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Abstract

Necessary and sufficient conditions are established for the occurrence of dynamic instabilities in finite

dimensional linearly elastic systems in unilateral frictional contact with a rigid flat surface. These condi-

tions apply in particular to the systems that result from the finite element discretization of linearly elastic

bodies. From the numerical point of view, these conditions lead to studying eigenproblems relative to a

non-symmetric (tangent) stiffness matrix that incorporates the effect of the current state of the contact

candidate particles. Illustrative small-sized examples are presented together with an application to the

case of an experimentally tested block of polyurethane, where friction induced instability phenomena

were observed.

1. Introduction

This paper adresses the subject of the dynamic stability of equilibrium states and some quasi-
static evolutions of finite dimensional linearly elastic systems with plane motion having frictional
contact with a fixed flat surface.

This topic is important for at least two reasons. First, because the instability of frictional
contact systems may give rise to friction-induced oscillations, which in turn may be responsible
for undesired noise and/or severe wear of the contacting surfaces. Secondly, because frictional
systems provide a prototype for the non-associative elastic-plastic behavior encountered for
instance in soils, rocks, concrete, ceramics, etc.

The analysis in this paper is restricted to finite dimensional systems, because at present, enor-
mous mathematical difficulties still remain to be solved in what concerns the proper formulation
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of dynamic unilateral contact problems involving continuum bodies with or without friction.
Even in what concerns finite dimensional dynamic problems with unilateral contact and fric-
tion, rigorous mathematical formulations and complete existence studies are available only in
some particular situations [12, 26, 48]. The unilaterality of the contact and the non-symmetry
(non-associativity, non-self-adjointness) induced by the Coulomb friction law are responsible
for these mathematical difficulties. Of course, some of the results obtained in the present pa-
per, in particular their variational inequality statements, can be formally(!) re-stated for the
corresponding continuum problems.

Since the classical unilateral contact and Coulomb friction laws introduce multivalued oper-
ators in their mathematical formulation, frictional contact problems are highly non-linear. By
restricting the scope of the present paper to linearly elastic systems, we aim at taking advantage,
as much as possible, of the consequent linear structure of the problem outside the surfaces of
discontinuity induced in the phase space by the above mentioned severe non-linearities (multi-
valuedness). Under appropriate conditions or restrictions, some of the results obtained here can
of course be extended to other finite dimensional systems having a smooth non-linear elastic
behavior [29].

Due to its practical importance, the subject of the stability of frictional contact systems
has been dealt with in numerous studies ; a recent survey on these works has been published
by Ibrahim [10]. However no general theoretical framework for these analyses, which may be
systematically applicable to large systems (rigid multibody systems, finite element systems)
has yet been developed. In fact, most of the early analyses of friction-induced instabilities
and oscillations were limited to single degree-of-freedom (linearly elastic) systems, which left
practically no other alternative for interpreting the observed phenomena than assuming, in some
way or another, that the friction coefficient decreases with the sliding speed. By considering
more complex (multi-degree-of-freedom) models of the actual systems, it became clear that the
geometrical and dynamic properties of a system, the coupling between various degrees of freedom
(tangent, normal, rotational, etc...) and the intrinsic non-symmetry of Coulomb friction law
might give rise to various instability and oscillation phenomena [47, 11] (for additional references
see [10]). These points were stressed in [36] and [27], where, for metallic interfaces, the classical
unilateral contact law was replaced by a physically motivated normal compliance law in the study
of some friction-induced instability and oscillation phenomena. In what concerns the classical
unilateral contact and Coulomb friction laws, the first note worthy result was obtained by
Chateau and Nguyen [4], who established a sufficient condition for the absence of divergence type
instabilities affecting the equilibrium of a continuous elastic body. An important contribution to
the stability analysis of finite dimensional non-linear elastic systems with unilateral contact but
without friction was made by Klarbring [16]. Mròz and Plaut have studied in [33] the stability
of elastic structures with dry friction, but the results apply only to systems such that the normal
contact forces are a priori known, which eliminates the non-associative character of the most
general frictional contact problems.

Of course the studies on the stability of frictional systems have some parallels with those
on elastic-plastic bodies and, generally speaking, with those on rate-independent dissipative
systems. Recent surveys on these topics can be found in [35] and in the lectures in [34]. In
particular, we wish to mention the early contribution of Mandel [25], because, in the case of
non-associative elastic-plastic solids, it stresses the distinction between necessary and sufficient
conditions for dynamic instability (by divergence) and presents simple frictional contact ex-
amples. It is also worth mentioning the contribution of Petryk [38, 39], who, in the case of
associative elastic-plastic solids and in a finite dimensional context, proves a sufficient condition
for divergence instability : the direct paths emanating from the equilibrium state used in his
proof inspired the straight (direct) paths used with similar purposes in the present context of
(non-associative) finite dimensional frictional contact systems.
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This paper is organized as follows. In Section 2, the notations used in the paper are introduced
and the formulation of some finite dimensional frictional contact problems is recalled ; particular
attention is paid to the characterization of the sets to which the various kinematic and static
variables (displacements, reactions, and their rates) belong. In Section 3, a study is presented on
the existence of dynamic solutions in the neighborhood of a given equilibrium state which might
tend to diverge from that state : dynamic solutions beginning with a velocity discontinuity,
dynamic solutions starting with acceleration and reaction discontinuities, and smooth dynamic
solutions with initial conditions arbitrarily close to the equilibrium state are considered in turn.
In Section 4, a study is presented on the existence of growing (oscillatory or non-oscillatory) dy-
namic solutions in the neighborhood of straight portions of quasistatic evolutions of the system.
Some illustrative small-sized examples are presented at the end of Sections 3 and 4. Numerical
results obtained with the finite element method are presented in Section 5, in the case of a
block of polyurethane which was tested experimentally by Zeghloul and Villechaise [1] : sud-
den changes in the stress field in the course of the tangential loading process were detected by
those authors using photoelasticity techniques ; the possibility of correlating these experimental
results with friction-induced instability phenomena is discussed.

2. Notation, formulation and preliminary results

2.1. Dynamic frictional contact problem. Admissible displacements, velocities, accelerations
and reactions.

We consider a finite dimensional linearly elastic system with plane motion that may establish
frictional contact with a fixed flat surface. A typical situation in mind is the one resulting from
a finite element discretization of an elastic body, the possible contact being studied only at a
set of nodes (particles) on the boundary of the discretized body (see Fig. 1).

Let t ≥ 0 be the time variable and let ui(t) (i ∈ S ⊂ IN) be the generalized displacements of
the system at time t ; the corresponding column vector of the N generalized displacements is
denoted by uuu(t) ∈ IRN . The set of labels of the generalized displacements is the union of three
disjoint subsets SD, SF and SC : for i ∈ SD, ui(t) is a prescribed Displacement component ; for
i ∈ SF , ui(t) is an unknown (Free) displacement function which is not subjected to any kinematic
constraint ; and for i ∈ SC , ui(t) is an unknown displacement component of a particle of the
system that may establish Contact with the fixed surface. The latter displacement components
may be either Tangential or Normal to the fixed surface, so that SC = ST ∪ SN and, for each
contact candidate particle p (p ∈ PC ⊂ IN) those displacement components are also denoted by
uTp(t) and uNp(t), respectively.

We denote by Φ(t) ∈ IRN the given vector of applied forces at time t and we denote by M

and K the N x N symmetric, positive definite mass and positive semi-definite stiffness matrices,
respectively. In order to homogeneize the prescribed displacements, let Ψ(t) ∈ IRN such that

Ψi(t) =




ui(t), for all i ∈ SD

0, for all i ∈ SF ∪ SC

and let

u(t)
def
= uuu(t) − Ψ(t) , f (t)

def
= Φ(t) − KΨ(t) − MΨ̈(t) ,

where ˙( ) denotes the time derivative d()/dt.
The dynamic equations of motion of the present system are then of the form

Mü(t) + Ku(t) = f (t) + r(t) , (1)
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Fig. 1: Finite dimensional system in frictional contact with a fixed flat surface ; prescribed
Displacements (i ∈ SD), Free displacements (i ∈ SF ), Normal and Tangential displacements of
the Contact candidate particles (p ∈ PC) .

where r(t) ∈ IRN denotes the unknown vector of the reaction forces at time t. In view of the
presence or absence of kinematic constraints in SD and SF , respectively, we have

u(t) ∈ Vu , r(t) ∈ Vr , (2)

where Vu and Vr denote the spaces of admissible displacement and reaction vectors,

Vu
def
=
{
u ∈ IRN : ui = 0, for all i ∈ SD

}
,

Vr
def
=
{
r ∈ IRN : ri = 0, for all i ∈ SF

}
.

(3)

In addition, the classical unilateral contact conditions,

uNp(t) ≤ 0 , rNp(t) ≤ 0 , uNp(t) rNp(t) = 0 , for all p ∈ PC , (4)

and the friction law of Coulomb,

rTp(t) ∈ µ rNp(t)σ(u̇Tp(t)) , for all p ∈ PC , (5)

must hold for all the contact candidate particles; µ ≥ 0 is the coefficient of friction and σ denotes
the multivalued application such that, for each x ∈ IR,

σ(x)
def
=





x/|x| , if x 6= 0,

[−1, 1], if x = 0.

Initial displacement and velocity conditions have also to be satisfied :

u(0) = u0 , u̇(0) = v0 ; (6)

some conditions on the data u0 and v0 will be specified later.
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REMARK 2.1. The unilateral contact conditions (4) and the friction law of Coulomb (5) have
forms that will be frequently encountered in the rest of this paper when dealing with the kinematic
and static variables in (4) and (5) and with their time rates of change. Conditions of the
type in (4) or (5) lead to constraints on the global vectors of the relevant kinematic and static
variables which, in the present paper, will be established in the form of appropriate inclusion
or variational statements : some (primal) unknown kinematic variable must belong to some
admissible set (which depends at most on other already known kinematic or static variables)
while the corresponding (dual) unknown static variable must belong to some admissible set which
depends on the unknown value of the (primal) kinematic variable ; in these circumstances, the set
of the admissible values of the unknown static variable will also be characterized by a variational
inequality statement.

In what concerns complementarity conditions of the type in (4),

x ≤ 0, y ≤ 0, xy = 0, (7)

these are obviously equivalent to inclusion statements of the form

x ∈ Kx
def
= {x : x ≤ 0} , y ∈ Ky(x)

def
= {y : y ≤ 0 and yx = 0} , (8)

and it is well known that (7) or (8) are equivalent to

x ∈ Kx and y(x
′ − x) ≥ 0 , ∀x

′ ∈ Kx . (9)

On the other hand, the inclusion statement in (5) is of the general form

y ∈ zσ(x) (10)

where z is independently known to satisfy z ≤ 0. In these circumstances (10) is known to be
equivalent to

y(x
′ − x) ≥ z(|x′ | − |x|) , ∀x ∈ IR . (11)

Of course other dual statements could be given for (8)-(11), and also some mixed-type state-
ments ; note also that, by appropriate changes of variables, the statement (10) could be trans-
formed into complementarity statements of the type in (7). The interested reader may find the de-
velopment of these alternative formulations for some related problems in e.g. [15, 20, 40, 49, 37].

2

The interpretation of the governing equations and conditions (1)-(6) needs some care since
in general the displacements u will not be twice continuously differentiable functions of time.
For instance, at each transition of a contact particle from sliding to sticking, the corresponding
tangential acceleration and reaction may be discontinuous. In other circumstances the velocities
may be discontinuous : when a collision occurs between a contact candidate particle and the
obstacle surface, or when a frictional catastrophe occurs (a velocity jump not associated to a
collision [30]).

The mathematical framework suggested by Moreau and Jean [30, 13, 14] to study these dy-
namic contact problems with friction follows from the assumption that u is an absolutely con-
tinuous function with a time derivative u̇ with locally bounded variation. This implies that a
left velocity u̇−(t) and a right velocity u̇+(t) exist at every t ≥ 0. In these circumstances, for
all times t ≥ 0, the displacement u(t) must belong to the set of admissible displacements Ku :

u(t) ∈ Ku
def
= {u ∈ Vu : uNp ≤ 0 , if p ∈ PC} . (12)
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In addition, for each t ≥ 0, the right and left velocities satisfy

u̇+(t) ∈ Ku̇ (u(t)) , u̇−(t) ∈ −Ku̇ (u(t)) , (13)

where, for each u ∈ Ku, the decomposition of the set PC of contact candidate particles is
introduced

PC = Pf (u) ∪ Pc(u) ,

Pf (u)
def
= {p ∈ PC : uNp < 0} [particles currently not in contact (free)]

Pc(u)
def
= {p ∈ PC : uNp = 0} [particles currently in contact]

and

Ku̇(u)
def
= {v ∈ Vu: vNp ≤ 0 , for each p ∈ Pc} , (14)

is the (displacement dependent) set of admissible right velocities, while −Ku̇(u) is the corre-
sponding set of admissible left velocities.

If right (or left) limits exist for the reaction forces at some time t, r+(t) (or r−(t)), it follows
from (4) and (5) that

r+(t) ∈ Kr

(
u(t), u̇+(t)

) [
r−(t) ∈ Kr(u(t), u̇−(t))

]
, (15)

where, for u ∈ Ku and v ∈ Ku̇(u) (or v ∈ −Ku̇(u)),

Kr(u,v)
def
= {r ∈ Vr :rNp = rTp = 0, for p ∈ Pf ;

rNp ≤ 0 , rNpvNp = 0 and rTp ∈ µ rNpσ(vTp) , for p ∈ Pc}
(16)

is the (displacement and velocity dependent) set of admissible right (or left) reaction forces, and

Kr(u)
def
= {r ∈ Vr :rNp = rTp = 0, for p ∈ Pf ;

rNp ≤ 0, and |rTp| ≤ −µ rNp , for p ∈ Pc}
(17)

is the (displacement dependent) set of admissible reaction forces.
Note that Kr(u,v) ⊂ Kr(u) and that, for simplicity of notation, the dependence of the sets

Pc and Pf on the displacements u is omitted in (14), (16) and (17) ; similar simplifications will
be made in the rest of the paper, whenever confusion is not likely to arise.

At an instant of a velocity discontinuity, an impulsive interpretation has to be given to the
dynamic equation (1) :

M
(
u̇+(t) − u̇−(t)

)
= I(t) , (18)

where I(t) is the impulse or shock percussion of the reaction forces; it represents the ”integral” of
the reaction forces over the ”very short interval of time” during which the velocity jump occurs.
Indeed this interpretation is consistent with a mathematical reinterpretation of the differential
equation (1) as a measure differential equation (see [30, 26] for details). In what concerns the
restrictions posed by the frictional contact conditions on the shock percussion I , Moreau and
Jean [30, 13, 14] propose that I(t) must satisfy a condition of the type in (15) but involving
some weighted average velocity during the velocity jump :

I(t) ∈ Kr (u(t), u̇a(t)) , (19)
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where

u̇a(t) =
1 − δ

2
u̇−(t) +

1 + δ

2
u̇+(t) (20)

is the average velocity, and

δ ∈ [0, 1] (21)

is the dissipation index. Justifications and interpretations for these definitions can be found in
[30, 13, 14]. Here we only mention the following.

REMARK 2.2. The above setting for the dynamic contact problem with friction requires the
initial data to be given in appropriate sets and the initial conditions (6) to be satisfied in an
appropriate sense :

u(0) = u0 ∈ Ku , u̇−(0) = v0 ∈ −Ku̇(u0) . 2 (22)

REMARK 2.3. Because of the definition (16) for the set Kr (u(t), u̇a(t)), only the definition of
the average velocity components for the particles currently in contact is relevant : the particles
p ∈ Pc(u(t)). In addition, a non-null shock percussion at some particle p ∈ PC may occur only
if that particle is currently in contact and has a null average normal velocity, i.e.

for all p ∈ PC : Ip(t) 6= 0 ⇒ uNp(t) = u̇a
Np(t) = 0 . 2

LEMMA 2.4. The change in the kinetic energy of the system (T ) in the course of a velocity
jump is equal to

T (u̇+(t)) − T (u̇−(t)) =−1

2
δM(u̇+(t) − u̇−(t)).(u̇+(t) − u̇−(t))

+
∑

p∈PC

µINp(t)|u̇a
Tp(t)|, (23)

which is a non-positive quantity.

PROOF. For any right or left velocity v , the kinetic energy is given by the positive definite

quadratic form T (v) =
1

2
Mv .v . The result follows by doing the inner product of (18) with

u̇a(t) and by using the definitions (20) and (16) of u̇a(t) and Kr(u(t), u̇a(t)). See [30, 13, 14]
for details. 2

REMARK 2.5. In a more recent work, Moreau [31] proposes a more general form for the fric-
tional impact conditions in (19), (20) and (21) ; other approaches have also been proposed in
the literature (see, e.g., Pfeiffer and Glocker [40] and Frémond [9]). However, what is relevant
for the present paper (see Section 3.1) is that, whatever the adopted model is, the fundamen-
tal dissipativity property in Lemma 2.4 holds : the change in kinetic energy in the course of a
velocity jump must be non-positive.

Let us assume now that the right acceleration and the right reaction are well defined at some
time t : ü+(t) and r+(t). In order to characterize the sets to which these quantities belong we
consider the following decomposition of the set Pc of the particles currently in contact. For each
admissible displacement u ∈ Ku and each admissible right velocity v we let

Pc(u) = Pcf (u,v) ∪ P0(u,v) ∪ Pv(u,v) ,
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where

Pcf (u,v)
def
= {p ∈ Pc(u) : vNp < 0} [particles in contact with negative normal

velocity (free in the near future)]

P0(u,v)
def
= {p ∈ Pc(u) : vNp = 0, vTp = 0} [particles in contact with normal and tan-

gential velocities equal to 0]

Pv(u,v)
def
= {p ∈ Pc(u) : vNp = 0, vTp 6= 0} [particles in contact with vanishing nor-

mal velocity and non-vanishing tangential
velocity].

and we define the (displacement and velocity dependent) set of admissible right accelerations,

Kü(u,v)
def
= {a ∈ Vu: aNp ≤ 0 , for each p ∈ P0 ∪ Pv} (24)

and [having also a ∈ Kü(u,v)] we define the (displacement, velocity and acceleration dependent)
set of admissible right reactions,

Kr(u,v ,a)
def
= {r ∈ Vr :rNp ≤ 0 and rNpaNp = 0, for p ∈ P0 ∪ Pv ;

rTp ∈ µrNpσ(aTp), for p ∈ P0 ;

rTp = µrNpσ(vTp), for p ∈ Pv ;

rNp = rTp = 0, for p ∈ Pf ∪ Pcf }
⊂ Kr(u,v) ⊂ Kr(u) .

(25)

The conditions on the right acceleration and reaction vectors are then written in the form

ü+(t) ∈ Kü(u(t), u̇(t)) , (26)

r+(t) ∈ Kr(u(t), u̇(t), ü+(t)) . (27)

Note that the conditions on aNp and rNp in (24) and (25) at the particles that are currently in
contact with vanishing normal right velocity (uNp = vNp = 0, p ∈ P0 ∪Pv) are complementarity
conditions of the type (7) (see (24) and the first line in (25)) ; on the other hand the conditions on
aTp and rTp at the particles that are currently in contact with vanishing normal and tangential
right velocities (uNp = vNp = vTp = 0, p ∈ P0, see the second line in (25)) have a form of the
type (10) ; finally note that the remaining conditions on the right reactions (see the two last
lines in (25)) are simple equality constraints. As a consequence of these observations and of the
observations in Remark 2.1, the set of the admissible right reactions can be characterized in the
following manner.

LEMMA 2.6. Let U ∈ Ku, V ∈ Ku̇(U) and A ∈ Kü(U ,V ). Then R ∈ Kr(U ,V ,A) if and
only if

R.(a − A) ≥
∑

p∈Pv

µRNpσ(VTp)(aTp − ATp) +
∑

p∈P0

µRNp(|aTp| − |ATp|),

∀a ∈ Kü(U ,V ) . 2 (28)

A detailed proof of this result can be found in [28]. Related discussions on the conditions
satisfied by the right accelerations and reactions in finite dimensional frictional contact problems
(assuming that those quantities are well defined) can be found in [23, 37, 49].
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Note that in the most common situations at which no velocity discontinuity exists, the normal
velocity u̇Np(t) is null at each particle p currently in contact [p ∈ Pc(u(t))] :

u̇+(t) = u̇−(t) = u̇(t)∈Ku̇(u(t)) ∩ (−Ku̇(u(t)))

= {v ∈ Vu : vNp = 0 , for each p ∈ Pc(u(t))} .
(29)

Consequently, Pcf (u(t), u̇(t)) = ∅ and Pc(u(t)) = P0(u(t), u̇(t)) ∪ Pv(u(t), u̇(t)).

2.2. Static and quasistatic frictional contact problems. Admissible first order displacement and
reaction rates.

In the following sections we shall be concerned with the stability analysis of some particular
types of solutions to the dynamic equations and conditions (1)-(6). Our first concern will be the
static equilibrium positions, i.e. the dynamic solutions with null velocity and acceleration. For
given forces f 0 independent of time, the static equilibrium solutions u0 satisfy thus

u0 ∈ Ku , r0 def
= Ku0 − f 0 ∈ Kr(u

0) . (30)

We shall also be concerned with particular classes of quasistatic evolutions of the system. For
given time dependent applied forces f and given initial displacements u0 such that [cf. (12) and
(17)]

u0 ∈ Ku , Ku0 − f (0) ∈ Kr(u0) , (31)

a quasistatic evolution is characterized by absolutely continuous functions u0 and r0 such that
the balance equations

Ku0(t) = f (t) + r0(t) (32)

and the unilateral contact conditions (4) hold for all times t ≥ 0, the friction law (5) holds for
a.e. t ≥ 0 and the initial condition

u0(0) = u0 (33)

is satisfied at t = 0. It is now well-known that unless the friction coefficient is sufficiently small
[22], simple examples of non-existence or non-uniqueness of solution in the above mathematical
framework can be found [17].

If u0 and r0 are right-differentiable at some τ ≥ 0, the right-derivatives u̇0+(τ) and ṙ0+(τ)
must belong to appropriate sets. In order to characterize such sets we consider the following
decomposition of the set of the particles that are currently in contact. For each u ∈ Ku and
each r ∈ Kr(u), we let

Pc(u) = Pz(u, r) ∪ Pd(u, r) ∪ Ps(u, r) ,

where the above disjoint subsets are

Pz(u, r)
def
= {p ∈ Pc(u) : rNp = rTp = 0} [particles in contact with zero reaction]

Pd(u, r)
def
= {p ∈ Pc(u) : rNp < 0 and |rTp| < −µ rNp} [particles in contact with

reaction strictly inside the friction cone

and consequent vanishing (right) displacement rate]

Ps(u, r)
def
= {p ∈ Pc(u) : rNp < 0 and |rTp| = −µ rNp} [particles in contact with

non-vanishing reaction on the boundary of the friction cone

and consequent possible slip in the near future].
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Then for u ∈ Ku, r ∈ Kr(u) and v ∈ Ku̇(u, r), we define

Ku̇(u, r)
def
= {v ∈ Vu :vNp ≤ 0 , for p ∈ Pz ;

vNp = 0 , for p ∈ Pd ∪ Ps ;

vTpσ(rTp) ≤ 0 , for p ∈ Ps ;

vTp = 0 , for p ∈ Pd }

(34)

as the (displacement and reaction dependent) set of admissible right velocities, and

Kṙ(u, r,v)
def
= {w ∈ Vr : wNp ≤ 0 , wNpvNp = 0, for p ∈ Pz ;

wNp = 0, for p ∈ Pf ;

wTp σ(rTp) + µwNp ≤ 0 and [wTp σ(rTp) + µwNp] [vTpσ(rTp)] = 0, for p ∈ Ps ;

wTp ∈ µwNp σ(vTp), for p ∈ Pz ;

wTp = 0, for p ∈ Pf }

(35)

as the (displacement, reaction and velocity dependent) set of admissible right reaction rates, so
that

u̇0+(τ) ∈ Ku̇(u0(τ), r0(τ)) , ṙ0+(τ) ∈ Kṙ(u
0(τ), r0(τ), u̇0+(τ)) . (36)

A visualization of the decomposition of the set of contact candidate particles PC into Pf , Pz,
Pd and Ps is shown in Fig. 2, together with the corresponding admissible values of uN , rN and
rT as well as their admissible (right) rates of change.

Note that the conditions on vNp and wNp in (34) and (35) at the particles that are currently
in contact with vanishing reaction (uNp = rNp = rTp = 0, p ∈ Pz, see the first lines in (34)
and (35)) are complementarity conditions of the type (7) ; note also that the conditions on
x = vTpσ(rTp) and y = wTp σ(rTp) + µwNp at the particles that are currently in contact with
non-vanishing reaction on the boundary of the friction cone (uNp = 0, |rTp| = −µrNp > 0,
p ∈ Ps, see the third lines in (34) and (35)) are also complementarity conditions of the type (7) ;
the condition on wNp, wTp and vTp in Pz (see the fourth line in (35)) is of the type (10) ; and
all the remaining conditions in (34) and (35) are simple equality constraints. As a consequence
of these observations and of the observations in Remark 2.1, the set (35) of the admissible right
reaction rates admits the variational characterization given below. Essentially the same result
is proved in [4] and [18].

LEMMA 2.7. Let U ∈ Ku, R ∈ Kr(U) and V ∈ Ku̇(U ,R). Then W ∈ Kṙ(U ,R,V ) if and
only if

W .(v − V )≥
∑

p∈Pc

µWNp(|vTp| − |VTp|), ∀v ∈ Ku̇(U ,R) . 2 (37)

Note that the right-hand side of (37) can be written in more detail in the form :

∑

p∈Pc

µWNp(|vTp| − |VTp|) =
∑

p∈Pz

µWNp(|vTp| − |VTp|) −
∑

p∈Ps

µWNpσ(RTp)(vTp − VTp) . (38)
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2.3. Quasistatic evolutions with straight portions of constant velocity. Admissible second order
displacement and reaction rates.

It is important to observe that in general a quasistatic evolution is not a solution of the
dynamic problem (1)-(6) : if the quasistatic velocity u̇0(t) is not constant, then (u0(t), r0(t))
satisfying (32) will not satisfy the dynamic equation (1). For this reason we shall be interested
in analysing what happens in the neighborhood of some portions of quasistatic evolutions along
which the quasistatic velocity is constant.

Let τ ≥ 0 and let the applied force rates be constant for t ≥ τ :

f (t) = f (τ) + ḟ (τ)(t − τ) , for t ≥ τ. (39)

Let us also assume that there exist quasistatic solution vectors of displacements, reactions,
right velocities and right reaction rates at time τ : u0(τ) ∈ Ku, r0(τ) ∈ Kr(u

0(τ)), u̇0+(τ) ∈
Ku̇(u0(τ), r0(τ)) and ṙ0+(τ) ∈ Kṙ(u

0(τ), r0(τ), u̇0+(τ)), respectively. In other words these
vectors satisfy at time τ the frictional contact conditions (4),(5) or the corresponding rate form
associated with the definitions (34), (35), and also the balance equation (32) or its rate form

Ku̇0+(τ) = ḟ (τ) + ṙ0+(τ) . (40)

In these circumstances the following result holds.

LEMMA 2.8. There exists ∆0τ > 0 such that

u0(t) = u0(τ) + u̇0+(τ)(t − τ) , r0(t) = r0(τ) + ṙ0+(τ)(t − τ) (41)

solve (32) and consequently (1) for all t ∈ [τ, τ + ∆0τ [ .

PROOF. Satisfaction of the force balance equations [and consequently of the dynamic equations
(1)] is checked by direct substitution of (41) in (32) with u̇0+(τ) and ṙ0+(τ) being the above so-
lution of the rate problem (36), (40). Satisfaction of the frictional contact conditions results from
the fact that the path defined by (u0(t),r0(t)) in the space of the displacements and reactions is
straight and has the direction of the admissible displacement and reaction rates (u̇0+(τ),ṙ0+(τ))
at (u0(τ),r0(τ)), while the boundaries of the regions in the displacement-reaction space where
each decomposition of PC is valid are hyperplanes. The smallness of ∆0τ > 0 is required to keep
the solution pair (u0(t),r0(t)) for t ∈ [τ, τ + ∆0τ

[
, within the admissible region selected by the

rates (u̇0+(τ),ṙ0+(τ)). More precisely, ∆0τ is sufficiently small that ∀t ∈ [τ, τ + ∆0τ
[

:

u0
Np(t) < 0, for all p ∈ Pf (u0(τ)) ;

r0
Np(t) < 0 and |r0

Tp(t)| < −µ r0
Np(t), for all p ∈ Pd(u

0(τ), r0(τ)) ;

r0
Np(t) < 0, for all p ∈ Ps(u

0(τ), r0(τ)) ;

|r0
Tp(t)| < −µ r0

Np(t), for all p ∈ Ps(u
0(τ), r0(τ)) such that

u̇0+
Tp(τ) = u̇0+

Np(τ) = 0 , ṙ0+
Tp(τ)σ(r0

Tp(τ)) + µṙ0+
Np(τ) < 0 .

Note that no condition is imposed on the particles p ∈ Pz(u
0(τ), r0(τ)) because for any straight

non-trivial path of such a particle, it will remain indefinitely in one and only one of Pf (u0(τ)),
Pd(u

0(τ), r0(τ)) or Ps(u
0(τ), r0(τ)). 2

11



In Section 4 the possible existence of growing dynamic solutions in the neighborhood of these
straight portions of quasistatic evolutions will be studied. Since the first order displacement
and reaction rates are constant along these straight quasistatic paths, the increments of smooth
dynamic solutions with respect to the quasistatic one will be assumed to belong to the sets of
admissible right second order displacement and reaction rates.

z
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1

µ

1
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Fig. 2: Admissible normal displacement (uN ), normal and tangential reactions (rN and rT ),
and their first order (right) rates for a contact candidate particle p ∈ PC ; nomenclature for the
subsets of Pz and Ps.

In order to characterize these sets, we start by considering, for each u ∈ Ku, r ∈ Kr(u),
v ∈ Ku̇(u, r) and w ∈ Kṙ(u, r,v), the following decomposition of Pz and Ps :

Pz=Pzf ∪ Pzz ∪ Pzd ∪ Pzs ,

Ps=Psd ∪ Pss ,

where :

Pzf (u, r,v) = {p ∈ Pz(u, r) : vNp < 0} [particles in Pz with negative normal velocity]

Pzz(u, r,v ,w) = {p ∈ Pz(u, r) : vNp = 0 , wTp = wNp = 0} [particles in Pz with vanishing
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reaction rate and normal velocity]

Pzd(u, r,v ,w) = {p ∈ Pz(u, r) : vTp = vNp = 0 , wNp < 0 , |wTp| < −µwNp}
[particles in Pz with non-vanishing reaction rate
directed towards the interior of the friction cone]

Pzs(u, r,v ,w) = {p ∈ Pz(u, r) : vNp = 0 , wNp < 0 , wTp = µwNp σ(vTp)}
[particles in Pz with non-vanishing reaction rate

on the boundary of the friction cone]

Psd(u, r,v ,w) = {p ∈ Ps(u, r) : vTp = vNp = 0 , wTp σ(rTp) + µwNp < 0}
[particles in Ps with non-vanishing reaction rate directed

towards the interior of the friction cone]

Pss(u, r,v ,w) = {p ∈ Ps(u, r) : vNp = 0 , σ(vTp) = −σ(rTp) , wTp σ(rTp) + µwNp = 0}
[particles in Ps with reaction rate on the boundary of the friction cone].

A visual interpretation of the nomenclature of these sets as the result of the first order rates
of the normal displacements and of the normal and tangential reactions is presented in Fig. 2.

The decomposition of each of the sets Pzz, Pzs and Pss into their (disjoint) intersections with
P0 and with Pv will be also important in the following : it will be important to know if the
particles in those sets have a vanishing or a non-vanishing sliding velocity.

Then we denote by

Kü(u, r,v ,w) ={a ∈ Vu :aNp ≤ 0, for p ∈ Pzz ;

aNp = 0, for p ∈ Pd ∪ Ps ∪ Pzs ∪ Pzd ;

aTp σ(rTp) ≤ 0, for p ∈ Pss ∩ P0 ;

aTp σ(wTp) ≤ 0, for p ∈ Pzs ∩ P0 ;

aTp = 0, for p ∈ Pd ∪ Psd ∪ Pzd }

(42)

the set of admissible right second order displacement rates (accelerations) ; for u, r, v and w in
the same sets and a ∈ Kü(u, r,v ,w), the set of the admissible right second order reaction rates
is the set

Kr̈(u, r,v ,w ,a) = {b ∈ Vr : bNp ≤ 0, bNpaNp = 0, for p ∈ Pzz ;

bNp = 0, for p ∈ Pf ∪ Pzf ;

bTp σ(rTp) + µ bNp ≤ 0, [bTp σ(rTp) + µ bNp] [aTpσ(rTp)] = 0, for p ∈ Pss ∩ P0 ;

bTp σ(wTp) + µ bNp ≤ 0, [bTp σ(wTp) + µ bNp] [aTpσ(wTp)] = 0, for p ∈ Pzs ∩ P0 ;

bTp ∈ µ bNp σ(aTp), for p ∈ Pzz ∩ P0 ;

bTp = µ bNp σ(vTp), for p ∈ Pv ;

bTp = 0, for p ∈ Pf ∪ Pzf } .

(43)

The conditions in (42) and (43) deserve a more detailed discussion. Concerning the (right)
second order rates of the normal displacements and reactions, these satisfy complementarity
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conditions of the type (7) whenever the normal displacement and reaction, as well as their first
order rates are null (p ∈ Pzz, see the first lines in (42) and (43)) ; on the other hand (see
the second line in (42)), the normal acceleration has to be null whenever the normal reaction
or its first order rate is different from zero (p ∈ Pd ∪ Ps ∪ Pzs ∪ Pzd) ; finally (see the second
line in (43)) the second order rate of the normal reaction has to be null whenever the normal
displacement or its first order rate indicate a near future absence of contact (p ∈ Pf ∪ Pzf ).
In what concerns the tangential variables, it follows from the friction law that, whenever the
current sliding speed is null and the current or the (first order) near future reactions do not
vanish and are on the boundary of the friction cone (p ∈ Pss ∩ P0 or p ∈ Pzs ∩ P0), then
complementarity conditions of the type (7) are satisfied which guarantee that the near future
sliding speed can only oppose the near future tangential reaction, that (up to second order
approximations) the near future reactions remain in the friction cone, and sliding occurs only
if those reactions remain on the boundary of that cone (see the third and fourth lines in (42)
and (43)) ; on the other hand, if the current reactions or their first order rates indicate a near
future stick (p ∈ Pd ∪ Pzd ∪ Psd, see the fifth line in (42)), then the tangential acceleration has
to be null ; furthermore, if the sliding speed is null and the normal displacement and reaction,
as well as their first order rates, are also null (p ∈ Pzz ∩ P0, see the fifth line in (43)), then
the lowest order reaction and tangential displacement rates that may be different from zero
(the second order ones) must satisfy a condition of the type of the friction law ; finally, if the
current sliding speed is different from zero at the particles in contact with null normal velocity
(p ∈ Pv = (Pz ∪ Ps) ∩ Pv = (Pzz ∪ Pzs ∪ Pss) ∩ Pv, see the sixth line in (43)) then, up to second
order approximations, the reactions must remain at the vertex of the friction cone or on the
appropriate side of its boundary, while if the normal displacement or its first order rate indicate
a near future absence of contact (p ∈ Pf ∪ Pzf , see the last line in (43)), then the second order
rate of the tangential reaction vanishes.

Similarly to Lemmas 2.6 and 2.7, Kr̈(u, r,v ,w ,a) can be characterized in the following man-
ner.

LEMMA 2.9. Let U ∈ Ku, R ∈ Kr(U), V ∈ Ku̇(U ,R), W ∈ Kṙ(U ,R,V ) and A ∈
Kü(U ,R,V ,W ). Then B ∈ Kr̈(U ,R,V ,W ,A) if and only if

B.(a − A) ≥
∑

p∈Pv

µBNpσ(VTp)(aTp − ATp) +
∑

p∈P0

µBNp(|aTp| − |ATp|)

∀a ∈ Kü(U ,R,V ,W ) . 2 (44)

Note that the right hand side of (44) can be written in more detail in the form :
∑

p∈Pv

µBNpσ(VTp)(aTp − ATp) +
∑

p∈P0

µBNp(|aTp| − |ATp|)

=
∑

p∈Pv

µBNpσ(VTp)(aTp − ATp)

+
∑

p∈Pzz∩P0

µBNp(|aTp| − |ATp|)

−
∑

p∈Pss∩P0

µBNpσ(RTp)(aTp − ATp)

−
∑

p∈Pzs∩P0

µBNpσ(WTp)(aTp − ATp) .

(45)

In some circumstances the above sets are actually subspaces of IRN : when

Pzz ∪ [(Pzs ∪ Pss) ∩ P0] = ∅ , (46)
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and, consequently,

Pz = Pzf ∪ Pzd ∪ Pzs ,

Pzs = Pzs ∩ Pv ,

Pss = Pss ∩ Pv ,

Pv = Pzs ∪ Pss ,

(47)

it can be easily seen that no inequality restriction remains on the admissible second order
displacement and reaction rates. This is relevant for the discussion that motivates the definition
of these sets (the dynamic solutions in the neighborhood of quasistatic paths), because it means
that oscillating solutions belong to those subspaces and can be easily considered in the analysis.
Since it is useful to use complex notation to represent such oscillating solutions, we define the
following subspaces of admissible complex second order displacement and reaction rates :

V lC
ü = V lC

ü (u, r,v ,w) ={a ∈ lCN :ai = 0, for i ∈ SD ;

aNp = 0, for p ∈ Pd ∪ Ps ;

aTp = 0, for p ∈ Pd ∪ Pzd ∪ Psd } ,

(48)

V lC
r̈ = V lC

r̈ (u, r,v ,w) ={b ∈ lCN :bi = 0, for i ∈ SF ;

bNp = 0 , for p ∈ Pf ∪ Pzf ;

bTp = µ bNp σ(vTp) , for p ∈ Pv ;

bTp = 0 , for p ∈ Pf ∪ Pzf } .

(49)

2.4. Summary of most important notations

For future reference, we summarize in Table 1 the most important notations relative to the
subsets of the set PC of the contact candidate particles. The notation of the sets of admissible
(right) values of the (real) kinematic and static variables is summarized in Table 2.

3. Dynamic divergence from an equilibrium state

In this section we wish to study the existence of dynamic solutions in the neighborhood of
a given equilibrium state which might tend to diverge from that state. First we shall consider
the possibility that such dynamic solutions might initiate with a velocity discontinuity relatively
to the equilibrium state. Then we consider the possibility of acceleration and reaction discon-
tinuities at the initiation of such dynamic solutions. Finally we shall study dynamic solutions
along straight paths in the neighborhood of the static equilibrium state with initial conditions
arbitrarily close to that state.

3.1. Absence of initial velocity discontinuities

PROPOSITION 3.1. No dynamic solution with initial conditions

u(τ) = u0 ∈ Ku , u̇−(τ) = 0 , (50)

may be initiated with a velocity jump, i.e., u̇+(τ) = 0 for all dynamic solutions that satisfy the
initial conditions (50).
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PROOF. The result follows from Lemma 2.4, by observing that T (u̇−(τ)) = 0 and that the
mass matrix is positive definite. 2
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3.2. Initial acceleration and reaction discontinuities

In what concerns acceleration and reaction discontinuities we can prove the necessary condi-
tions given next, where, for each (A,a) ∈ Kü(u0,0) × Kü(u0,0), we use the notations :

m(A,a)
def
= MA.a , m∗(A,a)

def
= MA.a −

∑

p∈Pc(u0)

µ[MA]Np|aTp| . (51)

PROPOSITION 3.2. A dynamic solution with initial conditions (50) may be initiated with an
acceleration and reaction discontinuity only if there exists an admissible nontrivial right accel-
eration A [ A = ü+(τ) ∈ Kü(u0,0) , A 6= 0] such that

MA + r0 ∈ Kr(u
0,0,A) , (52)

i.e., such that

[m∗(A,a) − m∗(A,A)] + [r0.(A − a) −
∑

p∈Pc(u0)

µr0
Np(|aTp| − |ATp|)] ≥ 0 ,

∀a ∈ Kü(u0,0) .

(53)

PROOF. The right accelerations and reactions satisfy ü+(τ) ∈ Kü(u0,0) and r+(τ) ∈
Kr(u

0,0, ü+(τ)), so that

r+(τ).(a − ü+(τ)) ≥
∑

p∈Pc(u0)

µr+
Np(τ)(|aTp| − |ü+

Tp(τ)|) , ∀a ∈ Kü(u0,0) . (54)

The result follows then by observing that

r+(τ) = Mü+(τ) + r0 . 2 (55)

COROLLARY 3.3. If (53) holds then :

(i) MA ∈ Kṙ(u
0, r0,0) , (56)

and consequently

m∗(A,a) ≥ 0 , ∀a ∈ Ku̇(u0, r0) . (57)

(ii) m∗(A,A) ≤ 0 . (58)

PROOF. (i) The right reactions r+(τ) belong to the set Kr(u
0,0, ü+(τ)) which is contained

in Kr(u
0,0,0) = Kr(u

0,0) [cf. (25) and (17)]. Since the static reactions r0 = Ku0 − f 0 also
belong to the same set, it follows that the reaction jump r+(τ) − r0 = Mü+(τ) belongs to
Kr(u

0,0) − r0, which is necessarily contained in the set Kṙ(u
0, r0,0) of the admissible right

reaction rates at (u0, r0). Then the inequality (57) follows immediatly from (37) with V = 0.
(ii) Since, as already mentioned, r0 ∈ Kr(u

0,0,0), it follows from (28) that

r0.a ≥
∑

p∈Pc(u0)

µr0
Np|aTp| , ∀a ∈ Kü(u0,0) . (59)
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Then taking a = ü+(τ) in (59) and taking successively a = 0 and a = 2ü+(τ) in (54) we get

−r0.ü+(τ) ≤ −
∑

p∈Pc(u0)

µr0
Np|ü+

Tp(τ)|

r+(τ).ü+(τ) =
∑

p∈Pc(u0)

µr+
Np(τ)|ü+

Tp(τ)| .

The result (58) follows by adding the above expressions and taking (55) into account. 2

REMARK 3.4. (i) Since [cf. Proposition 3.2] A ∈ Kü(u0,0) and r0 + MA ∈ Kr(u
0,0,A), it

follows from the definitions (24), (25) and (34) that A necessarily belongs to the set Ku̇(u0, r0 +
∆R), where ∆R[= MA ∈ Kr(u

0,0)−r0] denotes the reaction jump. However A does not have
to belong to Ku̇(u0, r0), because the right reaction (r0 + ∆R) may be quite distinct from the
(left) static reaction (r0). However if ∆R[= MA] is sufficiently small that

r0
Np + ∆RNp < 0 and

|r0
Tp + ∆RTp| < −µ(r0

Np + ∆RNp) , for all p ∈ Pd(u
0, r0) ;

r0
Np + ∆RNp < 0 , for all p ∈ Ps(u

0, r0) ;

|r0
Tp + ∆RTp| < −µ(r0

Np + ∆RNp) , for all p ∈ Ps(u
0, r0) such that

∆RTpσ(r0
Tp) + µ∆RNp < 0 ;

then

A ∈ Ku̇(u0, r0 + ∆R) ⊂ Ku̇(u0, r0)

and, consequently [cf. (57),(58)],

m∗(A,A) = 0 (60)

and also [cf. (57),(60)],

m∗(A,a) − m∗(A,A) ≥ 0 , ∀a ∈ Ku̇(u0, r0) . (61)

Consequently, for such small jumps,

A ∈ Ku̇(u0, r0) and MA ∈ Kṙ(u
0, r0,A) . (62)

(ii) Clearly no dynamic solution with initial conditions (50) may be initiated with an acceleration
and reaction discontinuity if

m∗(a,a) > 0 , ∀a ∈ Kü(u0,0) , a 6= 0 . (63)

(iii) The condition in (ii) is satisfied if the mass matrix M is diagonal. Actually it suffices that
(Ma)Np = γpaNp, with γp > 0, for all p ∈ Pc(u

0) and all a ∈ Kü(u0,0). 2

It should be noted that the condition given in Proposition 3.2 is necessary, but not sufficient,
for the occurrence of initial acceleration and reaction discontinuities, because it has not been
checked so far that such discontinuities can actually be followed by (smooth) dynamic solutions
diverging from the equilibrium configuration. In some circumstances it is possible to guarantee
this. A result of this type is given next, another one will be given later in Section 3.4.
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PROPOSITION 3.5. Let A satisfy (53). If, in addition, for all particles p ∈ Pc(u
0),

either :

ANp < 0 and [r0 + MA]Np = [r0 + MA]Tp = 0 ,

or :

ANp = ATp = 0, [r0 + MA]Np < 0 and |[r0 + MA]Tp| < −µ[r0 + MA]Np,

then there exists a dynamic solution with an initial acceleration and reaction discontinuity fol-
lowed by a smooth dynamic evolution.

PROOF. It suffices to observe that the direction A of the non-vanishing right acceleration ü+(τ)
is directed towards the interior of a region in the displacement-reaction space where the system
is governed by a system of linear ordinary differential equations of the form

M#ü# + K#u# = f 0# ,

where ()# denotes a submatrix or a subvector associated with the Free degrees of freedom
[i ∈ SF ], plus the normal and tangential degrees of freedom of the currently free contact candi-
date particles [p ∈ Pf (u0)] and of those that are currently in contact with null reactions at τ+

but have strictly negative normal acceleration at τ+. 2

3.3. Divergence along straight paths of smooth dynamic solutions with perturbed initial condi-
tions

Having discussed the occurrence of dynamic solutions initiating at an equilibrium position
with a velocity or an acceleration discontinuity, we discuss now the existence of smooth dynamic
solutions (u(t), r(t)) starting from (perturbed) initial conditions arbitrarily close to the equilib-
rium state (u0, r0). For t in some right neighborhood of some instant τ ≥ 0 (t ∈ [τ, τ + ∆τ [),
we consider such perturbed dynamic solutions in the form

u(t) = u0 + α(t)V , r(t) = r0 + β(t)W , (64)

where

V ∈ Ku̇(u0, r0) , W ∈ Kṙ(u
0, r0,V ) , (65)

define constant directions in the sets of right admissible displacement and reaction increments ;
the function of time α is twice continuously differentiable, α and α̇ are non-negative and non-
decreasing in [τ, τ + ∆τ [ ; the function β is continuous, non-negative and non-decreasing in the
same interval ; the initial values α(τ) ≥ 0 and α̇(τ) ≥ 0 are arbitrarily small.

In these circumstances we have the results given next, where, for each (V ,v) ∈
Ku̇(u0, r0) × Ku̇(u0, r0), the notations (51) are still used and we further denote :

a(V ,v)
def
= KV .v , a∗(V ,v)

def
= KV .v −

∑

p∈Pc(u0)

µ[KV ]Np|vTp| . (66)

PROPOSITION 3.6. If

∃λ ≥ 0 and V ∈ Ku̇(u0, r0) , V 6= 0 , such that

(λ2M + K)V ∈ Kṙ(u
0, r0,V ) , (67)
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i.e., such that

λ2[m∗(V ,v) − m∗(V ,V )] + [a∗(V ,v) − a∗(V ,V )] ≥ 0 , ∀v ∈ Ku̇(u0, r0) , (68)

then there exists a dynamic solution of the form (64) in [τ, τ + ∆τ [ , with

W = (λ2M + K)V (69)

β(t) = α(t) =





α(τ) cosh [λ(t − τ)] +

[
α̇(τ)

λ

]
sinh [λ(t − τ)] , if λ > 0 ,

α(τ) + α̇(τ) (t − τ) , if λ = 0 ,
(70)

with ∆τ > 0 sufficiently small, for all arbitrary sufficiently small α(τ) ≥ 0, α̇(τ) ≥ 0. Hence, the
equilibrium state corresponding to u0 and r0 is dynamically unstable (a divergence instability).

PROOF. The equivalence between (67) and (68) results from the characterization (37) of the
set Kṙ(u

0, r0,V ). By direct substitution of (64) in (1) with α, β and W given by (70) and (69),
it follows that u and r satisfy the dynamic equations of motion. Satisfaction of the frictional
contact conditions follows by the same reasons pointed out in the proof of Lemma 2.8. The
smallness of α(τ) ≥ 0, α̇(τ) ≥ 0 and ∆τ > 0 is required to keep the solution pair (u(t), r(t)) for
t ∈ [τ, τ+∆τ [ within the admissible region of the displacement-reaction space that corresponds to
the decomposition of PC at the perturbed state (u(τ), r(τ)) = (u0, r0)+α(τ)(V , (λ2M +K)V ),
this region being the same as or neighbour to the one that corresponds to the decomposition of
PC at the unperturbed state (u0, r0). See the proof of Lemma 2.8 for the discussion of similar
restrictions. 2

PROPOSITION 3.7. A dynamic divergence instability due to perturbed dynamic solutions of the
form (64) occurs only if

∃V ∈ Ku̇(u0, r0) , V 6= 0 , such that

either : m∗(V ,V ) 6= 0 and m∗(V ,V ).a∗(V ,V ) ≤ 0 ; (71)

or : m∗(V ,V ) = a∗(V ,V ) = 0 . (72)

PROOF. Let u and r of the form (64) with non-negative α, α̈ and β, with V 6= 0 and W in
the sets (65) correspond to a dynamic divergence instability of the equilibrium state (u0, r0).
Substituting these functions in the dynamic equation (1) we get

[α̈(t)M + α(t)K]V = β(t)W . (73)

Using now the characterization (37) of β(t)W ∈ Kṙ(u
0, r0,V ) with v ∈ Ku̇(u0, r0) successively

equal to 0 and 2V , we get

α̈(t)m∗(V ,V ) + α(t)a∗(V ,V ) = 0 . (74)

The conditions (71), (72) are then necessary conditions for this differential equation to have non-
trivial monotonically increasing solutions α with arbitrarily small non-negative initial conditions.

2
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COROLLARY 3.8. If

m∗(v ,v) > 0 , ∀v ∈ Ku̇(u0, r0) ,v 6= 0 , (75)

then a dynamic divergence instability due to perturbed dynamic solutions of the form (64) :
(i) occurs only if

∃V ∈ Ku̇(u0, r0) ,V 6= 0 , such that a∗(V ,V ) ≤ 0 ; (76)

(ii) cannot occur if

a∗(v ,v) > 0 , ∀v ∈ Ku̇(u0, r0) , v 6= 0 . 2 (77)

PROPOSITION 3.9. The conditions (67) and (68) are necessary and sufficient for a dynamic
divergence instability due to perturbed dynamic solutions of the form (64).

PROOF. Only the necessity remains to be proved. Let V ∈ Ku̇(u0, r0), V 6= 0, such that
m∗(V ,V ) 6= 0 and m∗(V ,V ).a∗(V ,V ) ≤ 0 [cf. (71)]. Then the solution α(t) of (74) is
necessarily of the form (70) with

λ2 =




− a∗(V ,V )

m∗(V ,V )
, if m∗(V ,V ).a∗(V ,V ) < 0 ,

0 , if a∗(V ,V ) = 0 .

Hence (67) holds in both cases. If m∗(V ,V ) = a∗(V ,V ) = 0 [cf. (72)], then, doing the inner
product of (73) with V , we get

α̈(t)m(V ,V ) + α(t)a(V ,V ) = β(t)W .V , (78)

where m(V ,V ) > 0, a(V ,V ) ≥ 0 and, without loss of generality, β(t)W .V may be assumed
to satisfy either

(i) β(t)W .V = 0 , ∀t ∈ [τ, τ + ∆τ [ , or

(ii) β(t)W .V 6= 0 , ∀t ∈ [τ, τ + ∆τ [ .

In case (i), α(t) can be monotonically increasing function only if a(V ,V ) = 0, and then
KV = 0, α(t) is of the form (70) with λ = 0 and (67) holds with λ = 0. In case (ii), it
follows from (78) that β(t) is given by

β(t) =
α̈(t)m(V ,V ) + α(t)a(V ,V )

W .V
, with W .V > 0 ,

and then (73) becomes

α̈(t)

(
MV − m(V ,V )

W .V
W

)
+ α(t)

(
KV − a(V ,V )

W .V
W

)
= 0 .

It follows that either

MV − m(V ,V )

W .V
W = 0, and, consequently, KV − a(V ,V )

W .V
W = 0 ,

or
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MV − m(V ,V )

W .V
W 6= 0, and

α̈(t)

α(t)
is a non-negative constant independent of time.

In both cases (67) holds, which completes the proof. 2

In the following we wish to interpret the above necessary and sufficient conditions for divergence
dynamic instabilities in terms of the properties of some tangent or effective mass and stiffness
matrices.

For u ∈ Ku and r ∈ Kr(u) we denote by S∗ = S∗(u, r) the set of degrees of freedom that may
be (right) active in that state, i.e., those corresponding to Free velocity components [vi, i ∈ SF ],
to normal and tangential velocities of the contact candidate particles that are currently free
[vTp and vNp, p ∈ Pf (u)], to normal and tangential velocities of the contact candidate particles
that are currently in contact with zero reaction [vTp and vNp, p ∈ Pz(u, r)] and to tangential
(slip) velocity components of the contact candidate particles that are currently in contact with
a reaction on the friction cone [vTp, p ∈ Ps(u, r)]. Those (right) velocities must belong to the
set

K∗

u̇(u, r) = {v∗ ∈ IRN∗

: vNp ≤ 0 , for p ∈ Pz ;

vTpσ(rTp) ≤ 0 , for p ∈ Ps} ,
(79)

where N∗ = N∗(u, r) is the number of degrees of freedom in S∗ = S∗(u, r). We also define the
N∗ × N∗ matrices M∗ = M∗(u, r) and K∗ = K∗(u, r) with the structure

M∗ =




MF,F MF,f MF,z MF,sT

Mf,F Mf,f Mf,z Mf,sT

Mz,F Mz,f Mz,z Mz,sT

M∗

sT,F M∗

sT,f M∗

sT,z M∗

sT,sT




, K∗ =




KF,F KF,f KF,z KF,sT

Kf,F Kf,f Kf,z Kf,sT

Kz,F Kz,f Kz,z Kz,sT

K∗

sT,F K∗

sT,f K∗

sT,z K∗

sT,sT




(80)

i.e., for all j ∈ S∗ :

M∗

ij = Mij and K∗

ij = Kij , for all degrees of freedom i ∈ S∗

that are not tangential degrees of freedom of particles p ∈ Ps ; (81)

M∗

Tp,j = MTp,j + µσ(rTp)MNp,j and K∗

Tp,j = KTp,j + µσ(rTp)KNp,j ,

for all particles p ∈ Ps . (82)

With these definitions the functionals (51) and (66) evaluated at (v ,v) may be written :

m∗(v ,v) = M∗

Sv∗.v∗ −
∑

p∈Pz

µ[Mv ]Np|vTp| , (83)

a∗(v ,v) = K∗

Sv∗.v∗ −
∑

p∈Pz

µ[Kv ]Np|vTp| , (84)

where

v =





vD

vd

vsN

v∗





=





0

0

0

v∗





∈ Ku̇(u, r) , v∗ =





vF

vf

vz

vsT





∈ K∗

u̇(u, r) (85)
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and

K∗

S =
1

2
(K∗ + K∗T ) , M∗

S =
1

2
(M∗ + M∗T ) . (86)

We may easily establish the following results.

PROPOSITION 3.10. If

∃λ ≥ 0 and V ∗ ∈ K∗

u̇(u0, r0) , V ∗ 6= 0 , such that

(λ2M∗ + K∗)V ∗ = 0 , (87)

then (67) holds with the same value of λ and

V =





VD

Vd

VsN

V ∗





=





0

0

0

V ∗





. 2 (88)

PROPOSITION 3.11. If

M∗

S(u0, r0) is positive semi-definite, and (89)

K∗

S(u0, r0) is positive definite, (90)

then a divergence instability due to perturbed dynamic solutions of the form (64) cannot occur.

PROOF. It suffices to observe that, if λ ≥ 0 and V ∈ Ku̇(u0, r0), V 6= 0, are such that (68)
holds, then

0 = λ2m∗(V ,V ) + a∗(V ,V )=λ2M∗

SV ∗.V ∗ + K∗

SV ∗.V ∗

−
∑

p∈Pz

µ[λ2MV + KV ]Np|VTp|

≥λ2M∗

SV ∗.V ∗ + K∗

SV ∗.V ∗ ,

(91)

because [λ2MV + KV ]Np = WNp ≤ 0, for all p ∈ Pz. 2

A stability criterion was derived earlier by Chateau and Nguyen [4] which coincides with the
single condition (77) in the present finite dimensional context when the assumption (75) is
made. It can be seen (cf. [4, 24, 2]) that a∗(v ,v) represents the initial power rate of some
external perturbation forces which are added to the given system so as to keep its equilibrium
along an evolution initiated at an equilibrium configuration in the direction of an admissible
velocity v , while the given applied forces f are kept constant. Power rate statements of the type
(77) are sometimes taken as definitions of stability [24, 2] and their failure for some admissible
velocity direction V [cf. (76)] is then interpreted as an instability of that equilibrium state.
It is important to observe that the scalar (power rate) conditions (71), (72) are only necessary
conditions for divergence instabilities of the type (64). The (necessary and) sufficient conditions
for such instabilities are the conditions (67), (68) that require the resolution of the inclusion
eigenproblem (67) or, equivalently, the variational inequality eigenproblem (68). The reason
for the distinction between (68) and (71), (72) is related with the non-symmetry of m∗(., .) and
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a∗(., .) with respect to the first and second variables. The full consequences of that non-symmetry
cannot be perceived with scalar conditions involving only m∗(V ,V ) and a∗(V ,V ).

The above considerations have consequences on the distinction between the onset of (87) and
the failure of (89), (90). However, for these matrix conditions, there exist additional reasons
that make them distinct. We present and discuss all those reasons in the following.

(i) The construction of the specific matrices M∗ and K∗ is done by tacitely assuming that
all the candidate particles that are currently in contact with zero reaction [p ∈ Pz(u

0, r0)] will
have a null reaction rate for the tested admissible velocity direction V , and all the contact
candidate particles that are currently in contact with a non-vanishing reaction on the friction
cone [p ∈ Ps(u

0, r0)] will remain so for the tested admissible velocity direction V ; this is done
because it eliminates any possible positive (stabilizing) contributions of the particles in Pz(u

0, r0)
to λ2m∗(V ,V ) + a∗(V ,V ), and because instabilizing effects may come only from the particles
in Ps(u

0, r0) that, for the considered direction V , do slide and do remain in Ps(u
0, r0) ; this has

also the advantage that the reaction rate obtained by computing W = (λ2M + K)V , with V

given by (88), does belong to the set Kṙ(u
0, r0,V ), no additional checks on this being needed;

of course, only the resolution of the full non-linear eigenproblem (67) (i.e., the consideration
of all admissible velocities and their associated effective mass and stiffness matrices) leads to a
fully satisfactory sufficient (and necessary) condition.

(ii) Assuming (for simplicity of the discussion) that M is diagonal (hence M∗

S = M∗ is diago-
nal and positive definite and the analysis of the conditions in Propositions 3.10 and 3.11 reduces
to the analysis of the eigenvalues of K∗ and K∗

S), the distinction between the failure of (90) and
the onset of (87) results also from the inequality [2]

minimum eigenvalue of K∗

S ≤ minimum real part of any eigenvalue of K∗.

(iii) The vectors V ∗ considered in (87) are real eigenvectors which in addition must belong to
the set K∗

u̇(u0, r0) ; consequently,

minimum real part of any eigenvalue of K∗

≤ any real eigenvalue of K∗ corresponding to
a real eigenvector V ∗ ∈ K∗

u̇(u0, r0) .

As a result of (i), (ii) and (iii) above, failure of (90) cannot occur later (and frequently oc-
curs much earlier) than the onset of (87). This will be illustrated in the numerical examples
given later. In those examples, the main reason for the above distinction results from (ii) be-
cause, in typical situations, the peculiar set Pz(u

0, r0) is empty, because in those examples the
instabilizing effects of the initiation of sliding are clear for the particles in Ps(u

0, r0), and be-
cause the orientation of the vectors V ∗ obtained from the resolution of the linear eigenproblem
(87) can be chosen such that the restrictions in (79) can be satisfied.

3.4. Divergence instabilities, initial acceleration and reaction discontinuities and their smooth
continuation.

It is important to observe the following.

REMARK 3.12. The sufficient condition (63) for the absence of reaction and acceleration dis-
continuities also implies the condition (75) that reduces the necessary condition for divergence
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instability to (76). 2

In addition, it is possible to establish a result that combines possible reaction and acceleration
discontinuities with their smooth continuation by trajectories that diverge from the equilibrium
state.

PROPOSITION 3.13. If

∃V ∈ Ku̇(u0, r0) , V 6= 0 , such that

MV ∈ Kṙ(u
0, r0,V ) and KV = γMV , for some γ ≥ 0 , (92)

then there exists an infinite number of solutions of the form (64), with an initial acceleration
and reaction discontinuity, followed by a smooth trajectory that diverges from the equilibrium
state. For t ∈ [τ, τ + ∆τ [, with ∆τ > 0 sufficiently small, these solutions are characterized by

α(t) = (1/2)(t − τ)2α̈+(τ) + ϕ(t) , (93)

β(t) = [α̈+(τ) + ϕ̈(t)] + γα(t) , (94)

W = MV , (95)

where α̈+(τ) > 0 is sufficiently small but arbitrary, and ϕ may be any twice continuously differen-
tiable function satisfying ϕ(τ) = ϕ̇(τ) = ϕ̈(τ) = 0, and ϕ(t) ≥ 0, ϕ̈(t) ≥ 0, for all t ∈ [τ, τ +∆τ [.

PROOF. The right acceleration at t = τ is ü+(τ) = α̈+(τ)V and the corresponding initial
reaction discontinuity is r+(τ) − r0 = α̈+(τ)MV . The smallness of α̈+(τ) > 0 is required to
guarantee a small reaction jump, as discussed in Remark 3.4(i). It is easy to check that the
smooth continuation given by (64) and (93)-(95) does indeed satisfy the governing equations
and inequalities (1)-(5) in [τ, τ + ∆τ [ with ∆τ > 0 sufficiently small. 2

3.5. Illustrative examples of small dimension.

EXAMPLE 3.14. Initial acceleration and reaction discontinuities. The two d.o.f. system of
Fig. 3 is a modified version of the well known example presented by Klarbring [17]. It consists of
a particle of mass m restrained by vertical and inclined springs with stiffness constants KV and
KI , respectively. The main modification to the system discussed in [17] is that an additional
mass M is connected to the previous one by a massless and inextensible string, which (see below)
yields a non-diagonal mass matrix. The reference configuration of the system is its equilibrium
configuration under gravity action alone, and the particle displacements u are measured from
that reference state. The mass and stiffness matrices of the system are then

M =


 m + M sin2 θM −M sin θM cos θM

−M sin θM cos θM m + M cos2 θM


 , K =


 KI sin2 θK −KI sin θK cos θK

−KI sin θK cos θK KV + KI cos2 θK


 .

A frictional flat obstacle is considered such that the kinematically admissible half-plane is defined
by uN ≤ 0. The equilibrium state studied hereafter results from the application of additional
constant forces f 0 to the particle m. We consider equilibrium states such that

u0
T = u0

N = 0 and r0 = (α,−1) with 0 ≤ α ≤ µ,
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Fig. 3: Modified form of Klarbring’s example [15] leading to a non-diagonal mass matrix.

i.e. with reactions in the interior of the friction cone (Case 1, 0 ≤ α < µ) or with non-vanishing
reaction on the friction cone (Case 2, α = µ). Note that the analysis for −µ ≤ α ≤ 0 would be
similar, and that no initial acceleration and reaction discontinuities are possible when r0 = 0

and u0
N ≤ 0.

CASE 1 [static reaction in the interior of the friction cone, 0 ≤ α < µ]. First we ob-
serve that it is possible to show that no reaction jump is possible towards a contact state with
non-vanishing reaction and possible slip to the right (r+

N < 0 and r+
T = µr+

N ). The possible cases
of initial acceleration and reaction discontinuities are discussed next (see Fig. 4).

M < 0
NTTT

α
jump if

M

r

+ > 0µ+

0

N

0 <

NT

α
< 0

rN

< α

0

µ

0
T
0r

TTK

++M

r

growth  if
exponential

< 0Mα
jump if

K

NTTT

Tr
N

=-

Fig. 4: Possible initial reaction jumps followed by smooth near future evolutions in Case 1 [static
reaction in the interior of the friction cone].

CASE 1A [jump towards a contact state with non-vanishing reaction and possible slip to
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the left : ü+
T < 0 , ü+

N = 0 , r+
N < 0 , r+

T = −µr+
N ]. From the jump equations


 MTT MTN

MNT MNN




 ü+

T

ü+
N


 =


 r+

T − r0
T

r+
N − r0

N




we get

ü+
T =

µ − α

MTT + µMNT

and r+
N = −MTT + αMNT

MTT + µMNT

,

so that a necessary condition for such a jump is that MTT + αMNT < 0. Notice that this
implies that α > 0. Notice also that the jump occurs with a reduction of the absolute values of
both the tangential and the normal reaction. For the example we are dealing with, condition
MTT + αMNT < 0 gives

m

M
+ sin θM (sin θM − α cos θM ) < 0 ,

which is satisfied for angles θM in an interval strictly contained in ]0, tan−1 µ[. The size of this
interval increases as m/M decreases. Considering the equations of motion for a smooth near
future dynamic evolution of the system we get, after eliminating the normal degree of freedom,

(MTT + µMNT )üT (t) + (KTT + µKNT )uT (t) = µ − α .

Since MTT + µMNT < 0, the particle m begins to slide towards the left with a sinusoidal, an
exponential, or a quadratic evolution in time, when KTT +µKNT < 0, > 0, or = 0, respectively.
Note that for the system of Fig. 3, KTT + µKNT = KI sin θK(sin θK − µ cos θK) is negative for
θK ∈]0, tan−1 µ[.

CASE 1B [jump towards a contact state with no reaction : ü+
N ≤ 0 , r+ = (0, 0)]. The

acceleration discontinuity is characterized by

ü+
T = −MTN + αMNN

detM
and ü+

N =
MTT + αMNT

detM
,

with, necessarily, MTT + αMNT ≤ 0 (detM > 0). From the equations of motion for a smooth
evolution in the near future we conclude that : (1) if MTT +αMNT < 0 the normal acceleration
is strictly negative (ü+

N < 0) and the particle m looses contact (Proposition 3.5 could be applied
to this case); (2) if MTT + αMNT = 0 the particle m cannot begin to slide towards the right
but it can loose contact or begin sliding towards the left with a sinusoidal evolution in time if
KTT + αKNT < 0.

CASE 2 [non-vanishing reaction on the friction cone, α = µ]. Similarly to Case 1, it
can be shown that no jump is possible towards a contact state with non-vanishing reaction and
possible slip to the right (r+

N < 0 and r+
T = µr+

N ). The possible cases of initial acceleration and
reaction discontinuities are the following (see Fig. 5).

CASE 2A [jump towards a contact state with non-vanishing reaction and possible slip
towards the left : ü+

T < 0 , ü+
N = 0 , r+

N < 0 , r+
T = −µr+

N ]. The jump equations above yield

(MTT + µMNT )ü+
T = 0 and r+

N = MNT ü+
T − 1 ,

so that a necessary condition for the occurrence of an acceleration discontinuity is that MTT +
µMNT = 0. Notice that condition ü+

T < 0 excludes the possibility of jumps towards contact
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Fig. 5: Possible initial reaction jumps followed by smooth near future evolutions in Case 2
[non-vanishing static reaction on the friction cone].

states having reactions with absolute values larger than the equilibrium values. Moreover,
ü+

T < 0 is arbitrary but sufficiently small that the normal reaction r+
N remains negative. After

elimination of the normal degree of freedom, the equations of motion for a smooth near future
evolution yield

(KTT + µKNT )uT (t) = 0 .

If KTT +µKNT 6= 0, no such smooth near future evolution is possible, while if KTT +µKNT = 0,
there are infinitely many dynamic evolutions along which the system may leave its equilibrium
state (Proposition 3.13 could be applied to this case).

CASE 2B [jumps towards a no reaction contact state : ü+
N ≤ 0 , r+ = (0, 0)]. The

acceleration discontinuity is

ü+
T = −MTN + µMNN

detM
and ü+

N =
MTT + µMNT

detM
,

with, necessarily, MTT + µMNT ≤ 0. From this and the equations of motion for a near future
smooth evolution we conclude that : (1) if MTT + µMNT < 0 the particle m looses contact
(Proposition 3.5 could be applied to this case); (2) if MTT + µMNT = 0 the particle m cannot
begin sliding towards the right, but it can loose contact if KTT + µKNT < 0, or it can begin
sliding towards the left in an arbitrary way if KTT +µKNT = 0. For the structure in Fig. 3 and
for fixed m/M and µ a possible configuration that fulfills the latter conditions is qualitatively
represented in Fig. 6.

Finally we observe that the equilibrium state of the system of Fig. 3 may also be unstable by
divergence due to smooth dynamic solutions of the form (64) with perturbed initial conditions
(see Proposition 3.6). This can happen only when the system is in a state of impending slip
with non-vanishing normal reaction (r0

N < 0 and |r0
T | = −µr0

N ). In these circumstances, this
kind of instability occurs in the above case 2 (α = µ) if and only if the system parameters satisfy

either : MTT + µMNT 6= 0 and (KTT + µKNT ).(MTT + µMNT ) ≤ 0 ,

or : MTT + µMNT = KTT + µKNT = 0 .
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Fig. 6: A possible configuration for the system of Fig. 3 to have an infinite number of smooth
evolutions after an initial reaction and acceleration jump. The value θM corresponding to
MTT +µMNT = 0 is a solution (if it exists) to the equation m/M+sin θM (sin θM−µ cos θM ) = 0 ;
depending on m/M and µ, this equation may have at most two solutions in the interval [0, π/2].

2

EXAMPLE 3.15. Necessary and sufficient conditions for (smooth) divergence instability. We
consider the plane system represented in Fig. 7, where each of the three particles has mass M
and each of the three linear springs has stiffness K. The displacement uD has the constant
prescribed value 2P/K and the constant force ΦT = µP is applied on the direction of uT . The

M

 u

TΦ

D u

F u

T uK

M

K

K

M

N

Fig. 7: A simple system for which the power rate necessary condition of divergence instability
(76) is not sufficient for instability.

two vertical springs remain orthogonal to the fixed contact surface when the system deforms,
and gravity acceleration is not considered. The generalized displacements are, by this order,
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uD, uF , uT and uN . Following the notation of Section 2.1 :

Ψ =





2P/K

0

0

0





, Φ =





0

0

µP

0





,

the stiffness and mass matrices, and the vector of applied forces (after homogeneization of the
displacement uD) are, respectively,

K = K




1 −1 0 0

−1 2 0 −1

0 0 1 0

0 −1 0 1




, M = M




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




, f = Φ − KΨ =





−2P

+2P

µP

0





.

We study the stability of the equilibrium state

u0 =





0

P/K

0

0





, r0 =





P

0

−µP

−P





.

The corresponding sets of admissible right velocities and right reaction rates are here :

Ku̇(u0, r0) = {(vD, vF , vT , vN ) : vD = 0, vN = 0, vT ≥ 0} ,

Kṙ(u
0, r0,V ) = {(wD, wF , wT , wN ) : wF = 0, −wT + µwN ≤ 0, (−wT + µwN )|VT | = 0} .

Application of Propositions 3.6 and 3.9 leads here to the following system of equations and
conditions on the unknowns λ, VF , VT , WD, WT and WN (note that VD = VN = WF = 0)

−KVF = WD ,

(λ2M + 2K)VF = 0 ,

(λ2M + K)VT = WT ,

−KVF = WN ,

λ ≥ 0 ,

VF 6= 0 or VT 6= 0 ,

VT ≥ 0 ,

−WT + µWN ≤ 0 ,

(−WT + µWN )|VT | = 0 .

It can be easily checked that no solution to this system of equations and conditions exists, so
that divergence instability due to perturbed solutions of the form (64) is excluded.

In this simple example we illustrate the distinction between the sufficient (and necessary)
condition (67) for divergence instability and the (necessary) power rate condition (76) [note
that, since M is diagonal, condition (75) necessarily holds]. In this example, the comparison

31



between those conditions reduces to the analysis of the smallest real eigenvalue of K∗ and K∗

S ,
which are here [recall (81)-(82) and (86)]

K∗ = K


 2 0

µ 1


 , K∗

S = K


 2 µ/2

µ/2 1


 .

Note that in this example no a priori assumption is involved in letting VT 6= 0 in the con-
struction of K∗ [recall observation (i) in Section 3.3], because the stiffnes matrix K is positive
definite in Ku̇(u0, r0) and because there is only one particle in contact, so that the only way
divergence instability might occur would be with VT 6= 0. Note also that, again because there
is only one particle in contact, the only sign restriction on the admissible eigenvectors of K∗

and K∗

S (VT ≥ 0) can be immediately satisfied [recall observation (iii) in Section 3.3]. The
minimum eigenvalue of K∗ is 1, independently of µ, and the minimum eigenvalue of K∗

S is

(3−
√

1 + µ2)K/2 which becomes non-positive for µ ≥ 2
√

2. The corresponding eigenvector V ∗

S

is

V ∗

S =




−β

1



 , β =

µ

1 +
√

1 + µ2
.

We stress the fact that the direction

VS =





0

−β

1

0





,

for which the necessary condition (76) is satisfied is not a direction along which a divergence
instability might initiate for µ ≥ 2

√
2 : the eigenvalues of K∗ are always positive and, as seen

above, the sufficient condition (67) is never satisfied.
2

4. Growth of perturbed dynamic solutions in the neighborhood of quasistatic

straight paths

We consider now the quasistatic straight portions of quasistatic evolutions considered in Sec-
tion 2.3. Throughout this section we assume thus the linear variation (39) of the applied forces
and that the quasistatic evolution (u0(t), r0(t)) has the linear variation given by (41) in some
interval [τ, τ + ∆0τ [.

In some right neighborhood [τ, τ + ∆τ [ of τ , with 0 < ∆τ ≤ ∆0τ , we seek perturbed dynamic
solutions in the form

u(t) = u0(t) + α(t)A , r(t) = r0(t) + β(t)B , (96)

where

A ∈ Kü(u0(τ), r0(τ), u̇0+(τ), ṙ0+(τ)) , B ∈ Kr̈(u
0(τ), r0(τ), u̇0+(τ), ṙ0+(τ),A) , (97)

α is a twice continuously differentiable function such that α and α̇ are non-negative and non-
decreasing in that interval, and the function β is continuous, non-negative and non-decreasing
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in the same interval ; the initial values α(τ) ≥ 0, α̇(τ) ≥ 0 are arbitrarily small. For simplicity
of notation, we shall denote hereafter the first set in (97) by Kü(· · ·) and the second one by
Kr̈(· · · ,A).

In these circumstances we have the results given next, where, for each (A,a) ∈ Kü(· · ·) ×
Kü(· · ·), we use the notations [recall (51), (66) and (44)]

m∗∗(A,a)
def
= MA.a −

∑

p∈Pv

µσ(u̇0+
Tp(τ))[MA]NpaTp −

∑

p∈P0

µ[MA]Np|aTp| (98)

a∗∗(A,a)
def
= KA.a −

∑

p∈Pv

µσ(u̇0+
Tp(τ))[KA]NpaTp −

∑

p∈P0

µ[KA]Np|aTp| . (99)

PROPOSITION 4.1. If

∃λ ≥ 0 and A ∈ Kü(· · ·) , A 6= 0 , such that

(λ2M + K)A ∈ Kr̈(· · · ,A) , (100)

i.e., such that

λ2[m∗∗(A,a) − m∗∗(A,A)] + [a∗∗(A,a) − a∗∗(A,A)] ≥ 0 ,

∀a ∈ Kü(· · ·) ,
(101)

then there exists a dynamic solution of the form (96) in [τ, τ + ∆τ [ , with

B = (λ2M + K)A , (102)

β(t) = α(t) =





α(τ) cosh [λ(t − τ)] +

[
α̇(τ)

λ

]
sinh [λ(t − τ)] , if λ > 0 ,

α(τ) + α̇(τ) (t − τ) , if λ = 0 ,
(103)

with ∆τ ≤ ∆0τ , positive and sufficiently small, for all arbitrary, sufficiently small α(τ) ≥ 0,
α̇(τ) ≥ 0.

PROOF. The proof follows the same lines of Proposition 3.6 and is omitted. 2

REMARK 4.2. Similarly to what was done in Section 3.3 (Propositions 3.10 and 3.11), it is
also possible to establish necessary and sufficient conditions for the existence of these growing
solutions in the neighborhood of the quasistatic path, in terms of the properties of some matrices
M∗∗ and K∗∗. These are here N∗∗ ×N∗∗ matrices, where N∗∗ is the total number of degrees of
freedom that may be active in the interval [τ, τ +∆0τ [, i.e., those corresponding to free degrees of
freedom (i ∈ SF ), normal and tangential degrees of freedom of the particles p ∈ Pf ∪ Pzf ∪ Pzz,
tangential degrees of freedom of the particles p ∈ Pzs ∪ Pss. 2

We assume now that Pzz ∪ [(Pzs ∪ Pss) ∩ P0] = ∅ [recall (46) and the related definitions (48),
(49) of the subspaces of admissible complex second order displacement and reaction rates].

In this situation we seek growing dynamic solutions in the neighborhood of the quasistatic
path (u0(t), r0(t)) (41) in the form

u(t) = u0(t) + Re[α(t)A] , r(t) = r0(t) + Re[β(t)B] , (104)

with

A ∈ V lC
ü , B ∈ V lC

r̈ . (105)
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In the first of these subspaces of lCN we define the sesquilinear forms given by

m̃(A,a)
def
=MA.a −

∑

p∈Pzs∪Pss

µσ(u̇0+
Tp(τ))[MA]NpāTp

= MA.a +
∑

p∈Pzs

µσ(ṙ0+
Tp(τ))[MA]NpāTp +

∑

p∈Pss

µσ(r0
Tp(τ))[MA]NpāTp

ã(A,a)
def
=KA.a −

∑

p∈Pzs∪Pss

µσ(u̇0+
Tp(τ))[KA]NpāTp

= KA.a +
∑

p∈Pzs

µσ(ṙ0+
Tp(τ))[KA]NpāTp +

∑

p∈Pss

µσ(r0
Tp(τ))[KA]NpāTp

for each pair (A,a) ∈ V lC
ü × V lC

ü .
In the above expressions, the inner product in the first term of the right hand side is the
inner product of complex vectors [x.y =

∑N
i=1 xiȳi, for each (x,y) ∈ lCN × lCN ] and, for

each y ∈ lC, ȳ denotes the complex conjugate of y. In the same circumstances we denote by
S̃ = S̃(u0(τ), r0(τ), u̇0+(τ), ṙ0+(τ)) the set of the active degrees of freedom along the time in-
terval [τ, τ + ∆0τ [, i.e., those corresponding to :
• free degrees of freedom [i ∈ SF ] ;
• normal and tangential degrees of freedom of the contact candidate particles that are free at
time τ , or that are in contact with zero reaction at time τ but have a negative normal velocity
[p ∈ Pf ∪ Pzf ] ;
• tangential degrees of freedom of the contact candidate particles that, at time τ , are in contact
with a non-vanishing tangential velocity and have either a non-vanishing reaction on the friction
cone, or a vanishing reaction and a non-vanishing reaction rate on the friction cone [p ∈ Pzs∪Pss].

Following a procedure similar to the one used in Section 3.3, we consider the Ñ × Ñ matrices
constructed in the following manner (Ñ denotes the number of active degrees of freedom in S̃).

For all j ∈ S̃ :

M̃i,j = Mi,j and K̃i,j = Ki,j , for all degrees of freedom i ∈ S̃ that are not tangential

degrees of freedom of particles p in Pzs ∪ Pss ;

M̃Tp,j = MTp,j − µσ(u̇0+
Tp(τ))MNp,j , and K̃Tp,j = KTp,j − µσ(u̇0+

Tp(τ))KNp,j , for all

particles p in Pzs ∪ Pss.

In these circumstances we have the result.

PROPOSITION 4.3. If (46) holds and if ∃λ ∈ lC with Re(λ) > 0 such that one of the following
equivalent conditions holds :

(i) ∃A ∈ V lC
ü , A 6= 0 , such that (λ2M + K)A ∈ V lC

r̈ ; (106)

(ii) ∃A ∈ V lC
ü , A 6= 0 , such that λ2m̃(A,a) + ã(A,a) = 0 , ∀a ∈ V lC

ü ; (107)

(iii) ∃Ã ∈ lCÑ , Ã 6= 0 , such that [λ2M̃ + K̃]Ã = 0 ; (108)
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then there exists a dynamic solution of the form (104) in [τ, τ + ∆τ [, with

B = (λ2M + K)A (109)

β(t) = α(t) = α(τ) cosh [λ(t − τ)] +

[
α̇(τ)

λ

]
sinh [λ(t − τ)] , (110)

with ∆τ ≤ ∆0τ , positive and sufficiently small, for all arbitrary, sufficiently small |α(τ)| > 0
and |α̇(τ)| > 0. 2

We observe that the above statement is not interpreted as an instability result because it refers
only to a portion of a quasistatic evolution that is also a dynamic solution in some possibly finite
time interval [τ, τ + ∆0τ [. The above statement does correspond to an instability if

(u0(t), r0(t)) given by (41) solves the quasistatic problem (32), (2)-(6)1,

and consequently the dynamic problem (1)-(6), for all t ∈ [τ, +∞[ .



 (111)

PROPOSITION 4.4. If (111) holds and the assumptions of Proposition 4.1 or 4.3 hold, then
the solution (u0(t), r0(t)), t ≥ τ , is dynamically unstable. If Im(λ)=0, we have a divergence
instability and if Im(λ) 6= 0 we have a flutter instability. 2

REMARK 4.5. Typical situations in which (111) and (46) hold are those corresponding to steady
sliding solutions (u0(t), r0(t)) for t ≥ τ , with non-vanishing reaction forces and non-vanishing
sliding speeds at the particles actually in contact. In such situations, the applied forces Φ(t)

(recall Section 2.1) are constant, the prescribed displacement rates Ψ̇(t) are also constant, r0(t)
is a constant vector such that Pz(u

0(t), r0(t)) = Pd(u
0(t), r0(t)) = ∅, and, for all t ≥ τ , u̇uu

0(t) =

Ψ̇(t) + u̇0(t) is a constant vector that belongs to the kernel of the stiffness matrix K : the
quasistatic rate balance equations (40) (recall also Section 2.1)

Ku̇0 = ḟ + ṙ0 = −KΨ̇

reduce to

Ku̇uu
0 = 0 . 2

EXAMPLE 4.6. Divergence and flutter instabilities of a steady-sliding solution.
The model represented in Fig. 8 consists of a flexible and axially deformable horizontal beam
of length L with negligible mass. The radius of gyration of its cross section is RB and its
axial stiffness is EA. One of the beam extremities is built in a block of mass MD which
translates horizontally, and the opposite extremity of the beam is connected to a rigid pin that
is vertical in the undeformed configuration of the system. The distance of this connection to
the frictional contact is HB. A body of mass M and radius of gyration RM is attached to the
pin at a distance HM to the obstacle. The generalized displacements are, by this order, the
horizontal displacement uD of mass MD, the angle uθ between the vertical and the rigid pin,
and the horizontal and vertical displacement components (uT and uN ) of the contact point. The
generalized displacements with dimension of length, the reaction forces and the time are non-

dimensionalized by multiplying them by the factors 1/L, 1/EA and
√

EA/LM , respectively.

Geometrical linearity is assumed throughout the analysis which means that possible instabilizing
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Fig. 8: A pin-on-flat system subjected to gravity forces, prescribed displacements (uD) and
frictional contact reactions on the boundary of the kinematically admissible half-plane uN ≤ 0.

effects due to the axial force on the beam and due to gravity action on the mass M are neglected
a priori. The mass and stiffness matrices are :

M =




MD

M
0 0 0

0
H2

M + R2
M

L2
−HM

L
0

0 −HM

L
1 0

0 0 0 1




, K =




1
HB

L
−1 0

HB

L

4R2
B + H2

B

L2
−HB

L
6

(
RB

L

)2

−1 −HB

L
1 0

0 6

(
RB

L

)2

0 12

(
RB

L

)2




.

We consider now the dynamic stability of the steady sliding solution

uuu
0(t) =




u
0
D(τ) + u̇

0
D.(t − τ)

u
0
θ(τ)

u
0
T (τ) + u̇

0
D.(t − τ)

0




, r0(t) =




µr0
N (τ)

0

−µr0
N (τ)

r0
N (τ)




,

where

u
0
θ(τ) =

µM g HB

4EAL

(
1 +

3

2
µ

HB

L

)(
RB

L

)2 , r0
N (τ) = − M g

EA

(
1 +

3

2
µ

HB

L

) ,

u
0
D(τ) − u

0
T (τ) = −

µM g

(
1 +

1

4

(
HB

RB

)2
)

EA

(
1 +

3

2
µ

HB

L

) .

Note that the prescribed displacement uD(t) has not been homogeneized in the expressions
above. One of the initial displacements u

0
D(τ) or u

0
T (τ) is arbitrary. After elimination of the D
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and N degrees of freedom, we get the eigenproblem of Eq. (108) in Proposition 4.3, where the

2x2 matrices M̃ and K̃ are here

M̃ =




1 −HM

L

−HM

L

H2
M + R2

M

L2


 , K̃ =




1 −HB

L
− 6µ

(
RB

L

)2

σ(u̇0
D)

−HB

L

4R2
B + H2

B

L2


 .

The characteristic equation for this system is a bi-quadratic equation in λ. For instance, in
the specific simpler case of HM = 0, the sufficient conditions for the occurrence of dynamic
instabilities are :

- Flutter :

[
1 + 4

(
RB

RM

)2

+

(
HB

RM

)2
]2

− 8

(
RB

RM

)2

.

(
2 − 3µ

HB

L
σ(u̇0

D)

)
< 0, and

- Divergence : 2 − 3µ
HB

L
σ(u̇0

D) ≤ 0.

From these inequalities we conclude that flutter occurs only when σ(u̇0
D) = −1, i.e. only when the

beam is pulled towards the left, and that divergence occurs only when
σ(u̇0

D) = +1, i.e. only when the beam is pushed towards the right. Note however that in
the latter case, it is possible to show that when the condition for divergence is satisfied, a steady
sliding solution with (downward) gravity loading and prescribed displacement uD does not ex-
ist : the situation is similar to the one reported by Nguyen [34] for Klarbring’s example with
prescribed displacement.

Fig. 9: Phase plane plot of the evolution of the tangential displacement and velocity of the

contact point of the pin for u̇
0
D=-0.015, µ=2.2,

M g

EA
=0.01,

RB

L
=0.07,

HB

L
=0.1,

RM

L
=0.15 and

HM

L
=0.05.

Fig. 10: Phase plane plot of the evolution of the normal displacement and velocity of the pin.

Just for illustration purposes we present in Fig. 9 a phase plane plot of the evolution of the
tangential displacement and velocity of the contact point of the pin as a result of the flutter
instability of the steady sliding solution ; note that the variables plotted are not (uT (t), u̇T (t))
but the translated variables, (uT (t)−u̇

0
D.(t−τ), u̇T (t)−u̇

0
D), i.e., the displacements and velocities

relative to an observer that follows the motion of the block of mass MD. In Fig. 10 the phase
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plane plot of the variables (uN (t), u̇N (t)) is shown. The development of the flutter instability
and the convergence of the solution to a limit cycle is clear in both of those plots. The impacts
are assumed to be perfectly plastic : the dissipation index δ [recall (20), (21)] is taken to be 1.
The other data used is listed in the caption of Fig. 9.

2

5. Application to the analysis of the quasistatic tangential loading of a block of

polyurethane

5.1. Experimental results of Villechaise and Zeghloul

Polyurethane

Prescribed displacement

Prescribed displacement and
tangential force measurement

and normal force measurement

Air Pad

L = 80 mm

Araldite

H = 40 mm

Fig. 11: Experimental assembly scheme

In the experiments carried out by B. Villechaise and T. Zeghloul ([50]-[52]) (and previously with
R. Progri and M. Mouwakeh [41, 32]) a deformable block of polyurethane is first pressed against
a rigid plane Araldite surface (see Fig. 11) with a prescribed displacement (U0

N ) which insures
the initial resultant normal force F 0

N to be -55N. The block is then loaded in the tangential
direction by prescribing a slow tangential motion to the right (≃ 0.05 mm/s) to the Araldite
base plate. The normal resultant will change during the tangential motion while the normal
prescribed displacement U0

N is kept constant.
In the course of this tangential loading process, fast isolated stress waves can be observed in

the block by photoelasticity. These waves move from right to left at a speed that is nearly a
thousand times faster than the prescribed speed of the Araldite base plate. The fast propagation
of these waves induces jumps in the measured tangential displacements on the left and right ends
of the block and in the total tangential and normal forces as given on Fig. 12 (see Zeghloul [51]
and Zeghloul-Villechaise [52]).
Waves of two kinds may occur :

– partial waves which do not reach the left end of the block and correspond to a partial
release of the stresses : this effect is emphasized either with other dimensions of the
block (H/L=0.7 for example) or with other velocities of the plate (v=4.1 10−2 mm/s for
example),

– total waves that are characterized by a jump of the tangential displacement of the left end
of the block, and which lead to a larger release of global tangential forces (see Fig. 12) and
of global stresses and displacements.
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Fig. 12: Experimental measurement of the total tangential force (from Zeghloul [41]).

A response involving jumps is thus obtained for a quasistatic loading.
The possible correlation between these experimental observations and friction-induced insta-

bility phenomena is discussed next, using the finite element method.

5.2. Finite element model

The block is assumed to be in a plane stress state and to have linear elastic behaviour. In all
the meshes, linear P1 finite elements are used because in this case the convex set Ku provides an
internal approximation for the corresponding set of admissible displacements of the continuum
body, but higher order elements could also be used. Various meshes are constructed in the same
manner so that the symmetry in all directions is preserved. The number of contact nodes varies
from 11 to 81. A 21 contact node mesh is shown in Fig. 13.

A B

Fig. 13: Mesh with 21 contact nodes.

5.3. Quasistatic solution

To simplify the following formulae, the quasistatic solution, previously denoted by u0(t) at
time t, is now denoted by uk at the discrete time instants tk.

Recalling that Vu = {u ∈ IRN : ui = 0 , for i ∈ SD}, the discretized quasistatic problem
(2)-(5) (31)-(33) is equivalent to the discrete incremental variational formulation presented by
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Cocu et al ([6, 7]) :

uk+1 ∈ Ku, a

(
uk+1,v − uk+1 − uk

∆t

)
+ j(uk+1,v) − j

(
uk+1,

uk+1 − uk

∆t

)

≥ f k+1.

(
v − uk+1 − uk

∆t

)
+

〈
rN (uk+1),vN − uk+1

N − uk
N

∆t

〉
, ∀v ∈ Vu , (112)

〈rN (uk+1), zN − uk+1
N 〉 ≥ 0,∀z ∈ Ku , (113)

where the bilinear form a(., .) was already defined by (66), j(u,v) = −
∑

p∈PC

µrNp(u)|vTp|,

〈rN ,vN 〉 =
∑

p∈PC

rNpvNp, and the following backward difference approximation is used for the

velocity at time tk+1 :

u̇k+1 ≃ uk+1 − uk

∆t
. (114)

Another equivalent incremental formulation is (see [6]) :

Find uk+1 ∈ Ku such that ∀v ∈ Ku

a(uk+1,v − uk+1) + j(uk+1,v − uk) − j(uk+1,uk+1 − uk) ≥ f k+1.(v − uk+1) .
(115)

As shown in [6], two algorithms can be deduced : one is set on displacement variables and
the other on displacement increments. The first algorithm is used here. At each step tk, the
problem to be solved has the same form as a static frictional contact problem with an extra term
which corresponds to the tangential contact displacement uk

T at the previous step. It therefore
characterizes the loading history. This is natural because we have a path dependent solution.

Various methods have been implemented for solving problem (115). Three of them are based
on projection techniques for solving the minimization problem under constraints obtained by
using a fixed point method on the friction force limit g = µ|rN | (sequence of Tresca problems) :
an Over Relaxation method with Projection, a Projected Conjugate Gradient method with
preconditioning or a projected Gauss Seidel algorithm with an Aitken acceleration (see Raous
and co-workers [44, 45, 3]). Another one is a direct mathematical programming method used to
solve the problem written in linear complementarity form (see [19]) : this is the Lemke method
(see [44, 3]).

With the examples presented below, the quasistatic solution is computed using the incremen-
tal formulation (115) and the S.O.R.P. (Successive Over Relaxation with Projection) method
coupled with the fixed point on g . This is written as follows for each time tk+1 :





(gk+1)0 = gk , ν = 0

Find the fixed point (gk+1)ν+1 = µ|rN ((gk+1)ν)|
where rN ((gk+1)ν) is the normal contact force associated to the solution (uk+1)ν

of the problem :

Find (uk+1)νsolution of J((uk+1)ν) ≤ J(v) , ∀v ∈ Ku ,

(116)

with J(v) =
1

2
Kv .v − f k+1.v +

∑

p∈PC

(gk+1)ν
p |vTp − uk

Tp|. (117)
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The memory due to the velocity formulation of the friction is taken into account in (117) by
uk

Tp, the previous tangential contact displacement.
To ensure the maximum accuracy, the contact forces are directly computed from the residues

of equilibrium. Details about the algorithm can be found in [44] and [21]. A diagonal process
is used for the fixed point method on g , i.e., coarse resolutions are carried out with the first
values of g . The number of iterates on g is usually less than 8 and the total number of S.O.R.P.
iterates is between one and two times the number of degrees of freedom.

The stability analysis presented next is done at each time tk of the quasistatic incremental
solution (uk, rk).

5.4. Numerical characterization of instabilities

For each straight portion of the quasistatic solution, i.e. between two successive changes of
contact status, the tangent mass and stiffness matrices are constructed. Within such portions
and in the typical situations which occur during the numerical resolution of the quasistatic
problem, the following sets of contact candidate nodes are empty : the peculiar set Pz(u

k, rk)
of the nodes currently in contact with null reaction ; the peculiar set Pss0(u

k, rk, u̇k, ṙk) of
the nodes currently in contact with non-null reaction on the friction cone, with reaction rates
tangent to that cone and null sliding speed ; and the set Psd(u

k, rk, u̇k, ṙk) of the nodes currently
in contact with non-null reaction on the friction cone, with null sliding speed and reaction rates
directed towards the interior of the friction cone. Note that in practice, because of the space and
time discretizations involved in the numerical resolution of the quasistatic problem and because
of the finite digit accuracy we never need to worry about the above sets, i.e., at each discrete
time point tk we ”always” have

Pz(u
k, rk) = ∅

Ps(u
k, rk) = Pss(u

k, rk, u̇k, ṙk) ∩ Pv(u
k, u̇k)

i.e.

PC = Pf (uk) ∪ Pd(u
k, rk) ∪ [Pss(u

k, rk, u̇k, ṙk) ∩ Pv(u
k, u̇k)]

and there is no distinction either between the matrices M∗, M∗∗ and M̃ or between the matrices

K∗, K∗∗ and K̃. Hereafter we shall denote them simply by M∗ and K∗.
These matrices are obviously constructed from the finite element stiffness and mass matrices

K and M by removing the equations corresponding to the non-active degrees of freedom [recall
the definition of S∗ = S∗(uk, rk) given in Section 3] and by modifying the coefficients of the
rows of the matrices K and M associated with the tangential displacement of the sliding nodes
[recall (82)]. Matrices K∗ and M∗ are therefore non symmetrical and dependent on µ and they
are modified whenever the contact conditions change. When desired, the symmetrized matrices
M∗

S and K∗

S [see (86)] are also constructed.
We observe that matrices M∗ and M∗

S were never found to be singular (M∗

S is always positive
definite) in any of the computations involving finite element discretizations performed in the
course of this work. Therefore during the quasistatic loading process, i.e., at each time tk, we
search for the following :

(i) non-positive eigenvalues of the matrix K∗

S [recall (76) and (84), with positive definite M∗

S

and with Pz = ∅] corresponding to real eigenvectors V ∗ satisfying the constraint [cf. (79)
with Pz = ∅]

σ(V ∗

Tp) = −σ(rk
Tp) for all p ∈ Ps(u

k, rk); (118)

this is necessary for a divergence instability ;
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(ii) non-positive real eigenvalues of the matrix K∗, or, equivalently, of M∗−1K∗ satisfying the
same constraint as above [recall (87) and (79) with M∗ non-singular and Pz = ∅] ;
this is sufficient for a divergence instability ;

(iii) complex eigenvalues of M∗−1K∗ [recall (108) and (48) with Pz = ∅, Pss ∩ Pv = Ps,

M̃ = M∗, K̃ = K∗ and M∗ non-singular] ;
this is sufficient for the existence of growing flutter-type oscillations in the neighborhood
of the quasistatic solution.

The search for (i) is done by three different methods ; they all give the same results :

1. minimizing the bilinear form a∗(v ,v) under constraints (118) and ‖v‖ = 1 and checking
the sign of the minimum,

2. applying Cholesky’s method to K∗

S and checking when it fails (K∗

S is no longer positive
definite),

3. computing the smallest eigenvalue of K∗

S and checking its sign.

Method 2 is a direct one and therefore the fastest. The last method is presented because it
could be used to search for other eigenvalues, and also because it gives the eigenvector of K∗

S

corresponding to its smallest eigenvalue.
The smallest eigenvalue of K∗

S is computed as follows : using the Power Method, we first
compute the eigenvalue ΛL of K∗

S with largest modulus. If ΛL were negative, that would be the
desired result. If ΛL > 0, we shift all the eigenvalues towards the negative axis by constructing
the modified matrix K∗

S − ΛLI ; a computation of the eigenvalue ΛM with largest modulus of
this modified matrix gives the smallest eigenvalue Λm of K∗

S as Λm = ΛM + ΛL and we check
its sign.

The search for (ii) and (iii) is done by solving the generalized eigenproblem K∗V ∗ = ΛM∗V ∗

(Λ = −λ2) with the Lanczos algorithm [42] along with the double QR algorithm [43]. Most of
these computations are performed with the consistent mass matrix M∗ ; in order to speed up
some computations with the most refined meshes, a diagonal mass matrix M is used which also
leads to a diagonal matrix M∗.

The results will be presented in Section 5.6. Note that in cases (i) and (ii) condition (118) has
always been satisfied by the computed eigenvectors.

5.5. Results of the quasistatic loading

For µ = 1.1, H/L=0.5 , U0
N = −0.5mm (which corresponds to F 0

N = −55N) and a mesh with
21 contact nodes, the contact stresses are plotted in Fig. 14 at various stages along the process
of increasing the imposed tangential displacement of the araldite base. It can be seen in that
figure that, in the course of that tangential loading process, some nodes on the right of the
contact surface successively loose contact and also that the sliding zone expands from right to
left. In the final phase of the tangential loading process all the nodes still in contact attain
sliding and, thereafter, all deformations and stresses in the block remain constant : a steady
sliding equilibrium state is reached.

Note that for different friction coefficients µ and different aspect ratios H/L quite different
patterns of evolution can be obtained for the contact states. The computed quasistatic evolution
of the total tangential contact force (T) is plotted in Fig. 15 relatively to the time variable t.
It is a smooth evolution on which it is possible to distinguish a straight initial portion (while
all the contact nodes are still stuck) and a final flat portion corresponding to the steady sliding
state.
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Fig. 14: Evolution of the contact stresses and of the contact conditions along the contact zone.
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Fig. 15: Numerical total tangential force.

The material characteristics used in the numerical calculations are : Poisson’s ratio ν = 0.48,
and density ρ=1.2 10−3g/mm3. Note that the value of Young’s modulus used in the numerical
calculations was identified by comparing the experimental and theoretical results for the early
stages of the quasistatic evolution of the total tangential contact force, when all the nodes are
still stuck (see Fig. 12 and Fig. 15) : E=5MPa.
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5.6. The results of the stability analyses

The results of the stability analyses performed at each step of the quasistatic evolution are
presented in Table 1. For each value of the prescribed tangential displacement UT , the total
number of stick, slip or no-contact nodes is given in that table together with the minimum
real eigenvalues of K∗

S and M∗−1K∗ and the lowest mode number corresponding to a complex
eigenvector of M∗−1K∗.

Table 1: Results of the stability analyses and comparison with experimental observations.

UT Contact Nodes Min Real E.V. of Flutter Experimental

(mm) Stick Slip No-c. K∗

S M∗−1K∗ (Mode) data

-0.87 20 1 0 0.076 8.19 106 57 —

-1.05 19 1 1 0.071 7.91 106 11 —

-1.20 18 1 2 0.068 7.69 106 10 —

-1.35 17 2 2 -0.130 7.43 106 3 —

-1.45 16 2 3 -0.106 7.09 106 3 —

-1.65 14 4 3 -0.502 6.26 106 3 —

-1.75 12 6 3 -0.676 5.47 106 3 —

-1.78 10 8 3 -0.760 6.76 106 3 —

-1.82 7 11 3 -0.821 5.37 106 3 —

-2.00 4 14 3 -0.851 3.34 106 3

-2.20 3 15 3 -0.858 3.08 106 3 1st small jump

-2.45 2 16 3 -0.864 2.78 106 3 —

-2.71 2 16 3 -0.864 2.78 106 3 2nd jump

-2.75 2 15 4 -0.859 2.68 106 5 —

-3.40 1 16 4 -0.868 2.30 106 5 —

-6.20 0 17 4 -0.974 1.23 106 5 —

The necessary condition for divergence instability is first satisfied for UT =-1.35mm when a
second node begins sliding.

Fig. 16: Eigenvector associated to the first negative eigenvalue of K∗

S (UT =-1.45mm and UT =-
1.8mm)

The eigenvector associated with this negative eigenvalue of K∗

S is plotted in Fig. 16. It rep-
resents a direction along which an unstable evolution would be energetically admissible : an
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evolution with loss of energy into some external sink. That mode shape clearly suggests the
waves experimentally observed in the polyurethane block. However, as seen in Table 1, the
sufficient condition for a divergence instability (a negative eigenvalue of M∗−1K∗) never gets to
be satisfied.

In what concerns flutter, it occurs for very high modes as soon as any node begins sliding.
However it is likely that significant consequences will arise only when some lower order mode is
affected by flutter. Table 1 shows that flutter occurs for a low order mode (the 3rd mode) at
the same time as the necessary condition for divergence is first satisfied (a little earlier in other
examples). Table 1 also shows that the steady-sliding state attained at the end of the theoretical
quasistatic solution is unstable by flutter (see the last row in that table).

Fig. 17: Evolution in time of experimental and theoretical total tangential forces.

In Fig. 17 the time evolution of both experimental and theoretical tangential forces is plot-
ted. On the theoretical curve, the dot indicates the time at which the necessary condition for
divergence instability and the sufficient condition for growing flutter-type oscillations are first
satisfied. Clearly those conditions are satisfied too early as compared to the first experimental
observations of jumps : both those conditions are satisfied for UT =-1.35mm while the first small
jump is observed for UT =-2.2mm and a second jump is observed for UT =-2.71mm (see also
Table 1).

In the next section we present a preliminary study on the effect that the presence of viscous
damping may have on the stability analysis and results.

5.7. Effect of viscous damping

As seen above, flutter occurs too early in comparison with the experiment. On the other hand,
a simplified form to introduce viscous damping effects in the problem is to consider a damping
matrix of the Rayleigh type αM + βK in the dynamic equations of motion and the dynamic
stability analysis. In this manner it is possible to delay the flutter occurrence (and even to
eliminate it with sufficiently strong damping).

The frequencies of the 18 first natural modes of the structure range between 454 Hz and 1530 Hz
in its initial phase of elastic behavior, i.e., when all the nodes are stuck. The damping ratio ξ
depends on the frequencies and is known to be decreasing in that range for the polyurethane.
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Therefore we compute different values of α and β (see Clough [5]) so as to obtain the various
decreasing evolutions of the damping ratio given on Fig. 18. When referring to each of those

curves the value of ξ for 454 Hz will be used. The damping ratio ξ is defined as
−Re(λ)

|Im(λ)| ( λ is

the eigenvalue of the eigenproblem below, with all the contact nodes stuck).
Stability has been studied with these 6 different damping levels. The eigenvalues are now

computed from :

(λ2M∗ + λ(αM∗ + βK∗) + K∗)V ∗ = 0 ,

The results are given on Fig. 19.
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Fig. 18: Frequency dependence of the damping ratios obtained for the six values of α and β
considered.

Fig. 19: Prescribed tangential displacement at which a low order flutter mode occurs for the
various damping levels given on Fig. 18.

The values of the imposed tangential displacement UT at which flutter occurs are given in that
figure for the six damping levels of Fig. 18. The sudden change in UT occurring between the
values of ξ=0.1475 and ξ=0.15 on Fig. 19 is due to the change in the excited mode. For the
first value, mode 3 is concerned and for the second one, mode 5 is concerned. That means that
when the damping is strong enough, the mode 3 is not excited anymore by flutter.

Therefore, it can be observed on Fig. 19 that the occurrence of instability is greatly delayed by
the introduction of viscous damping (from UT =-1.35mm (the no-viscosity case) to UT =-6.2mm
(for the maximum damping considered here)).

A more precise estimation of the occurrence of flutter when viscosity is taken into account
would require a precise measurement of the loss angle of the material in the appropriate frequency
range.

5.8. Conclusions

The steady sliding solution of the block is found to be unstable by flutter.
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During the tangential quasistatic loading process, we observe that :

• the necessary condition for divergence is satisfied too early in comparison with the occur-
rence of the first experimental jump ; the corresponding eigenmode suggests the initiation
of the waves experimentally observed, but

• the sufficient condition for divergence is never satisfied ;

• growing flutter-type oscillations for the lower order modes initiate here at the same time
as the necessary condition for divergence is satisfied, which is too early in comparison with
the experiment ;

• consideration of damping in the stability analysis delays the occurrence of flutter, probably
leading to a better agreement with the experimental results.
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contact unilatéral avec frottement non local, C.R.A.S. Paris, t. 320 Série I (1995) 1413-1417.

[7] M. Cocu, E. Pratt and M. Raous, Formulation and approximation of quasistatic frictional
contact, Int. J. Engng. Sci., 34(7) (1996) 783-798.

[8] G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics, (Springer-Verlag, Berlin,
Heidelberg, New York, 1976).
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t.299 série II (12) (1984) 763-768.

[42] C. Rajakumar and C. Rogers, The Lanczos algorithm applied to unsymmetric generalized
eigenvalue problem, Int. J. Numer. Methods Engng. 32 (1991) 1009-1026.

49



[43] A. Ralston and P. Rabinowitz, A first course in numerical analysis, (McGRAW-HILL, New-
York, 1978).

[44] M. Raous, P. Chabrand and F. Lebon, Numerical methods for frictional contact problems
and application, Journal Theo. Appl. Mech. special issue supplement No. 1 to Vol. 7 (1988)
111-128.

[45] M. Raous and S. Barbarin, Preconditioned conjugate gradient method for a unilateral
problem with friction, Proc. Contact Mechanics Int. Symp., ed. by Alain Curnier, (Presses
Polytechniques et Universitaires Romandes, 1992) 423-432.

[46] M. Raous and S. Barbarin, Stress waves in a sliding contact, Part 2: modelling, Proc. 22nd

Leeds Lyon symposium on Tribology, Lyon, 5-8 September (1995) 6 pages.

[47] R.T. Spurr, A theory of brake squeal, Proc. Inst. Mech. Engrs. (A.D.) 1 (1961-62) 33-52.

[48] D.E. Stewart, Existence of solutions to rigid body dynamics and the Painlevé paradoxes,
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