna
; a 2 f1; 2g, (B.4)

Fig. B.1. Sketch of the curvilinear coordinate system.
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where

ha ¼ haðn1; n2Þ ¼
qf

qna

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

; a 2 f1; 2g (B.5)

are scale factors. By applying the classical Frenet relations between the radius of curvature and the

tangent and normal unit vectors of a plane curve [54] to orthogonal curves C1 and C2, one obtains the

following properties:

qe1

qn1
¼

h1

R1

e2;
qe2

qn2
¼ �

h2

R2

e1, (B.6a, b)

qe2

qn1
¼ �

h1

R1

e1;
qe1

qn2
¼

h2

R2

e2, (B.6c, d)

where Ra ¼ Raðn1; n2Þ, a 2 f1; 2g, is the radius of curvature of curve Ca. The signs in Eqs. (B.6a, b) have been

chosen so that R140 (R2o0) if x2 (x1) points toward the center of curvature of C1 (C2). One can also show

that

qh2

qn1
¼

h1h2

R2

;
qh1

qn2
¼ �

h1h2

R1

. (B.7)

B.2. Differential operators

In the following, x ¼ fðn1; n2Þ denotes the position vector of any point M of plane P, ðn1; n2Þ its curvilinear
coordinates and ðe1; e2Þ the orthonormal curvilinear basis defined in Section B.1. a denotes a two-dimensional

scalar field, from P into R, u denotes a two-dimensional vector field from P into P, defined by u ¼ uaea and T

denotes a two-dimensional tensor field, from P into P�P, defined by T ¼ Tabea � eb.

B.2.1. Vector gradient

By definition, the gradient of a is a vector field of P, denoted by =a, such that

da ¼ =a � dx. (B.8)

To calculate the components of =a in basis ðe1; e2Þ, one can differentiate a and x, introduce the result into Eq.

(B.8) and identify the two members of the obtained equation, to obtain

=a ¼
1

ha

qa

qna
ea. (B.9)

B.2.2. Tensor gradient

By definition, the gradient of u is a tensor field of P�P, denoted by =u, such that

du ¼ =udx. (B.10)

In a similar way as in the previous section, by differentiating u, one obtains the components of the tensor

gradient in basis ðe1; e2Þ:

=u :

1

h1

qu1

qn1
�

u2

R1

1

h2

qu1

qn2
�

u2

R2

1

h1

qu2

qn1
þ

u1

R1

1

h2

qu2

qn2
þ

u1

R2

0

B

B

B

@

1

C

C

C

A

ðe1;e2Þ

. (B.11)
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B.2.3. Scalar divergence and Laplacian

The scalar divergence of vector field u can be defined by

div u ¼ trð=uÞ. (B.12)

With Eq. (B.11), one obtains

div u ¼
1

h1

qu1

qn1
�

u2

R1

þ
1

h2

qu2

qn2
þ

u1

R2

. (B.13)

The Laplacian of scalar field a is, by definition:

Da ¼ divð=aÞ. (B.14)

With Eqs. (B.9) and (B.13), one obtains

Da ¼
1

h21

q
2a

qn21
þ

1

h22

q
2a

qn22
þ

1

h1

1

R2

�
1

h21

qh1

qn1

!

qa

qn1
�

1

h2

1

R1

þ
1

h22

qh2

qn2

!

qa

qn2
. (B.15)

B.2.4. Another useful operator (the Hessian)

Using Eqs. (B.9), (B.11) and properties (B.7), one can show that

==a ¼
1

h21

q
2a

qn21
�

1

h31

qh1

qn1

qa

qn1
�

1

R1h2

qa

qn2

!

e1 � e1

þ
1

h22

q
2a

qn22
�

1

h32

qh2

qn2

qa

qn2
þ

1

R2h1

qa

qn1

!

e2 � e2

þ
1

h1h2

q
2a

qn1n2
�

1

R1h1

qa

qn1
�

1

R2h2

qa

qn2

� �

e1 � e2 þ e2 � e1ð Þ. (B.16)

B.2.5. Useful identities

Here are some classical identities:

divðauÞ ¼ a div uþ u � =a, (B.17)

divðTuÞ ¼ T : =uþ divTT � u, (B.18)

=ðauÞ ¼ a=uþ u� =a, (B.19)

=div u ¼ div=Tu, (B.20)

=
T
=a ¼ ==a, (B.21)

divða1Þ ¼ =a. (B.22)

Appendix C. Application to particular geometries

In this section, the main formulae, written in an intrinsic form in the core of the paper, are translated into a

special coordinate system, to be applied to, respectively, a rectangular and a circular plate.

C.1. A rectangular plate

A rectangular plate is considered. A rectangular Cartesian ðx; yÞ orthonormal coordinate system is used (see

Fig. C.1), defined by the mapping

OM ¼ fðx; yÞ ¼ xex þ yey. (C.1)
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The coordinate lines are straight (with zero curvatures: 1=Rx ¼ 1=Ry ¼ 0) and hx ¼ kqf=qxk ¼

hy ¼ kqf=qyk ¼ 1.

The edge of the plate is thus composed of particular coordinate lines, parallel to ex and ey (Fig. C.1).

C.1.1. Classical boundary conditions

The classical boundary conditions in terms of w and F can be any combination of the following relations

that must be satisfied at any point on the edge qS:

	 In-plane direction:

� Free edge (Eqs. (21a, b)):

F ¼
qF

qn
¼ 0. (C.2)

� Immovable edge, with w ¼ 0 on the boundary, so that N1 ¼ N2 ¼ 0 (Eqs. (29) and (30)):

q
2F

qn2
� n

q
2F

qt2
¼ 0;

q
3F

qn3
þ ð2þ nÞ

q
3F

qn qt2
¼ 0. (C.3a, b)

	 Edge rotation:

� Rotationally free edge (Eq. (17)):

q
2w

qn2
þ n

q
2w

qt2
¼ 0. (C.4)

� Rotationally immovable edge:

qw

qn
¼ 0. (C.5)

	 Transverse edge translation:

� Free edge (Eq. (14)):

q
3w

qn3
þ ð2� nÞ

q
3w

qn qt2
þNwðF ;wÞ ¼ 0 (C.6)

with

NwðF ;wÞ ¼ �
1

D

q
2F

qt2
qw

qn
�

q
2F

qn qt

qw

qt

� �

.

Fig. C.1. Sketch of the two particular geometries with the associated coordinate system.
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� Immovable edge:
w ¼ 0. (C.7)

In all the above relations, t ¼ x (t ¼ y) and n ¼ y (n ¼ x) if the considered edge is parallel to ex (ey).

C.1.2. Triple self-adjointness property

It is written as

ZZ

S

fLðg; hÞdS ¼

ZZ

S

Lðf ; gÞh dS

þ

I

qS

q
2g

qt2
f
qh

qn
� h

qf

qn

� �

�
q
2g

qt qn
f
qh

qt
� h

qf

qt

� �� �

dt (C.8)

with the same rule on n and t corresponding to x and y as before.

C.2. A circular plate

A circular plate of radius a is considered. A polar orthonormal coordinate system ðr; yÞ is used (see Fig. C.1,

defined by the mapping

OM ¼ fðr; yÞ ¼ rer. (C.9)

Cr coordinate lines are straight (with zero curvatures: 1=Rr ¼ 0) and Cy coordinate lines are concentric circles,

of radius r. hr ¼ kqf=qrk ¼ 1 and hy ¼ kqf=qyk ¼ r.

The edge of the plate is the coordinate line Cy of radius a, of tangent and normal vectors s ¼ ey and n ¼ er
(Fig. C.1).

C.2.1. Classical boundary conditions

The classical boundary conditions in terms of w and F can be any combination of the following relations

that must be satisfied at any point on the edge qS:

	 In-plane direction:

� Free edge Eqs. (21):

F ¼
qF

qr
¼ 0 (C.10)

� Immovable edge, with w ¼ 0 on the boundary, so that N1 ¼ N2 ¼ 0 (Eqs. (29) and (30)):

q
2F

qr2
� n

1

r

qF

qr
þ

1

r2
q
2F

qy2

� �

¼ 0 (C.11a)

q
3F

qr3
þ

1

r

q
2F

qr2
�

1

r2
qF

qr
þ

2þ n

r2
q
3F

qrqy2
�

3þ n

r3
q
2F

qy2
þNF ðwÞ ¼ 0 (C.11b)

with

NF ðwÞ ¼
1

2r

q
2w

qr2

� �2

.

	 Edge rotation:

� Rotationally free edge (Eq. (17)):

q
2w

qr2
þ n

1

r

qw

qr
þ

1

r2
q
2w

qy2

� �

¼ 0. (C.12)
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� Rotationally immovable edge:

qw

qr
¼ 0. (C.13)

	 Transverse edge translation:

� Free edge (Eq. (14)):

q
3w

qr3
þ

1

r

q
2w

qr2
�

1

r2
qw

qr
þ

2� n

r2
q
3w

qr qy2
�

3� n

r3
q
2w

qy2
þNwðF ;wÞ ¼ 0 (C.14)

with

NwðF ;wÞ ¼ �
1

D

1

r

qF

qr
þ

1

r2
q
2F

qy2

� �

qw

qr
þ

1

D

1

r

qF

qr qy
�

1

r2
qF

qy

� �

1

r

qw

qy
.

� Immovable edge:

w ¼ 0. (C.15)

C.2.2. Triple self-adjointness property

It may be written as

ZZ

S

fLðg; hÞdS ¼

ZZ

S

Lðf ; gÞhdS þ

Z 2p

0

qg

qr
þ

1

r

q
2g

qy2

� �

f
qh

qr
� h

qf

qr

� ��

�
1

r

q
2g

qr qy
�

1

r

qg

qy

� �

f
qh

qy
� h

qf

qy

� ��

dy. (C.16)
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[40] C. Touzé, O. Thomas, A. Chaigne, Asymmetric non-linear forced vibrations of free-edge circular plates, part 1: theory, Journal of

Sound and Vibration 258 (4) (2002) 649–676.

[41] G. Herrmann, Influence of large amplitudes on flexural vibrations of elastic plates, Technical Report 3578, National Advisory

Committee for Aeronautics (NACA), 1955.
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[45] C. Touzé, O. Thomas, A. Chaigne, Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear

normal modes, Journal of Sound and Vibration 273 (1–2) (2004) 77–101.
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