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The d’Alembert–Lagrange principal equations and applications
to floating flexible systems
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This paper addresses the dynamics and quasi-statics of floating flexible structures as well as extensions 
to unconstrained substructures and partitions of coupled mechanical systems. The principal solution is 
defined as the state of self-equilibrated forces obtained as the particular solution of the rigid motion and 
interface equilibrium equations. This solution is independent of the stress–strain constitutive properties 
as well as of the compatibility equations. For statically determinate systems, the principal solution is the 
final force solution. For statically indeterminate systems, the correction due to flexibility and compatibility 
is orthogonal to the principal solution. The formulation is done in the context of d’Alembert’s principle, 
which supplies the d’Alembert–Lagrange principal equations for floating bodies. These are obtained by 
summation of virtually working forces and moments acting on the floating systems. Applications of 
this approach are demonstrated on a set of dynamic and quasi-static example problems of increasing 
generality. Linkage to variational principles with an interface potential is eventually discussed as providing 
the theoretical foundation for handling interacting semi-discrete subsystems linked by node-collocated 
Lagrange multipliers. 

KEY WORDS: dynamics; d’Alembert’s principle; floating systems; principal equations; Lagrange multi-
pliers; partitioned analysis

1. INTRODUCTION

In presentations dealing with motions of fully unconstrained fluid and solid systems, the authors

have often been asked whether a floating, flexible body under dynamic loads is in an equilibrium

state, or whether an unsupported structure such as a flying aircraft maintains equilibrium as it

moves and deforms. Doubts on such a fundamental subject suggest a gap in the teaching of classical
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dynamics, as well as difficulties in the appropriate translation of basic concepts of Newtonian

physics to computational mechanics.

The main purpose of this paper is to clarify several aspects of the subject by emphasizing

the role played by what we call the d’Alembert–Lagrange principal equations in the context of

the dynamics of unconstrained flexible bodies. The gap noted above may be due to increasing

specialization in the teaching of various flavors of engineering, as discussed subsequently. In

order to set the scope of the paper, a floating, flexible body in the present paper is defined

not to contain internal mechanisms such as sliding and rotating links, as well as elemental

spurious mechanisms in the context of finite element methods. Principal equations for systems

with internal mechanisms are only briefly addressed as their derivation remains a case-by-case

challenge, the detailed analysis of which would significantly lengthen the exposition. Neverthe-

less, we believe that the essential physics of the d’Alembert–Lagrange principal equations can be

revealed and explained to the reader without being drawn into intricate features involving internal

mechanisms.

Traditional education in civil and mechanical engineering has focused on motion-controlled

systems. Engineers in those majors are trained early during the undergraduate curriculum on

how to apply sufficient support conditions to preclude unsafe motions. They are taught to design

restraints to permit only controlled motions as in a vehicle rolling, a washing machine cycling, a

bascule bridge folding, or a crane lifting a load. By contrast, fully unconstrained systems are more

common in aerospace engineering, which deals with things such as flying aircraft, staging rockets,

and orbiting satellites. Aerospace structural engineers learn how to cope with the inherent lack of

stability of such systems in the framework of dynamics by learning topics such as guidance and

attitude control.

Recent advances in the model-based simulation of complex mechanical systems have introduced

a new ingredient of computational nature. A complex, FEM-discretized mechanical system may

be divided into subsystems for modeling or computational reasons. Such subsystems are variously

called substructures, super-elements, or subdomains according to the context in which the decom-

position or partitioning is done. If subsystems are connected by interaction forces, some may be

unconstrained when viewed as individual entities. Think of the Eiffel Tower horizontally sliced

into several substructures: only those pieces connected to the leg foundations will be kinemati-

cally restrained, whereas the others will be unconstrained against rigid motions before interaction

conditions are set up. Qualifiers used in the mechanics literature for bodies or structures at liberty

against rigid motions vary. They include floating, free–free, completely free, unrestrained, fully

unsupported and rigid-motion-unconstrained. In this paper, we shall often use floating and free–free

to evince visualization of the body moving as a whole.

A related situation arises in the partitioned analysis of coupled systems that contain heteroge-

neous mechanical components such as structures, soil media, or fluids. (A partition is a spatial

subdivision based on physics; for example, the model of a dam excited by seismic motions might be

divided into a fluid, a structure, and a soil partition.) If the interaction is treated through Lagrange

multipliers, individual partitions become floating bodies.

The difference between genuinely floating structures such as aircraft or satellites and the compu-

tationally induced case is one of the goals. The rigid-body motions of an aircraft are controlled by a

human or automatic pilot to achieve the goal of following a trajectory; that is, a physical objective.

In simulations, the goal is to use such motions to fulfill a computational objective; for example, to

facilitate parallel computations, to speed up iterative solution algorithms, or to expedite coupling

of existing software modules.
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The treatment of multiplier-connected components of a mechanical system has been addressed

by many authors, particularly in the context of multibody dynamics [1], parallel computations [2, 3],
and multiphysics simulations [4, 5]. From a fundamental standpoint, the most satisfactory treatments

have been based on variational principles, such as those cited in the Historical Background section.

Such ‘top down’ derivations; however, may seem too abstract to engineers and scientists primarily

concerned about how these methods can be useful in practical applications.

The aim of this paper is to deal with floating components in a more agile, step-by-step

fashion by proceeding in a ‘bottom up’ manner. That is, starting with simple examples, and

progressing toward the general case by stages while emphasizing the physical interpretation.

Although linkage to variational principles is eventually made that is not an essential part of the

exposition. It may be skipped by those readers primarily interested in modeling and implementation

aspects.

Aside from the general goal of clarifying ‘floating flexible dynamics’, the paper has three specific

objectives:

• Present the principal equations for a floating body or structure in a form suitable for matrix

formulation and computer implementation. Those equations define that portion of the solu-

tion independent of constitutive properties and compatibility conditions. Mathematically that

subspace spans the particular solution of the combined rigid motion and interface equilibrium

equations.

• Discuss the matrix form of the kinematic-static duality associated with the principal equations,

which states that the self-equilibrium and rigid-body-basis matrices are the transposes of

each other.

• Apply the foregoing concepts to a set of examples of increasing generality.

Beyond the classical context of multibody, guidance and attitude dynamics, rigid-body motions

and thus the d’Alembert–Lagrange principal equations play increasingly important roles in

emerging fields such as molecular dynamics [6–10], biophysics [11–15], as well as traditional

applications such as multibody dynamics [16–19].
The quasi-static case of the principal equations and equivalent forms have been utilized in the

formulation of the classical force method (CFM) [20, 21], in the development of finite elements

[22, 23], in the solution of singular systems for quasi-static problems [24], in vibration eigenvalue

problems [25], and for the parallel solution of large-scale structural systems [2, 3]. We believe that

additional developments for multiphysics and multiscale applications remain to be done.

We emphasize that the focus of the present paper is on the d’Alembert–Lagrange principal

equations (hereafter simply termed as principal equations), not on the more general d’Alembert–

Lagrange equations or principles. The remainder of the paper is organized as follows.

Section 2 offers the historical background of the principal equations, from Newton to date, in the

hope that the readers who are unfamiliar with the subject may want to start by reading this section

while taking note of the references cited therein. It highlights roles played in the development of

the force method of structural analysis, well-posedness of floating systems, subsystem interface

conditions, and dual subdomain decomposition techniques for parallel computing.

In Section 3, we introduce the principal equations by way of a two-mass and three-spring plane-

motion problem. It is shown that the three principal equations are obtained by summing the forces

and moments. We label the force and moment summation operators as self-equilibrium operators.

Hence, the principal equations are obtained by the projection of the governing flexible equations of

motion (EOM) onto the self-equilibrium operators. We show that the self-equilibrium and system
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rigid-body matrices are the transposes of each other. The section ends with a comment on an

application of the self-equilibrium operators to establish solvability conditions for eigenproblems

in which accelerations are prescribed.

Section 4 derives the self-equilibrium operator of a partially constrained static system, from

which both the principal equations as well as conditions on admissible external forces readily

emerge. Section 5 derives a general form of principal equations for partitioned linear flexible

structural systems in conjunction with the method of localized Lagrange multipliers (LLM) [26–29].
Section 6 offers a step-by-step illustration of solving static partitioned floating systems by utilizing

the principal equations.

Section 7 presents a discrete variational formulation of partitioned structural systems in terms of

deformations, rigid-body modes (RBM), LLM, and interface frame displacements as independently

varied state variables. The rigid-body mode equations are shown to conflate into the principal

equations.

The Conclusions section lists potential future applications of the principal equations, with

emphasis on the computational treatment of multiphysics and multiscale problems.

2. HISTORICAL BACKGROUND

This section outlines the original development of principal equations and some of their applications

in classical and computational mechanics. No attempt to historical completeness is made. The reader

may consult, for example, Dugas [30] or Truesdell and Toupin [31] for classical developments or

Farhat and Roux [3] for uses in domain decomposition methods.

2.1. Theoretical background

In their 1960 review of field theories Truesdell and Toupin [31, p. 595] state that ‘The Prin-

ciple of Virtual Work (PVW), which when the reaction of inertia is included may be called

the Lagrange–d’Alembert principle, is the oldest general variational form of the equations of

mechanics.’ Lanczos [32, p. 92] remarks that ‘d’Alembert’s principle gives a complete solution of

problems in mechanics. All different principles of mechanics are merely mathematically different

formulations of d’Alembert’s principle.’ [Caution: the term ‘principle’ is not to be interpreted in

the modern sense of a true variational principle such as Hamilton’s. The PVW is actually what we

call now a weak form or Galerkin form, with virtual displacements as test functions.]

As a variational statement d’Alembert’s principle was first proven for a fully unconstrained

system of bodies by Lagrange in his Mécanique Analytique [33, 2de Partie, 3me Section 3]. Thus
a fair attribution should include both names. For example, in a Wikipedia article [34], it is called
the d’Alembert–Lagrange principle, which is chronologically appropriate.

D’Alembert’s contribution to the dynamical PVW was indirect but important. He had asserted

in his Traité de Dynamique [35, Section 50] that an accelerating system can be transformed into an

equivalent static system by adding the so-called inertial force and inertial torque or moment. The

inertial force must act through the center of mass whereas the inertial torque can act anywhere.

(The direct application of Newton’s laws requires that the angular acceleration be applied only

about the center of mass.) A coordinate system in which this substitution is valid is called an

inertial frame. For example, if the total mass (assumed invariant) of the system is M and the center

of mass acceleration with respect to an inertial frame is ẍ , the inertial force is −Mẍ .
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Superposing the inertial force and torque reactions to the actual external forces and moments

acting on the system gives the effective forces and effective moments acting on the body. (Some

authors, such as Synge [36], reserve the name ‘effective forces’ for the inertial part.) Lagrange

[33, 2de Partie, 1re Section] observes: ‘Cette méthode réduit toutes les lois du mouvement des

corps à celles de leur équilibre, et ramène ainsi la Dynamique à la Statique.’

An immediate consequence is the center-of-mass theorem: If a body is mass invariant and

referred to an inertial frame then the center of mass moves as a mass-point, of mass equal to

the mass of the body and subject to the effective force acting on the body [31, p. 532]. This law
precedes the PVW by a century. It had been used for special cases by Newton [37, Corollary III

to Laws of Motion], d’Alembert [35, 38], and Euler [39]. It was shown to apply to ‘un corps

quelconque’ by Lagrange [33, 2de Partie, 3me Section 3].
Abetting the ‘territorial split’ of calculus dating back to Newton and Leibnitz, Euler, and

Lagrange downplayed the use of Newton’s laws. The equivalence of the PVW and Lagrange’s

analytical dynamics to Newton’s laws and conservation principles was established nearly a century

later by Thomson (Lord Kelvin) and Tait [40]. Compared with Newton’s laws, a major advantage

of the PVW as an integral form of equations of balance is the automatic elimination of workless

forces. In a continuum constrained body, the PVW does not include any stress required to maintain

the constraints, as long as such stresses do not work. A classical example is the incompressibility

constraint in isochoric motions. The PVW is, therefore, indeterminate with respect to workless

forces or stress systems.

2.2. Substructuring, partitioning, and floating systems

Substructuring in the FEM context was introduced in the aerospace industry during the 1960s

as a device to overcome resource limitations on computers of the time, as well as to stage

communication between different design groups. Two flavors, based on the displacement and force

methods, are well covered in [21]. For the force version, however, floating substructures were

avoided a priori. This kind of spatial subdivision method evolved in three directions: superelements

[41] for multilevel decomposition in the late 1960s, partitions [42] for coupled problems in the

late 1970s, and subdomains [2, 3] for parallel processing during the 1990s.

The treatment of floating bodies in the context of matrix structural analysis was systematically

addressed by Fraeijs de Veubeke [22]. Unfortunately this 1973 lecture material never appeared on

a journal. Another pioneering presentation is that of Verchery [24]. The treatment of interfaces

by Lagrange multipliers as connectors has older roots. As a variational principle to treat actual

discontinuities in continuum (field) models, it was first proposed by Prager [43]. His principle links
interface displacements through a single global Lagrange multiplier field. The idea was expanded

and applied by Tong in the hybrid-FEM context [44]. It was systematically extended as a family of

variational principles by Atluri [45], also with the development of hybrid FEM models in mind. Its

use for parallel computation was successfully pursued by Farhat and Roux [2, 3], who used global

Lagrange multipliers as subdomain connectors for structural and acoustic partitions in multiphysics

applications. The use of LLM for interfacing substructures was proposed and developed in [26–29]
and for fluid–structure interaction in [4, 37].

2.3. Principal equations and the CFM

There is a link between the CFM of structural analysis and the principal equations that is worth

noting. The separation of the internal force state into principal and deformational states has ancient
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roots in the CFM, tracing back to Maxwell, Betti, Castigliano, and Clapeyron in the XIX Century.

The example of Section 3, which leads to Equations (4)–(6), plainly illustrates that idea. The CFM

decomposes the solution into a primary and a redundant-driven state. The former pertains to a

fictitious, statically determinate ‘base’ structure brought into existence by physical cuts (partitions)

that activate redundants. Adjusting the redundants to meet cut (partitioned) compatibility conditions

yields the correct solution by superposition. It should, however, be pointed out that very few

researchers, if any, have addressed the so-called principal state for the dynamical problems. As

narrated in [46], the chief technical difficulty that hampered the traditional approach in the computer

era was the automated selection of redundancies. This obstacle has been attacked by several

investigators since the mid-1960s. Notable efforts to date include the Gauss–Jordan rank technique

[47], minimum-norm solutions [48, 49] suggested by the natural factor technique [50], and the

integrated force method [51, 52].

2.4. A dynamic version of the force method

None of the foregoing force method variations has succeeded in the commercial FEM environment.

There is a practical barrier: all of them require element reformulation in terms of flexibilities

and element-by-element extraction of discrete equilibrium equations. That shift is unlikely to

happen in view of the huge investment on stiffness-based element libraries as well as on element

interoperability. There are also application range limitations. Unsupported mechanical systems

do not possess conventional flexibilities. No dual method gracefully handles dynamic, stability,

and kinematically non-linear problems, as primal methods effortlessly do. For example, treating

inertial effects necessarily brings in flexibilities to pass from accelerations to forces as independent

variables, entangling spurious elasticity properties into the realm of mass. We hope that the force

decomposition method presented here in conjunction with LLM—as displayed, for example, in

Equation (55)—forestalls those shortcomings and assists software reuse by retaining displacements

and their time derivatives as primary variables.

3. A FLOATING SPRING–MASS SYSTEM

This section illustrates, through a simple example, the derivation of the principal equations

for a floating system. Consider a spring–mass model of the boomerang shown in Figure 1,

assumed to move in the x, y plane. [The model shown there is used only for illustrative purposes.

For predicting actual motions it is totally inadequate as it lacks aerodynamic forces; further-

more, the beam stiffness of the boomerang is ignored, which leads to a spurious kinematic

mode.]

The EOM are written first for a rigid system with instantaneous center of mass located at c,

which is taken as origin of coordinates. Force balance in the x, y directions and momentum balance

about the z direction give

[
m 0

0 m

]{
ü

v̈

}
+

[
kx 0

0 ky

]{
u

v

}
=

{
fx

fy

}
(1)
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Figure 1. A crude spring-mass 2D model of a boomerang. (Note this simple model
does not capture boomerang motions.)

in which

m =

⎡
⎢⎣
m1 0 0

0 m2 0

0 0 m3

⎤
⎥⎦ , kx =

⎡
⎢⎣

k1 −k1 0

−k1 k1 0

0 0 0

⎤
⎥⎦ , ky =

⎡
⎢⎣
0 0 0

0 k2 −k2

0 −k2 k2

⎤
⎥⎦

u =

⎧
⎪⎨
⎪⎩

u1

u2

u3

⎫
⎪⎬
⎪⎭

, v=

⎧
⎪⎨
⎪⎩

v1

v2

v3

⎫
⎪⎬
⎪⎭

, fx =

⎧
⎪⎨
⎪⎩

fx1

fx2

fx3

⎫
⎪⎬
⎪⎭

, fy =

⎧
⎪⎨
⎪⎩

fy1

fy2

fy3

⎫
⎪⎬
⎪⎭

(2)

3.1. The principal equations

The foregoing EOM are recast in terms of d’Alembert’s forces (fD) by treating the inertial forces

as if they are part of the applied forces:

fD =
{
fDx

fDy

}
=

{
fx −mü−kxu

fy−mv̈−kyv

}
(3)

Translational and rotational balance can be further studied by collecting and adding up force and

moment components. In the sequel matrix symbols STx , S
T
y , and ST

�
will stand for the summation

operators about x , y, and the rotation angle �≡�z about z, respectively. (The use of the transpose is

for convenience in stating the static-kinematic duality discussed later.) For the (x, y) translational

force balance we obtain

STx f
D
x = fextx −M üc=0 with STx =[1 1 1], M=(m1+m2+m3)

fextx = ( fx1 + fx2 + fx3), üc=(m1ü1+m2ü2+m3ü3)/M
(4)

STy f
D
y = fexty −M v̈c=0 with STy =[1 1 1], M=(m1+m2+m3)

fexty = ( fy1 + fy2 + fy3), v̈c=(m1v̈1+m2v̈2+m3v̈3)/M
(5)
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For the angular moment balance about the mass center, denoting by �̈, the rigid angular acceleration:

MD
c = ST�

⎧
⎨
⎩
fDx

fDy

⎫
⎬
⎭=Mext− J �̈=0 with

ST� = [−y1c − y2c − y3c x1c x2c x3c], xic= xi −xc, etc.

Mext = ST�

{
fextx

fexty

}
, J =

3∑
i=1

mi (x
2
ic+ y2ic)

{
üi

vi

}
=

{
üc

v̈c

}
+

{
−yic

xic

}
�̈,

3∑
i=1

mi yic=0,
3∑

i=1

mi xic=0

(6)

Note that the summation operators cancel out the internal spring forces. This can be seen by

introducing the internal force vector:

STx f
int
x =0, STy f

int
y =0, ST�

{
f intx

f inty

}
=0 (7)

in which f intx =kxu and f inty =kyu are spring forces. Conditions (7) characterize the self-equilibrium

states, also denoted as ‘self-equilibrated states’ in the literature. This terminology applies to floating

structures or bodies without external or reaction forces. We will refer to (STx ,S
T
y ,S

T
�
) as the self-

equilibrium operators. The nontrivial overall balance equations for the example problem (4), (5),

(6) will be referred to as d’Alembert–Lagrange principal equations, to recognize the pioneering

contributions of d’Alembert [35] and Lagrange [33] outlined in the Historical Background section.

The abbreviation principal equations will be often used.

In FEM discretizations, freedoms are arranged node-by-node. This rearrangement can be done

by the permutation matrix

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

v1

u2

v2

u3

v3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=P

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

u2

u3

v1

v2

v3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

u2

u3

v1

v2

v3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

where blank entries store zeros. Rearranging freedoms as per P and the d’Alembert forces as

per fD , Equations (4)–(6) can be compactly expressed as

STfD =0 in which ST=

⎡
⎢⎢⎢⎣

STx

STy

ST�

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎣

1 0 1 0 1 0

0 1 0 1 0 1

−y1c x1c −y2c x2c −y3c x3c

⎤
⎥⎥⎦ (9)
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where d’Alembert’s forces and the self-equilibrium operators are rearranged in accordance with

the DOF permutations given in (8).

3.2. Physical interpretation

Plainly the rows of ST displayed in (9) are three independent, infinitesimal RBM of the example

system. Thus, its transpose S is an RBM basis matrix as its columns span the space of rigid

motions. Actual RBM amplitudes are obtained by using three dimensionless scaling coefficients:

�x , �y , and �rot, which are collected into the column 3-vector a. The actual rigid-body motion is

given by ur=Sa, whereas the associated virtual rigid-body displacements are �ur=S�a. Applying

the PVW to the example system yields

(fD)T�ur=�uTr f
D =�aTSTfD =0 (10)

Since �a is arbitrary, STfD must vanish, which reproduces (9). The relationship is not accidental

and can be shown to hold for any floating body, whether flexible or rigid:

The self-equilibrium and rigid-body-basis matrices are the transposes of each other.

This is an instance of a static-kinematic duality: the equilibrium (balance) and kinematic opera-

tors are adjoints of each other (transposes in the case of real operators expressed as matrices). Note

that the rigid motion basis collected in S spans, the infinitesimal RBMs and not the finite motions.

This is evident from the PVW derivation: in the virtual displacement expression �ur=S�a, matrix

S must be ‘frozen’ at the current configuration so variations in �a merely scale that linearization.

The orthonormalized rigid-body matrix R̂ is the column-orthogonalized S so that R̂TR̂=I. In

matrix form

R̂=SQ−1/2 with Q=STS (11)

(In practice the Gram–Schmidt orthogonalization process or the Cholesky decomposition of Q

may be used to produce R̂ stably as long as S has full rank.) The RBM motion ur=Sa in terms

of the R̂ basis is ur= R̂â, with â=Q1/2a. For the example problem, the columns of S are already

orthogonal if x1c+x2c+x3c=0 and y1c+ y2c+ y3c=0, which holds if m1=m2=m3, and all that

remains is normalizing columns of S to unit length. An alternative orthonormalization of R with

respect to the mass matrix is often more convenient in dynamics.

3.3. Including deformations

The principal equations (9) model only rigid motions. As the example system has six DOF, three

additional deformation modes must be included. The complete solution can be obtained by the

superposition of rigid and deformation motions: u=ur+ud. These may be extracted from u using

projection:

ud=Pru=(I−R̂R̂T)u, ur=u−ud=Sa= R̂â= R̂R̂Tu (12)

Note that R̂TPr =Pr R̂=0. Furthermore Pr =PT
r and P2

r =Pr , showing that Pr is an symmetric

orthogonal projector. Additional mathematical properties of this decomposition are discussed in

[53, 54]. Equation (12) may be interpreted by saying that the principal equations act as a kinematic

constraint condition on the well-known flexible EOM, which for infinitesimal motions are

Ku+Mü= f (13)
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For the example problem, the principal equations provide half of the total. For a large-scale

problem, however, say, n≫105, the principal equations provide at most six degrees of freedom,

which is a tiny percentage. Thus, their constraint role can be appreciated. This role is further

examined in Section 4 by considering two floating continuum substructures.

3.4. Quasi-static version and the vibration eigenproblem

For applications in which accelerations are given directly or indirectly it is convenient to recast

(13) in the quasi-static format

Ku= f∗ with f∗ = f−Mü (14)

Here f∗ is called a statically equivalent force. If K is m-times singular with kernel (null space)

spanned by the m columns of S (or R), Ku= f∗ is consistent if and only if STf∗ =0 or RTf∗ =0.

That is, the equivalent forces f∗ must be in self-equilibrium. If that solvability condition is not met,

the right-hand side may be projected on the deformational motion space: f∗d =Pr f
∗, as explained

by Fraeijs de Veubeke [55] and Geradin and Rixen [25]. However, Ku= f∗d may still suffer from

a singular K. If R is known a priori, this can be overcome by using a stabilized stiffness:

Kstu=Pr (fd −Mü) in which Kst =K+R̂R̂T has full rank (15)

Explicit formation of Kst will result generally in a full matrix, hindering sparsity in large-scale

problems. Sparsity may be retained, however, by using the techniques described in [54], in which

the original system (14) is constrained by ‘penalty springs’ adaptively injected during factorization,

and solved for additional right-hand sides. The solution of (15) is formally u=Ff∗, in which F=
K−1

st Pr =PrK
−1
st is called the free–free flexibility. Technically, F is the Moore–Penrose generalized

inverse of K. Because of the projector action u=Ff∗ will be simply ud.

An important application is the free-vibrations eigenproblem with f=0 and üi =�2
i ui . Linear

systems of the form Kunew=Muold are repeatedly solved in Lanczos or subspace iteration eigen-

solvers. The stabilized form (15) is of interest should R̂, which collects eigenvectors for the m

zero frequencies, be assembled a priori by geometric arguments, and spectral shifting not used.

4. A PARTLY UNCONSTRAINED STRUCTURE

To illustrate the principal equations for a partly unconstrained structure, consider the 4-bar mecha-

nism linkage shown in Figure 2. (This is a generalization of an example from [56, p. 12], in which

it is assumed that the bars are rigid.) Bars (1), (2), and (3) have identical lengths L , elastic moduli

E , areas A, are pin-jointed at nodes 1–4, and constrained to move on the {x, y} plane. Inertial and
damping effects are omitted for simplicity. The degrees of freedom are the {x, y} displacements of

nodes 2 and 3, collected in u=[ux2 u y2 ux3 u y3]T, with conjugate forces f=[ fx2 fy2 fx3 fy3]T.
Superscript ‘ext’ is used for given external forces. The arrays of bar axial forces and deformational

elongations are denoted by p=[p(1) p(2) p(3)]T and d=[d(1) d(2) d(3)]T, respectively. We shall

use the abbreviations c=cos� and s=sin�. If � �=0 there is only one linearized rigid-body mode,

which is the only column of R:

S=R=[−s −c −s c]T (16)

This may be normalized as R̂=R/
√
2. The 1×4 self-equilibrium matrix is ST=RT.
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Figure 2. A 4-bar plane mechanism linkage fabricated with three identical bars.

The linearized equilibrium, constitutive and kinematic (deformation–displacement) equations

are BTp= f, p=Cd, and Bu=d, respectively. Combining them gives the stiffness (of rank 3 if

� �=0): K=BTCB that relates Ku= f:

B=

⎡
⎢⎣

c −s 0 0

−1 0 1 0

0 0 −c −s

⎤
⎥⎦ , C=

E A

L
I, K=

E A

L

⎡
⎢⎢⎢⎢⎢⎣

1+c2 −sc −1 0

−sc s2 0 0

−1 0 1+c2 sc

0 0 sc s2

⎤
⎥⎥⎥⎥⎥⎦

(17)

Observe that the static-kinematic duality also holds for deformational operators; this is not

surprising as the problem is self-adjoint. Given that STBT=0 it follows that STK=0; whence

the principal equation is STfD =ST(fext−Ku)=STfext=−s( f extx2 + f extx3 )+c( f exty3 − f exty2 )=0. This

is a self-equilibrium condition that imposes a constraint on the external forces; e.g. any symmetric

force system f extx2 =− f extx3 , f exty2 = f exty3 satisfies it for any � �=0.

The inclusion of inertial and damping terms is straightforward. The case �=0, which has two

independent linearized RBMs in 2D, requires special treatment and is omitted.

5. MULTIPLIER-CONNECTED FLOATING SUBSTRUCTURES

In this section we consider two substructures resulting from the partition of a semidiscrete,

continuum finite element model undergoing 3D motions, as pictured in Figure 3. The model is

referred to an inertial coordinate frame (x, y, z) attached to the center of mass. New ingredients

with respect to the foregoing example are reaction and interaction forces. Both are treated with

Lagrange multipliers. The position, velocity, acceleration, and virtual displacement vectors of a

point are given by

r = d+u, d= x i+ yj+zk, u=ui+vj+wk

ṙ = ḋ+ u̇, ḋ=0, u̇= u̇i+ v̇j+ẇk

r̈ = ü= üi+ v̈j+ẅk

�r = �ui+�vj+�wk

(18)
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Figure 3. Two floating 3D substructures resulting from partition of a FEMmodel (the z-direction dimensions
are suppressed for visual clarity): (a) assembled structure and (b) partition into two substructures.

Here (i, j,k) are fixed unit base vectors attached to the inertial coordinate frame, whereas (u,v,w)

are the displacement components. At the six nodal points

ri =di +ui , di = xi i+ yi j+zik, ui =ui i+vi j+wik for i=1,2,3, . . . ,6 (19)

and similarly for ṙi , r̈i , and �ri . Kinematic node values are collected in vectors ū, ( ˙̄u), ( ¨̄u) and �(ū),

respectively, where the bar distinguishes the node displacements from the field in (19). Volume

forces are classified into applied body forces fE, internal forces f I due to elasticity, and inertia

force �r̈ .

Inter-partition interaction as well as ground reactions are treated with Lagrange multipliers �.

These are discretized into delta functions at boundary nodes and collected into a vector k. The

configuration of this vector depends on details of the treatment of the interaction. Boundary

freedoms affected by the interaction are collected in a vector u� =B�u in which B� is a Boolean

matrix that extracts u� as B�u. To account for possible interpartition dislocations and/or specified

support motions the gap vector ug is introduced. Application of d’Alembert’s principle for the

partitioned system gives

��=
∫

V

(�r)T(fext−fI−�r̈)dV −�{kT(B�ū−ug)}=0 (20)

Substituting (18) and (19) into the above principle, carrying out the spatial integration, we obtain

from the stationarity of the above expression:

�ūTfD−�kT{B�ū−ug}=0, fD = f̄
ext

u − f̄
I

u−BT
�
k−mu

¨̄u

f̄
ext

u =
∫

V

NTfE dV, f̄
I

u =
∫

V

BTrdV, mu =
∫

V

�NTNdV

e = Bū, u=
8∑

i=1

Ni (	,
,�)ui =Nū

ūT = [u1,v1,w1,u2,v2,w2, . . . ,u8,v8,w8]

(21)

where r and e are stresses and strains, respectively, derived from displacements, B is the standard

strain–displacement relations in the finite element method, and N are displacement interpolation

functions within the brick.
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5.1. Principal equations

Adding up d’Alembert forces over all nodes gives

STtransf
D =STtrans{f̄

ext

u −BT
�
k−mu

¨̄u}=0, where STtrans=
[
I1 I2 . . . I8

]
(22)

where I is a (3×3) identity matrix and the fact that the internal forces cancel out for a floating

structure, viz., STtransf̄
I

u =0, is utilized. The moment summation requires the following vectorial

identities:

mz =r×f=

⎡
⎢⎣
i

j

k

⎤
⎥⎦

T⎡
⎢⎣

0 −z y

z 0 −x

−y x 0

⎤
⎥⎦

⎡
⎢⎣

fx

fy

fz

⎤
⎥⎦ , r= x i+ yj+zk, f= fx i+ fyj+ fzk (23)

Let (x0, y0, z0) denote the coordinates of the point about which moments are taken. Defining

[d̃i ]T=

⎡
⎢⎣

0 −(zi −z0) (yi − y0)

(zi −z0) 0 −(xi −x0)

−(yi − y0) (xi −x0) 0

⎤
⎥⎦ (24)

the moment summation can be compactly expressed as

STrotf
D =STrot{f̄

ext

u −BT
�
k−mu

¨̄u}=0 in which STrot=[d̃T1 d̃T2 . . . d̃T8 ] (25)

The sum of moments of the internal forces also vanishes, viz., STrotf̄
I

u =0, regardless of the point

about which of the moments are taken.

As discussed in the previous example, the principal Equations (22) and (25) model the admissible

rigid-body motions and represent a constraint condition on the interface Lagrange multiplier k.

This can be seen by writing

[Strans Srot]TBT
�
k=[Strans Srot]T{f̄extu −mu

¨̄u} (26)

This gives

[Strans Srot]T(BT
�
k)−s=0 whence s=[Strans Srot]T{f̄extu −mu

¨̄u} (27)

Note that s=0 represents the self-equilibrium equation if the system is completely free. Naturally,

for a partitioned system that is a part of constrained system, it represents a violation of the constraint

condition.

5.2. Moment summation for structures with rotational freedoms

For structures modeled with rotational degrees of freedom, a modification of the node-by-node

force–moment summation is necessary. Assuming that nodal degrees of freedom at node i are
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arranged in the usual way: (ui ,vi ,wi ,�xi ,�yi ,�zi ) then

ST = [Strans Srot]T=
[
ST1 ST2 . . . STn

]

STi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 −(zi −z0) (yi − y0) 1 0 0

(zi −z0) 0 −(xi −x0) 0 1 0

−(yi − y0) (xi −x0) 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

Here (x0, y0, z0) denotes a point around which all the moments are summed up for each given

element or each partitioned substructure. These force–moment summation operators can be special-

ized to models that carry only selective translational and rotational degrees of freedom. For example,

for a plane beam with three nodal degrees of freedom, (u,v,�z), the node-by-node summation

operator is obtained by eliminating the rows and columns corresponding to (w,�x ,�y):

STi =

⎡
⎢⎣

1 0 0

0 1 0

−(yi − y0) (xi −x0) 1

⎤
⎥⎦ (29)

Other freedom configurations, such as used in plates and shell models, may be handled similarly.

5.3. Mass properties of arbitrary structures

A trivial yet practically important application of the d’Alembert–Lagrange principal equation is

the computations of mass properties of complex geometry. To this end, we introduce the principal

mass matrix, M�, via the virtual work corresponding to the principal inertia force as

�U I
r = �uTr mu ür, ur=Sa

⇓

�U I
r = �aTM�ä, M� =STmuS

(30)

where we employed the summation operator (see Equations (22), (25), and (26)), and the mass

matrix(mu) is obtained by the standard FEM procedure. Specifically, M� can be expressed as

M� =
[
Mt t mtr

mT
tr Jrr

]
(31)

where (Mt t ,Jrr ,mtr ) are the (3×3) translational mass, rotatory inertia, and coupling matrix

between the translational and rotatory inertia matrix, which vanishes when the center of mass

coincides with the point at which the moment self-equilibrium operator, S�, is generated.
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6. STAGED STATIC ANALYSIS

The following example introduces the idea of staged solution of a simple structural system subject

to static loads and treated by Lagrange multiplier localization. The general formulation for the

dynamic case is provided in the following section.

6.1. The LLM equations

Two fixed-free, parallel extensional springs of axial stiffness k1 and k2 that can move only along the

x direction are pulled by given static forces as shown in Figure 4. Only x displacements are allowed

and thus component subscripts are omitted. Each spring is taken to be a substructure, labeled

(1) and (2). Substructures are localized with Lagrange multipliers as illustrated in Figure 4(b).

As a result each spring ‘floats’. Multipliers are connected to components of a force transducer

device called a frame. Figure 4(c) shows the final FEM model with six displacements (four for the

springs and two for the frame) and four multipliers. (The following section explains the notation

used in Figure 4(c) in more detail.) The FEM model has four element-level stiffness equilibrium

equations, four compatibility equations, and two multiplier equilibrium equations. These equations

are organized, in that order, to produce the following matrix system, which is displayed both in

compact block-matrix notation and in entry-level form:

⎡
⎢⎢⎢⎣

K B 0

BT 0 −L

0 −LT 0

⎤
⎥⎥⎥⎦

⎧
⎪⎪⎨
⎪⎪⎩

u

k

u f

⎫
⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1 −k1 0 0
... 1 0 0 0

... 0

−k1 k1 0 0
... 0 1 0 0

... 0

0 0 k2 −k2
... 0 0 1 0

... 0

0 0 −k2 k2
... 0 0 0 1

... 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 0 0 0
... 0 0 0 0

... 0

0 1 0 0
... 0 0 0 0

... −1

0 0 1 0
... 0 0 0 0

... 0

0 0 0 1
... 0 0 0 0

... −1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0
... 0 −1 0 −1

... 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
(1)
1

u
(1)
2

u
(2)
1

u
(2)
2

. . .

�
(1)
1

�
(1)
2

�
(2)
1

�
(2)
2

. . .

u2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
(1)
1 =0

f
(1)
2 =F1

f
(2)
1 =0

f
(2)
2 =F2
. . . . . . . .

0

0

0

0

. . . . . . . .

f2= P

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎨
⎪⎩

f

0

f f

⎫
⎪⎬
⎪⎭

(32)

In these matrix equations, the specified frame displacement u1=0 has been explicitly removed.

Substructure displacements are transformed to deformational–rigid normal coordinates using the

modal relations

u=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u
(1)
1

u
(1)
2

u
(2)
1

u
(2)
2

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=�

⎡
⎢⎢⎢⎣

1 0 | 1 0

−1 0 | 1 0

0 1 | 0 1

0 −1 | 0 1

⎤
⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q
(1)
1

q
(2)
1
...

�
(1)
1

�
(2)
1

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=[U R]
{
q

a

}
(33)

Figure 4. Two linear extensional springs in parallel, localized by Lagrange multipliers: (a) original structure;
(b) localization; and (c) FEM model.
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in which �=1/
√
2 is a normalization factor. In this equation, q

(m)
i and �

(m)
i denote deformational

and rigid-body motion amplitudes, respectively, for substructure m. Those are collected in separate

subvectors q and a. Applying the foregoing transformation to (32) produces the system

⎡
⎢⎢⎢⎢⎣

Kd 0 Bd 0

0 0 Br 0

BT
d BT

r 0 −L

0 0 −LT 0

⎤
⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

q

a

k

u f

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2k1 0
... 0 0

... � −� 0 0
... 0

0 2k2
... 0 0

... 0 0 � −�
... 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0
... 0 0

... � � 0 0
... 0

0 0
... 0 0

... 0 0 � �
... 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� 0
... � 0

... 0 0 0 0
... 0

−� 0
... � 0

... 0 0 0 0
... −1

0 �
... 0 �

... 0 0 0 0
... 0

0 −�
... 0 �

... 0 0 0 0
... −1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0
... 0 0

... 0 −1 0 −1
... 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q
(1)
1

q
(2)
1
. . .

�
(1)
1

�
(2)
1
. . .

�
(1)
1

�
(1)
2

�
(2)
1

�
(2)
2

. . .

u2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�F1

−�F2
...

�F1

�F2
...

0

0

0

0
...

P

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

fd

fr

0

f f

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(34)

in which

Kd =UTKU, Bd =UTB, Br =UTR
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6.2. Solution steps

The blocked system (34) will be solved in a hierarchical, step-by-step fashion. The static principal

equations are obtained by grouping the second and fourth block-matrix equations, which involve

only multipliers:

L�k=
[

Br

−LT

]
k=

⎡
⎢⎢⎢⎢⎣

� � 0 0

0 0 � �

...
...

...
...

0 −1 0 −1

⎤
⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�
(1)
1

�
(1)
2

�
(2)
1

�
(2)
2

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�F1

�F2

...

P
¯

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=
{
fr

f f

}
= f� (35)

Denote by L+
�
the pseudoinverse of L� that satisfies the 4 Penrose conditions, and by Z� a basis

for the null space of L�, that is, L�Z� =0. (If L� is square and of full rank, L+
�

=L−1
�

is the

ordinary inverse while Z� is void.) The general solution of (35) is the sum of the particular and

homogeneous solutions: k=L+
�
f�+Z�b, in which b is an array of parameters 
1, . . . ,
k of length

k equal to the null space dimension of L�. For the example problem, k=1 and

k=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�
(1)
1

�
(1)
2

�
(2)
1

�
(2)
2

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=L−G
�

f�+Z�b=
1

2

⎡
⎢⎢⎢⎣

3� � 1

� −� −1

� 3� 1

−� � −1

⎤
⎥⎥⎥⎦

⎧
⎪⎨
⎪⎩

�F1

�F2

P

⎫
⎪⎬
⎪⎭

+

⎡
⎢⎢⎢⎣

1

−1

−1

1

⎤
⎥⎥⎥⎦
1

=
1

4

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

3F1+F2+2P

F1−F2−2P

F1+3F2+2P

−F1+F2−2P

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

+

⎡
⎢⎢⎣

1

−1

−1

1

⎤
⎥⎥⎦
1=kP +�k (36)

We call kP the self-equilibrium principal solution. If b is not void, the correction �k=Z�b is

determined in the next step to account for flexibility and compatibility effects. By construction

those two vectors are orthogonal: �kTkP =0, whence kP can be interpreted as the l2 minimum-

norm solution of the rigid motion and frame equilibrium equations. Thus, this first step has features

in common with the minimum-norm approach to the force method [48, 49]. The major difference

is that no structural flexibilities are involved: as discussed in the following section Br and L are

purely geometric matrices, and in fact L is Boolean.

Inserting k=kP +�k in the first and third matrix equations and passing the terms involving kP

to the RHS gives the symmetric system

[
Kd BdZ�

ZT
�B

T
d 0

]{
q

b

}
=

⎡
⎢⎣
2k1 0

√
2

0 2k2 −
√
2√

2 −
√
2 0

⎤
⎥⎦

⎧
⎪⎨
⎪⎩

q
(1)
1

q
(2)
1


1

⎫
⎪⎬
⎪⎭

= −
1

2
√
2

⎧
⎪⎨
⎪⎩

3F1+F2+2P

−F1+3F2+2P

0

⎫
⎪⎬
⎪⎭

=
{
fd−Bdk

P

0

}
(37)
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Solving yields

⎧
⎪⎪⎨
⎪⎪⎩

q
(1)
1

q
(2)
1


1

⎫
⎪⎪⎬
⎪⎪⎭

=
1

4(k1+k2)

⎧
⎪⎪⎨
⎪⎪⎩

−2
√
2(F1+F2+P)

−2
√
2(F1+F2+P)

(k1−3k2)F1+(3k1−k2)F2+2(k1−k2)P

⎫
⎪⎪⎬
⎪⎪⎭

(38)

Replacing 
1 in (36) furnishes the final form of the Lagrange multipliers

k=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�
(1)
1

�
(1)
2

�
(2)
1

�
(2)
2

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=kP +�k=
1

k1+k2

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k1(F1+F2+P)

k2F1−k1(F2+P)

k2(F1+F2+P)

−k2(F1+P)+k1F2

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(39)

If computation of rigid body motion amplitudes and frame displacements is of no interest, as

is occasionally the case in static analysis, the solution process may stop here. Else one proceeds

to the third step, taking the compatibility equations: Bdq+Bra−Lu f =0, plugging in q from the

second step, and solving for a and u f . Finally, q and a may be substituted in (33) to recover

physical displacements. For this example

⎧
⎪⎪⎨
⎪⎪⎩

�
(1)
1

�
(2)
1

u2

⎫
⎪⎪⎬
⎪⎪⎭

=
1

k1+k2

⎧
⎪⎪⎨
⎪⎪⎩

(F1+F2+P)/
√
2

(F1+F2+P)/
√
2

F1+F2+P

⎫
⎪⎪⎬
⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u
(1)
1

u
(1)
2

u
(2)
1

u
(2)
2

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
1

√
2

⎡
⎢⎢⎢⎢⎣

1 0 1 0

−1 0 1 0

0 1 0 1

0 −1 0 1

⎤
⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q
(1)
1

q
(2)
1

�
(1)
1

�
(2)
1

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0

u2

0

u2

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(40)

The foregoing three solution steps are flowcharted in Figure 5. It is highlighted there that the

second step, which in large-scale problems accounts for the bulk of the computations, is readily

parallelized since substructures, as well as supports treated as interfaces, are fully localized by the

presence of the Lagrange multipliers.

The explicit reduction to substructural normal coordinates as displayed in Equation (34) was done

here for exposition convenience. In actual large-scale implementations only the precalculation of

the RBM basis R is necessary. Efficient preconditioned CG techniques may be used to solve (34) in

parallel processing. The key observation is that once q is eliminated in (34) we can iteratively solve

for k with the principal solution (35) as starting vector. In subsequent CG iterations, new iterates

(as defined by bk at the kth iteration) are projected onto the principal solution basis L−G
�

; hence,
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Principal
solution

Deformational
displacements &
multipliers  

RBM & frame
displacements

Fully parallelizable

1. Frame & RBM
equilibrium eqs

2. Deformational
stiffness equilibrium
& deformational
compatibility eqs

3. Frame & RBM
compatibility eqs

Figure 5. Computational sequence followed in static analysis.

subsequent iterates are orthogonal to the principal solution, i.e. they are purely deformational.

Details of this solution procedure may be found in [3, 27].

7. DISCRETE VARIATIONAL FORMULATION

This section extends the example-oriented derivations of the foregoing sections to a more general

case: a linear elastic structure partitioned into N substructures, each discretized by FEM. Damping

effects are ignored. Substructure meshes are assumed to match across interfaces. (The case of

nonmatching meshes is more elaborate although it can be treated by similar methods; the reader

is referred to [57–59] for details.)
To illustrate the notation introduced below, reference is often made to Figures 6 and 7. The 2D

finite element mesh of Figure 6(a) is divided into three substructures: �
1, �

2, and �
3 by the cuts

shown in Figure 6(b). The supported (displacement prescribed) portion of the boundary is also

cut off; hence, the three partitions are completely unconstrained. Nodes located along the cuts are

called interface nodes. DOF allocated to interface nodes are called interface freedoms. Interface

nodes are marked by ⊕ in Figure 6(c). Substructure nodes not located on interfaces are called

internal; those are marked by © in Figure 6(c).

A kinematic frame is inserted between substructure interfaces as well as between substructures

and supports. This is illustrated in Figure 6(c), in which meshes, supports, and frame are drawn

slightly offset as an aid to visualization. The frame is a purely geometric object placed over element

sides (in 2D) or faces (in 3D). Unlike contact, fracture, or interface elements, it is not endowed

with physical properties. For matching meshes, frame nodes are collocated with interfaced nodes.

The main purpose of the frame is to completely localize partition information, including interface

forces. To this end, frame and interface nodes are linked with Lagrange multipliers as shown in

Figure 6(c). Mathematically the multipliers are node-collocated delta functions whereas physically

they are interface node forces. Choice of this discretization space circumvents the need to carry

out integrals over interfaces.

Figure 7 shows global and local node identification. In the latter, nodes are labeled by an integer

pair (i,n) that identifies the nth node of the i th partition; those are marked as i.n in Figure 7(b) for

ease of reading. The frame is conventionally given index zero so (0,n) is simply shown as n there.

When labeling node freedoms, the substructure index is placed as superscript for visualization

convenience. Thus, u
(3)
x7 denotes the x displacement of node 7 of substructure 3. Frame nodes

may be labeled with subscript f if this helps to clarify the notation; for example, u f7 denotes the

subvector of node displacements of frame node 7.
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Figure 6. Partition of a finite element mesh into 3 node-matching floating substructures, followed by
introduction of interface frame and Lagrange multiplier connectors.
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Figure 7. Global and local node labeling.

In superelement-like, multilevel versions of this approach (not considered here) a triplet (l, i,n)

including a superelement level index l would be required for substructures, and a duplex for

interface frames.

7.1. Localization

If all substructures are collectively assembled into a single structure, as in Figure 6(a), the overall

node displacement vector, node velocity vector, node acceleration vector, node force vector, stiffness

matrix, and mass matrix are denoted by ug, u̇g, üg, fg, Kg, andMg, respectively. The corresponding

entities for substructure m are called u(m), u̇(m), ü(m), f(m), K(m), and M(m) for m=1,2, . . . ,N ,

respectively. Symbols K and M, without superscripts, denote the block-diagonal matrices built up
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with the disconnected stiffness and mass matrices:

K=diag[K(1),K(2), . . . ,K(N )], M=diag[M(1),M(2), . . . ,M(N )] (41)

Symbols u and f, without subscripts, denote the vector concatenation of the u(m) and f(m), respec-

tively. The substructure and global discretization levels are formally connected by Boolean matrices

and are defined as
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u(1)

u(2)

...

u(N )

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

L(1)

L(2)

...

L(N )

⎤
⎥⎥⎥⎥⎥⎥⎦
ug, [(L(1))T (L(2))T . . . (L(N ))T]

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1

f2

...

f(N )

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= fg (42)

These can be compactly written as the supermatrix relations

u=Lug, LTf= fg (43)

The substructure-by-substructure assembly operation may be expressed as the congruences

Kg=LTKL, Mg=LTML, fg=LTf (44)

although these entities are never actually assembled. For each substructure, we identify a subset

u
(m)
b (m=1,2, . . . ,N ) of interface degrees of freedom, in which subscript b stands for ‘boundary’.

(For substructures subjected to support or contact constraints that subset includes such freedoms

if those constraints are treated by Lagrange multipliers as in Figure 6(c).) Interface DOFs are

extracted by the matrix operation u
(m)
b =B(m)u(m), where B(m) is a boundary localization Boolean

matrix. Symbols B and ub without superscripts, denote

ub=[u1b u2b . . . uN
b ], B=diag[B1

b B2
b . . . BN

b ] whence ub=Bbug (45)

Frame displacements are collected in vector u f . These will be considered as independent variables

in the partitioned approach. Finally, we introduce N localization matrices B
(m)
f that link the frame

displacements u f to the interface freedoms of the mth substructure as

u
(m)
b =B

(m)
f u f , m=1,2, . . . ,N and collectively ub=B f u f (46)

7.2. Constraint treatment

The displacements of, say, frame node 2 and partition nodes 1.4 and 3.12 in Figure 7(b) must

be the same. In a plane stress problem, this requires four constraints: u1x4=u3x12=ux2 and u1y4=
u3y12=u y2. Accordingly, four Lagrange multipliers: �1x4, �

3
x12, �

1
y0.4, and �3y12 are introduced. Their

contribution to the energy functional is

�1x4(u
1
x4−ux2)+�3x12(u

3
x12−ux2)+�1y4(u

1
y4−uy2)+�3y12(u

3
y12−uy2) (47)

Note that multipliers are simply identified by the interface node label. The linkage to a specific

frame node is fortuitous: it happens because we consider here only matching meshes.
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Multipliers are inserted for each interface node. Those pertaining to substructure m are

collected in vector k(m). This has the same length and arrangement as u
(m)
b and consequently the

dot product (k(m))Tu
(m)
b exists. All multipliers are collected in vector k. The energy contribution

of all multipliers can be compactly expressed as

�d =kT(ub−B f u f ) (48)

This will be referred to as the interface energy potential. (Some authors, such as Fraeijs de

Veubeke, call it a ‘dislocation energy’ following Friedrichs, who introduced the idea of ‘constraint

relaxation’ in a different context.)

7.3. Equations of motion

The d’Alembert force vectors with damping ignored are fDg = fg−Kgug−Mgüg for the assembly

and (fDi )(m) = f(m)−K(m)u(m)−M(m)ü(m) (m=1,2, . . . ,N ) for the mth substructure. The

displacement-based discrete energy functional are denoted �=�(ug) for the assembled structure

and �
m =�

m(umg ) for each individual substructure. The first variation of the global potential is

��g=�uTg f
D
g . Setting this to zero yields the well-known global linear structural dynamics equation

Mgüg+Kgug= fg (49)

For the partitioned system, the total energy is the sum of that contributed by individual substructures,

plus the interface potential

�(ug) =
N∑

m=1

�
m(um)+

N∑
m=1

km[(Bm)Tum−(Bm
f )

Tu f ]

= �g(ug)+km[BTum−BT
f u f ] (50)

In this functional u, u f , and k are considered as independent variables and are varied independently.

The first variation is

��(u,u f ,k)=�uTfD+�{kT(BTu−L f u f )} (51)

Setting the variation to zero yields the EOM

⎡
⎢⎢⎣

K B 0

BT 0 −L f

0 −LT
f 0

⎤
⎥⎥⎦

⎧
⎪⎨
⎪⎩

u

k

u f

⎫
⎪⎬
⎪⎭

+

⎡
⎢⎣
M 0 0

0 0 0

0 0 0

⎤
⎥⎦

⎧
⎪⎪⎨
⎪⎪⎩

ü

k̈

ü f

⎫
⎪⎪⎬
⎪⎪⎭

=

⎧
⎪⎨
⎪⎩

f

0

0

⎫
⎪⎬
⎪⎭

(52)

Note that K, which is a block-diagonal concatenation of singular stiffness matrices as per (41), is

highly rank deficient, since its kernel is spanned by the RBMs of all substructures. For example,

if N =1000 and each substructure has 6 RBMs, K will be 6000 times rank deficient. If the EOM

(52) are solved by direct time integration, such deficiency is compensated by the presence of the

mass matrix. But for certain situations described below, it is convenient to rewrite these equations

explicitly in terms of deformational and rigid motions.
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7.4. RBM-split EOM

The localized partitioned EOM (52) has full rank, provided the assembled total system Equation

(49) has its full rank. However, this rank sufficiency is not adequate when one solves the equation

in a partitioned manner. For example, when a subsystem becomes completely free–free as a result

of partitioning, its self-equilibrium state (see, e.g. [22]) must be part of the solution. The variational

infusion of the self-equilibrium states for all the subsystems can be accomplished by decomposing

the subsystem displacement into rigid and deformational: u=ur+ud. These are expressed in modal

form ur=Ra and ud=Uq, where the modal basis matrices R and U are orthonormalized with

respect to the mass matrix:

�
TM�=Md, RTM�=0, KR=0, RTMR=Mr (53)

in which if the eigenvectors are mass normalized, Md and Mr become identity matrices. However,

when the RBM are geometrically generated, they are not mass-normalized.

Substitution of u=ur+ud=�q+Ra into �� (51) gives

��(q,a,u f ,kℓ)=�(�q+Ra)TfD(�q+Ra)+�[kT(BT(�q+Ra)−L f u f )] (54)

in which fD(�q+Ra)= f−K(�q+Ra)−M(�q̈+Rä).

Setting ��=0 and exploiting the orthonormality conditions (53) yields the rigid-deformational

split EOM:

⎡
⎢⎢⎢⎢⎢⎣

Kd 0 Bd 0

0 0 Br 0

BT
d BT

r 0 −L f

0 0 −LT
f 0

⎤
⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q

a

k

u f

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎣

Md 0 0 0

0 Mr 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q̈

ä

k̈

ü f

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fd

fr

0

0

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(55)

in which Kd=UTKU, Md=UTMU, Mr=RTMR, Bd=UTB, Br=RTB, fd=UTf, and fr=RTf.

The foregoing matrix equations have immediate physical interpretation: Kdq+Bdk+Mdq̈= fd is

the EOM for the substructural deformable modes, Brk+Mrä== fr governs substructural rigid

motions, BT
dq+BT

r a−L f u f =0 enforces the interface kinematic constraints, and finally LT
f k=0

expresses Newton’s third law along the interfaces in terms of LLM. The first and second matrix

equations can be localized to each substructure since they do not involve the frame displacements

u f and consequently are fully parallelizable. The only linkage between the localized equations is

provided by u f .

Remark

We have emphasized here the direct construction of self-equilibrium matrix operators (force and

moment summation) as basis for building the principal equations. From these, RBM matrices

follow by transposition. An alternative procedure is to try to construct the RBM matrices first,

either by direct geometric arguments or by computer-based subdomain kinematic analysis based

on the singular value decomposition (see, e.g. Farhat and Géradin [60]). The latter technique has

the advantage of accounting for the presence of internal mechanisms regardless of their origin

(motion-control devices, spurious mesh modes, rank-deficient domain decomposition, etc.). If this

alternative strategy is followed, the self-equilibrium conditions again follow from duality. The
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mass properties displayed in Equation (31) do not generally hold, however, for null space vectors

that are extracted from singular stiffness matrices via an linear algebra procedure.

8. CONCLUSIONS

The focus of the paper has been the application of the d’Alembert–Lagrange principal equations

to handle floating mechanical systems or components. As discussed in the Introduction, those

modeling scenarios may arise directly in naturally unconstrained problems, such as a flying aircraft,

or may occur as a result of a system decomposition process. In the latter case, the principal

equations become a key ingredient of the formulation of the coupled discrete equations. We have

shown that the process relies on PVW applied to the d’Alembert forces acting on the whole

system, or on each individual component. Although the procedure can be followed as recipe by

practicing engineers without a detailed knowledge of variational principles, work theorems or

adjoint properties, such knowledge comes handy in understanding attributes such as the duality

between static and kinematic operators.

Two important features of the principal equations presented here are their independence from

constitutive and compatibility properties, and their indifference as to the source of forces acting on

the system. The latter property represents an extension of the classical notion of ‘self-equilibrium

states’ that refers to structures without external and reaction forces.

If the overall system is statically determinate, the principal equations directly supply the internal

forces without the need of finding deformations and displacements. While in static analysis of fully

supported structures this feature is common to flexibility-based methods, those cannot easily handle

floating systems or dynamics. For statically indeterminate problems, the principal solution may

serve as the initial step in an iterative process that injects compatibility and material properties in

a hierarchical fashion. That process can be efficiently combined with Lagrange multiplier methods

to address scenarios such as multiscale analysis or parallel computation.

As noted in the Historical Background section, multiplier-linked system decomposition methods

have diverse roots in the past. In a taxonomy of model-based simulation for computational

mechanics, the LLM methodology presented here may be categorized as a primal–dual hybrid: a

combination of the displacement and force methods that tries to amalgam the best features of each

while retaining application pliability. The following modeling and computational advantages can

be cited for this combination.

1. If the system is undecomposed and fully supported, it reduces to the standard direct stiffness

method, thus facilitating selective reuse of existing software.

2. At the other extreme, that of widespread cutting of rigid or highly stiff individual members

it links naturally to multiplier-based multibody dynamics.

3. For structural models, it uses only displacement-connected elements in each substructure.

This protects the large existing investment of commercial FEM codes on element libraries,

and retains interelement mixability as the tool to build complex models.

4. Cuts can be placed to evince interaction forces in problems where unexpected highly local

effects call for deeper investigation (sort of an ‘MRI structural test’). This is important in

inverse problems for vulnerability/damage detection suggested by dynamic signal data. A

related potential application is real-time, multisite hybrid testing, which is gaining importance

as a result of networking advances.
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5. Selective elimination of the frame reduces LLM to the mortar method for linking hetero-

geneous components, allowing result crosschecking with a developing body of multiphysics

coupling technology.

6. As emphasized in the paper, the approach naturally handles floating systems and components.

Because displacements are an essential part of the formulation, it has no difficulties in modeling

dynamics, vibration, and stability problems.

7. In problems that involve localized non-linearities (fracture, contact, etc.), cuts may be adap-

tively made to separate linear and non-linear portions of the overall system.

8. Lends itself to parallel implementation as well as treatment of nonmatching meshes.

9. It opens up a promising framework for partitioned analysis of coupled problems in multiphysics

and multiscale modeling, as well as construction of reduced models by truncated representa-

tions of governing equations. Substantial developments in all of these areas, however, will be

required to define correct and consistent interface conditions.

Two implementation obstacles remain as research areas that may be of interest to numerical

analysts and applied mathematicians. The reliable automatic detection of non-RBM subsystem

mechanisms (zero-energy internal modes) is notoriously difficult since it involves rank detection in

floating-point arithmetic. Despite recent advances [60], the topic deserves further study. Coupling

subsystems or partitions of very different physical or inertial properties can lead to significant ill-

conditioning in the interface equations. This can be expected to be particularly crucial in multiscale

analysis. While ill-conditioning in structure–structure interaction has been alleviated with ad hoc

scaling and filtering procedures [61, 62], a more general treatment seems appropriate.

Potential future applications of this approach include situations where noisy large motions,

localization, contact-impact, heterogeneity, and/or scaling effects may disturb the smooth applica-

tion of conventional displacement methods. Specific instances include multiscale inverse problems,

space robotics, contact-impact, real-time testing, control of highly flexible systems, and obviously

modeling and simulation of multiphysics and multiscale problems.
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25. Géradin M, Rixen D. Mechanical Vibrations: Theory and Application to Structural Dynamics. Wiley: New York,

1994.

26. Park KC, Felippa CA. A variational framework for solution method developments in structural mechanics. Journal

of Applied Mechanics 1998; 65(1):242–249.

27. Park KC, Justino Jr MR, Felippa CA. An algebraically partitioned FETI method for parallel structural analysis:

algorithm description. International Journal for Numerical Methods in Engineering 1997; 40:2717–2737.

28. Park KC, Felippa CA. A variational principle for the formulation of partitioned structural systems. International

Journal for Numerical Methods in Engineering 2002; 47:395–418.

29. Park KC, Gumaste U, Felippa CA. A localized version of the method of Lagrange multipliers and its applications.

Computational Mechanics 2000; 24(6):476–490.

30. Dugas R. A History of Mechanics. Dover Publications: New York, 1988.

31. Truesdell C, Toupin RA. The classical field theories. In Handbuch der Physik, vol. III/1, Flügge S (ed.). Springer:
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33. Lagrange J-L. Mécanique Analytique, Paris, 1788. Reprinted by J. Gabay, Paris, 1989.

34. http://en.wikipedia.org/wiki/Jean le Rond d’Alembert.
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